tal

Italian duo lose senior season after helping FIU find beach volleyball success

FIU's Margherita Bianchin and Federica Frasca opted to stay in South Florida rather than return to Italy, where the coronavirus struck ahead of the United States.




tal

The NHL's coronavirus pause: League memo makes early-June draft case; return-to-play talk continues

More details have emerged on a virtual draft in early June. Plus, the latest on when, where and how the season could resume.




tal

[Women's Outdoor Track & Field] Freshman Talisa Budder Qualifies for Track Nationals

In November 2011, Talisa Budder from Kenwood, OK qualified for the 2011 NAIA Women's Cross Country National Championships.  Upon her return to the Haskell campus she began training for the track program.   




tal

Farmers, Technology and Freedom of Choice: A Tale of Two Satyagrahas

This is the 23rd installment of The Rationalist, my column for the Times of India.

I had a strange dream last night. I dreamt that the government had passed a law that made using laptops illegal. I would have to write this column by hand. I would also have to leave my home in Mumbai to deliver it in person to my editor in Delhi. I woke up trembling and angry – and realised how Indian farmers feel every single day of their lives.

My column today is a tale of two satyagrahas. Both involve farmers, technology and the freedom of choice. One of them began this month – but first, let us go back to the turn of the millennium.

As the 1990s came to an end, cotton farmers across India were in distress. Pests known as bollworms were ravaging crops across the country. Farmers had to use increasing amounts of pesticide to keep them at bay. The costs of the pesticide and the amount of labour involved made it unviable – and often, the crops would fail anyway.

Then, technology came to the rescue. The farmers heard of Bt Cotton, a genetically modified type of cotton that kept these pests away, and was being used around the world. But they were illegal in India, even though no bad effects had ever been recorded. Well, who cares about ‘illegal’ when it is a matter of life and death?

Farmers in Gujarat got hold of Bt Cotton seeds from the black market and planted them. You’ll never guess what happened next. As 2002 began, all cotton crops in Gujarat failed – except the 10,000 hectares that had Bt Cotton. The government did not care about the failed crops. They cared about the ‘illegal’ ones. They ordered all the Bt Cotton crops to be destroyed.

It was time for a satyagraha – and not just in Gujarat. The late Sharad Joshi, leader of the Shetkari Sanghatana in Maharashtra, took around 10,000 farmers to Gujarat to stand with their fellows there. They sat in the fields of Bt Cotton and basically said, ‘Over our dead bodies.’ ¬Joshi’s point was simple: all other citizens of India have access to the latest technology from all over. They are all empowered with choice. Why should farmers be held back?

The satyagraha was successful. The ban on Bt Cotton was lifted.

There are three things I would like to point out here. One, the lifting of the ban transformed cotton farming in India. Over 90% of Indian farmers now use Bt Cotton. India has become the world’s largest producer of cotton, moving ahead of China. According to agriculture expert Ashok Gulati, India has gained US$ 67 billion in the years since from higher exports and import savings because of Bt Cotton. Most importantly, cotton farmers’ incomes have doubled.

Two, GMO crops have become standard across the world. Around 190 million hectares of GMO crops have been planted worldwide, and GMO foods are accepted in 67 countries. The humanitarian benefits have been massive: Golden Rice, a variety of rice packed with minerals and vitamins, has prevented blindness in countless new-born kids since it was introduced in the Philippines.

Three, despite the fear-mongering of some NGOs, whose existence depends on alarmism, the science behind GMO is settled. No harmful side effects have been noted in all these years, and millions of lives impacted positively. A couple of years ago, over 100 Nobel Laureates signed a petition asserting that GMO foods were safe, and blasting anti-science NGOs that stood in the way of progress. There is scientific consensus on this.

The science may be settled, but the politics is not. The government still bans some types of GMO seeds, such as Bt Brinjal, which was developed by an Indian company called Mahyco, and used successfully in Bangladesh. More crucially, a variety called HT Bt Cotton, which fights weeds, is also banned. Weeding takes up to 15% of a farmer’s time, and often makes farming unviable. Farmers across the world use this variant – 60% of global cotton crops are HT Bt. Indian farmers are so desperate for it that they choose to break the law and buy expensive seeds from the black market – but the government is cracking down. A farmer in Haryana had his crop destroyed by the government in May.

On June 10 this year, a farmer named Lalit Bahale in the Akola District of Maharashtra kicked off a satyagraha by planting banned seeds of HT Bt Cotton and Bt Brinjal. He was soon joined by thousands of farmers. Far from our urban eyes, a heroic fight has begun. Our farmers, already victimised and oppressed by a predatory government in countless ways, are fighting for their right to take charge of their lives.

As this brave struggle unfolds, I am left with a troubling question: All those satyagrahas of the past by our great freedom fighters, what were they for, if all they got us was independence and not freedom?



© 2007 IndiaUncut.com. All rights reserved.
India Uncut * The IU Blog * Rave Out * Extrowords * Workoutable * Linkastic




tal

DAC 2015: How Academia and Industry Collaboration Can Revitalize EDA

Let’s face it – the EDA industry needs new people and new ideas. One of the best places to find both is academia, and a presentation at the Cadence Theater at the recent Design Automation Conference (DAC 2015) described collaboration models that are working today.

The presentation was titled “Industry/Academia Engagement Models – From PhD Contests to R&D Collaborations.” It included these speakers, shown from left to right in the photo below:

  • Prof. Xin Li, Electrical and Computer Engineering, Carnegie-Mellon University (CMU)
  • Chuck Alpert, Senior Software Architect, Cadence
  • Prof. Laleh Behjat, Department of Electrical and Computer Engineering, University of Calgary

 

Alpert, who was filling in for Zhuo Li, Software Architect at Cadence, was the vice chair of DAC 2015 and will be the general chair of DAC 2016 in Austin, Texas. “My team at Cadence really likes to collaborate with universities,” he said. “We’re a big proponent of education because we really need the best and brightest students in our industry.”

