abs

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

Analytical absorption corrections are employed in scaling diffraction data for highly absorbing samples, such as those used in long-wavelength crystallography, where empirical corrections pose a challenge. AnACor2.0 is an accelerated software package developed to calculate analytical absorption corrections. It accomplishes this by ray-tracing the paths of diffracted X-rays through a voxelized 3D model of the sample. Due to the computationally intensive nature of ray-tracing, the calculation of analytical absorption corrections for a given sample can be time consuming. Three experimental datasets (insulin at λ = 3.10 Å, thermolysin at λ = 3.53 Å and thaumatin at λ = 4.13 Å) were processed to investigate the effectiveness of the accelerated methods in AnACor2.0. These methods demonstrated a maximum reduction in execution time of up to 175× compared with previous methods. As a result, the absorption factor calculation for the insulin dataset can now be completed in less than 10 s. These acceleration methods combine sampling, which evaluates subsets of crystal voxels, with modifications to standard ray-tracing. The bisection method is used to find path lengths, reducing the complexity from O(n) to O(log2 n). The gridding method involves calculating a regular grid of diffraction paths and using interpolation to find an absorption correction for a specific reflection. Additionally, optimized and specifically designed CUDA implementations for NVIDIA GPUs are utilized to enhance performance. Evaluation of these methods using simulated and real datasets demonstrates that systematic sampling of the 3D model provides consistently accurate results with minimal variance across different sampling ratios. The mean difference of absorption factors from the full calculation (without sampling) is at most 2%. Additionally, the anomalous peak heights of sulfur atoms in the Fourier map show a mean difference of only 1% compared with the full calculation. This research refines and accelerates the process of analytical absorption corrections, introducing innovative sampling and computational techniques that significantly enhance efficiency while maintaining accurate results.




abs

Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes

X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.




abs

A sub-100 nm thickness flat jet for extreme ultraviolet to soft X-ray absorption spectroscopy

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.




abs

Iterative Bragg peak removal on X-ray absorption spectra with automatic intensity correction

This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation. The results underscore the technique's effectiveness, adaptability and substantial potential in improving the precision of XAS data analysis. While demonstrating significant promise, the method does have limitations related to signal-to-noise ratio sensitivity and the necessity for meticulous angle selection during experimentation. Overall, IBR-AIC represents a significant advancement in XAS, offering a pragmatic solution to Bragg peak contamination challenges, thereby expanding the applications of XAS in understanding complex materials under diverse experimental conditions.




abs

Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.




abs

VUV absorption spectra of water and nitrous oxide by a double-duty differentially pumped gas filter

The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of N2O exhibits a small shift in the { ilde{f D}} band and tentative fine structures that have not yet been fully described. This setup will facilitate the measurement of absorption spectra in the VUV above the absorption edge of LiF and MgF2 windows. It will also allow us to carry out condensed-phase measurements on thin liquid sheets and solid films. Further development options are discussed, including the recording of temperature-dependent absorption spectra, a stationary gas cell for calibration measurements, and the improvement of the photon energy resolution.




abs

Web-CONEXS: an inroad to theoretical X-ray absorption spectroscopy

Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.




abs

RefXAS: an open access database of X-ray absorption spectra

Under DAPHNE4NFDI, the X-ray absorption spectroscopy (XAS) reference database, RefXAS, has been set up. For this purpose, we developed a method to enable users to submit a raw dataset, with its associated metadata, via a dedicated website for inclusion in the database. Implementation of the database includes an upload of metadata to the scientific catalogue and an upload of files via object storage, with automated query capabilities through a web server and visualization of the data and files. Based on the mode of measurements, quality criteria have been formulated for the automated check of any uploaded data. In the present work, the significant metadata fields for reusability, as well as reproducibility of results (FAIR data principles), are discussed. Quality criteria for the data uploaded to the database have been formulated and assessed. Moreover, the usability and interoperability of available XAS data/file formats have been explored. The first version of the RefXAS database prototype is presented, which features a human verification procedure, currently being tested with a new user interface designed specifically for curators; a user-friendly landing page; a full list of datasets; advanced search capabilities; a streamlined upload process; and, finally, a server-side automatic authentication and (meta-) data storage via MongoDB, PostgreSQL and (data-) files via relevant APIs.




abs

Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction

Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methyl­prop­yl)-1-oxa-4,7,10-tri­aza­cyclo­tridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclo­depsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclo­dep­si­peptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enanti­omorphs of beauveriolide I.




abs

Absolute structure determination of Berkecoumarin by X-ray and electron diffraction

X-ray and electron diffraction methods independently identify the S-enanti­omer of Berkecoumarin [systematic name: (S)-8-hy­droxy-3-(2-hy­droxy­prop­yl)-6-meth­oxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom com­position (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.




abs

The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment.




abs

Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ4–8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ4–8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ4–8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ4–16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ4–12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.




abs

Structure of MltG from Mycobacterium abscessus reveals structural plasticity between composed domains

MltG, a membrane-bound lytic transglycosyl­ase, has roles in terminating glycan polymerization in peptidoglycan and incorporating glycan chains into the cell wall, making it significant in bacterial cell-wall biosynthesis and remodeling. This study provides the first reported MltG structure from Mycobacterium abscessus (maMltG), a superbug that has high antibiotic resistance. Our structural and biochemical analyses revealed that MltG has a flexible peptidoglycan-binding domain and exists as a monomer in solution. Further, the putative active site of maMltG was disclosed using structural analysis and sequence comparison. Overall, this study contributes to our understanding of the transglycosyl­ation reaction of the MltG family, aiding the design of next-generation antibiotics targeting M. abscessus.




abs

Synthesis, crystal structure and absolute configuration of (3aS,4R,5S,7aR)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetra­hydro-2H-1,3-benzodioxole-4,5-diol

The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The mol­ecule is a relevant inter­mediary for the synthesis of speciosins, ep­oxy­quinoides or their analogues. The mol­ecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an iso­propyl­idenedioxo ring. The packing is directed by hydrogen bonds that define double planes of mol­ecules laying along the ab plane and van der Waals inter­actions between aliphatic chains that point outwards of the planes.




abs

Ray-tracing analytical absorption correction for X-ray crystallography based on tomographic reconstructions

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.




abs

The AUREX cell: a versatile operando electrochemical cell for studying catalytic materials using X-ray diffraction, total scattering and X-ray absorption spectroscopy under working conditions

Understanding the structure–property relationship in electrocatalysts under working conditions is crucial for the rational design of novel and improved catalytic materials. This paper presents the Aarhus University reactor for electrochemical studies using X-rays (AUREX) operando electrocatalytic flow cell, designed as an easy-to-use versatile setup with a minimal background contribution and a uniform flow field to limit concentration polarization and handle gas formation. The cell has been employed to measure operando total scattering, diffraction and absorption spectroscopy as well as simultaneous combinations thereof on a commercial silver electrocatalyst for proof of concept. This combination of operando techniques allows for monitoring of the short-, medium- and long-range structure under working conditions, including an applied potential, liquid electrolyte and local reaction environment. The structural transformations of the Ag electrocatalyst are monitored with non-negative matrix factorization, linear combination analysis, the Pearson correlation coefficient matrix, and refinements in both real and reciprocal space. Upon application of an oxidative potential in an Ar-saturated aqueous 0.1 M KHCO3/K2CO3 electrolyte, the face-centered cubic (f.c.c.) Ag gradually transforms first to a trigonal Ag2CO3 phase, followed by the formation of a monoclinic Ag2CO3 phase. A reducing potential immediately reverts the structure to the Ag (f.c.c.) phase. Following the electrochemical-reaction-induced phase transitions is of fundamental interest and necessary for understanding and improving the stability of electrocatalysts, and the operando cell proves a versatile setup for probing this. In addition, it is demonstrated that, when studying electrochemical reactions, a high energy or short exposure time is needed to circumvent beam-induced effects.




abs

The general equation of δ direct methods and the novel SMAR algorithm residuals using the absolute value of ρ and the zero conversion of negative ripples

The general equation of the δ direct methods is established and applied in its difference form to the definition of one of the two residuals that constitute the SMAR phasing algorithm. These two residuals use the absolute value of ρ and/or the zero conversion of negative Fourier ripples (≥50% of the unit-cell volume). Alternatively, when solved for ρ, the general equation provides a simple derivation of the already known δM tangent formula.




abs

FORT Economist James Meldrum and the Wildfire Research Team win the 2024 CO-LABS Governor’s Awards for High Impact Research: Pathfinding Partnerships Award

The Pathfinding Partnerships Award from CO-LABS recognizes impactful, collaborative research projects organized by four or more research entities, including federal labs, in Colorado. This year, the Wildfire Research (WiRē) team received this award for their support of evidence-based community wildfire education to help communities live with wildfire. 




abs

Study finds big increase in ocean carbon dioxide absorption along West Antarctic Peninsula

Full Text:

A new study shows that the West Antarctic Peninsula is experiencing some of the most rapid climate change on Earth, featuring dramatic increases in temperatures, retreats in glaciers and declines in sea ice. The Southern Ocean absorbs nearly half of the carbon dioxide -- the key greenhouse gas linked to climate change -- that is absorbed by all the world's oceans. The study tapped an unprecedented 25 years of oceanographic measurements in the Southern Ocean and highlights the need for more monitoring in the region. The research revealed that carbon dioxide absorption by surface waters off the West Antarctic Peninsula is linked to the stability of the upper ocean, along with the amount and type of algae present. A stable upper ocean provides algae with ideal growing conditions. During photosynthesis, algae remove carbon dioxide from the surface ocean, which in turn draws carbon dioxide out of the atmosphere. From 1993 to 2017, changes in sea ice dynamics off the West Antarctic Peninsula stabilized the upper ocean, resulting in greater algal concentrations and a shift in the mix of algal species. That's led to a nearly five-fold increase in carbon dioxide absorption during the summertime. The research also found a strong north-south difference in the trend of carbon dioxide absorption. The southern portion of the peninsula, which to date has been less impacted by climate change, experienced the most dramatic increase in carbon dioxide absorption, demonstrating the poleward progression of climate change in the region.

Image credit: Drew Spacht/The Ohio State University




abs

144: Absurd Temperature Management

Grey has had to vacate his garage office, Myke wants to thank Cortexans, Cortex joins the Notion Nation, and Myke has hired a personal assistant. Also, a lightning round of exciting Beta features.




abs

Absurd Snacks releases Nut-Free Snack Mixes

Absurd Snacks, founded by Grace Mittl and Eli Bank, has launched their Nut-Free Snack Mixes in response to wanting to make snacking together easier, despite food allergies.




abs

Mitsubishi Gas Chemical releases first-ever, PFAS-free oxygen absorber

The new and improved AGELESS provides a timely packaging solution for customers navigating the PFAS regulatory landscape.




abs

Does punishment work? Absolutely, but probably not

Invited to do a workshop for a very large international corporation, I went out to a dinner where I sat next to the “grand poohbah” vice president in charge of all things quality and safety. He leaned over to me and said:




abs

Absolut unveils cocktail kit ahead of ‘WICKED’ movie release

As the official spirits partner of Universal Pictures’ “WICKED,” in theaters Nov. 22, Absolut is toasting to the power of friendship and inclusivity by offering “WICKED” consumers mystifying cocktail recipes.




abs

Transforming Hotel Insights: Kalibri Labs Introduces 'Summary View'

Discover the future of revenue optimization technology with Kalibri Labs' latest innovation, Summary View, designed to empower hoteliers with instant, comprehensive insights into their performance data.




abs

Answer United Now Provides Innovative Automated Absentee Services

Answer United's Automated Absentee Service will save your company time, money and reduce disputes that often lead to costly litigation




abs

IntuitiveLabs launches Zero-Trust VoIP Monitoring and SIEM as a Cloud Service

The IntuitiveLabs Monitoring as a cloud service, enables securing VoIP services using a sophisticated AI-based monitoring and Fraud detection solution and still comply to GDPR.




abs

VivoCabs V4 Released: A Ride-Hailing Software Upgraded with Advanced Features

The Latest in the Ride-Hailing Technology




abs

What Brings the Uniqueness of Taiwan Semiconductor Development ? NARLabs, a platform to bridge Academia Research and Industries

According to a report recently published by The Icons, National Applied Research Laboratories (NARLabs) participated in CogX Festival, one of the world's largest tech exhibitions held in London.




abs

Lifelong Labs' Greg Lindberg Shares Secrets to Youthful, Flawless Skin Without Treatment or Botox

"My skincare routine is simple, I only use soap and water," said Greg Lindberg. "My skin doesn't need anything else because it's soft and rejuvenated due to my anti-aging program.




abs

QIDX Throat & Nasal Swabs

Breakthrough Throat & Nasal Swabs to fight COVID-19 pandemics




abs

KTD BIOLABS Grass-fed Beef Organs

Introducing KTD BIOLABS Grass-fed Beef Organs: Elevate Your Health Naturally with Nature's Powerhouse!




abs

South Fork releases new fiber optic based single-use UV absorbance system

Kemtrak DCP007 is designed to accurately measure UV absorbance of fluids in filtration and separation systems




abs

Radeus Labs Inc. Announces Achievement of ISO-9001 Certification

A milestone in a continuous improvement journey.




abs

Radeus Labs, Inc. - Now a Woman-Owned Small Business

Radeus Labs, Inc., a leading provider of high-performance electronic and computing systems for the defense and SATCOM markets, is proud to announce that they are now a women-owned small business!




abs

Radeus Labs Inc. Launches a Fanless, Ruggedized, 4 Monitor Thin Client

The Fanless Thin Client can serve up to four monitors without the noise and failures of a cooling fan




abs

Radeus Labs Inc. Secures Major Contract from GA-ASI for UAS Testing and Upgrades

Radeus Labs has been awarded a major contract by General Atomics Aeronautical Systems, Inc. (GA-ASI) to provide vital support for testing and upgrading their Unmanned Aircraft System (UAS) platforms.




abs

Juliet Correnti, CEO of Radeus Labs, Named one of San Diego's Most Influential People by the San Diego Business Journal

Inclusive Leadership: Breaking Barriers and Building Bridges for a Diverse Tomorrow




abs

'DUOBO BY LG LABS' TO INTRODUCE A COFFEE EXPERIENCE TO SAVOR

Unique Features Enable Coffee-Lovers to Conveniently Customize Their Favorite Drink




abs

While Aereo Grabs Headlines, Rabbit TV Grabs Audience

Rabbit TV selling at major retailers nationwide, sets stage for Internet-based 'a la carte TV'.




abs

KTD BIOLABS BeTall Height Growth Maximizer and Height Growth MAX+

KTD BIOLABS Launches American Dietary Supplements: BeTall Height Growth Maximizer and Height Growth MAX+




abs

Empower Your Confidence: Unveil Nordic Biolabs' Secrets to Hair Regrowth

Unlocking the Potential of Hair Regrowth with Nordic Biolabs' Innovative Approach to Men's Hair Care, Revolutionizing the Industry with Solutions That Combat Hair Loss and Boost Confidence.




abs

Labcon Sponsors LabCentral's Network of Massachusetts-Based Coworking Labs

U.S. labware manufacturer partners with Labcentral to bring sustainable products to life science and biotech start-ups.




abs

Radeus labs, Inc. - Juliet Correnti Honored by the San Diego Business Journal's Women of Influence in Engineering 2024

Dedication to quality, innovation, and mentorship




abs

Greg Lindberg Discusses Lifelong Labs Initiatives on Fasting and Leadership with North American Media Outlets

Lindberg was interviewed by Podcast The Tonic and 517 Magazine.




abs

KTD BIOLABS Tinnitus Support and Nerve Support

KTD BIOLABS Launches American Dietary Supplements: Tinnitus Support and Nerve Support




abs

K-12 Game-based Learning Market is to grow by USD 16.50 billion from 2022 to 2027, the market is fragmented due to the presence of companies like Alphabet Inc., Banzai Labs Inc. & BrainQuake

Exploring the Dynamic Landscape of the K-12 Game-based Learning Market: A Comprehensive Analysis of Growth Trends, Key Players, and Market Fragmentation from 2022 to 2027




abs

Kalibri Labs Announces Partnership with My Place Hotels to Enhance Market Insights

Both companies have collaborated closely to integrate data and train the corporate team at My Place Hotels, preparing for a comprehensive rollout of Kalibri Labs' HummingbirdPXM platform across all My Place properties.




abs

Kalibri Labs Unveils OTB Signals

Signals: A Game-Changing Innovation for the Hospitality Industry




abs

Radeus Labs, Inc. Announces Strategic Acquisition of JEI-Inc. Product Line of Communication Recorders

Radeus Labs will integrate JEI-Inc.'s advanced communication recorders into its existing product lineup, broadening its offerings to better serve clients in critical industries such as Police and Fire, Medical, Dispatch Centers , and Military.