Contests Boost EDA Research

One way that Cadence collaborates with academia is participation in contests. “It’s a great way to formulate problems to academia,” Alpert said. “We can have the universities work on these problems and get some strategic direction.”

For example, Cadence has been involved with the annual CAD contest at the International Conference on Computer-Aided Design (ICCAD) since the contest was launched in 2012. This is the largest worldwide EDA R&D contest, and it is sponsored by the IEEE Council on EDA (CEDA) and the Taiwan Ministry of Education. Its goals are to boost EDA research in advanced real-world problems and to foster industry-academia collaboration.

Contestants can participate in one of more problems in the three areas of system design, logic synthesis and verification, and physical design. The 2015 contest has attracted 112 teams from 12 regions. Cadence contributes one problem per year in the logic synthesis area. Zhuo Li was the 2012 co-chair and the 2013 chair. The awards will be given at ICCAD in November 2015.

Another step that Cadence has taken, Alpert said, is to “hire lots of interns.” His own team has four interns at the moment. One advantage to interning at Cadence, he said, is that students get to see real-world designs and understand how the tools work. “It helps you drive your research in a more practical and useful direction,” he said.

The Cadence Academic Network co-sponsors the ACM SIGDA PhD Forum at DAC, and Xin Li and Zhuo Li are on the organizing committee. This event is a poster session for PhD students to present and discuss their dissertation research with people in the EDA community. This year’s forum was “packed,” Alpert said, and it’s clear that the event needs a bigger room.

Finally, Alpert noted, Cadence researchers write and publish technical papers at DAC and other conferences, and Cadence people serve on the DAC technical program committee. “We try to be involved with the academic community on a regular basis,” Alpert said. “We want the best and the brightest people to go into EDA because there is still so much innovation that’s needed. It’s a really cool place to be.”

Research Collaboration Exposes Failure Rates

Xin Li presented an example of a successful research collaboration between CMU and Cadence. The challenge was to find a better way to estimate potential failure rates in memory. As noted in a previous blog post, PhD student Shupeng Sun met this challenge with a new statistical methodology that won a Best Poster award at the ACM SIGDA PhD Forum at DAC 2014.

The new methodology is called Scaled-Sigma Sampling (SSS). It calculates the failure rate and accounts for variability in the manufacturing process while only requiring a few hundred, or a few thousand, sample circuit blocks. Previously, millions of samples were required for an accurate validation of a new design, and each sample could take minutes or hours to simulate. It could take a few weeks or months to run one validation.

The SSS methodology requires greatly reduced simulation times. It makes it possible, Li noted, to run simulations overnight and see the results in the morning.

Li shared his secret for success in collaborations. “I want to emphasize that before the collaboration, you have to understand the goal. If you don’t have a clear goal, don’t collaborate. Once you define the goal, stick to it and make it happen.”

Contest Provides Learning Experience

Last year Laleh Behjat handed two of her new PhD students a challenge. “I told them there is an ISPD [International Symposium for Physical Design] contest on placement, and I expect you to participate and I expect you to win. Not knowing anything about placement, I don’t think they realized what I was asking them.”

The 2015 contest was called the Blockage-Aware Detailed Routing-Driven Placement Contest. Results were announced at the end of March at ISPD. And the University of Calgary team, despite its lack of placement experience, took second place.

Such contests provide a good learning tool, according to Behjat. Graduate students in EDA, she said, “have to be good programmers. They have to work in teams and be collaborative, be able to innovate, and solve the hardest problems I have seen in engineering and science. And they have to think outside the box.” A contest can bring out all these attributes, she said.

Further, Behjat noted, contest participants had access to benchmarks and to a placement tool. They didn’t have to write tools to find out if their results were good. Industry sponsors, meanwhile, got access to good students and new approaches for solving problems.

“You can see Cadence putting a big amount of time, effort and money to get students here and get them excited about doing contests,” she said. She advised students in the theater audience to “talk to people in the Cadence booth and see if you can have more ideas for collaboration.”

Richard Goering

Related Blog Posts

EDA Plus Academia: A Perfect Game, Set and Match

Cadence Aims to Strengthen Academic Partnerships

BSIM-CMG FinFET Model – How Academia and Industry Empowered the Next Transistor




tal

Varying a digital IIR filter's poles&zeros over time

Is there a better approach to varying the coefficients of a digital IIR over time to adjust the values of its poles and zeros than just recalculating the whole thing every time it changes? For example, lots of synth programs can apply an LFO to the cutoff frequency of a low/high pass filter. I can do some polynomial multiplication to get the coefficients for an IIR filter given its poles and zeros, but am wondering if there is a better way to adjust them over time than simply doing all the calculations over again for new poles/zeros. Particularly, I'm curious if there is a method that will more or less work for an arbitrary number of poles and zeros. You could use a filter implementation (state space) that directly uses the pole/zero values instead of a polynomial walmartone. That might be computationally more expensive, though (as you are taking a trip through the domain of complex numbers even though your inputs and output are real), and possibly numerically iffy.As far as I am aware, modifying filter behavior while introducing as few artefacts as possible is still an area of research. You might get away with just adjusting the filter coefficients if you do it slowly, but this does not mean this is the best method.In an audio application, I assume they do not switch filter coefficients abruptly, but instead do a cross-fade between the (settled) first filter and the (mostly or completely settled) target filter to avoid audible artefacts.




tal

regarding digital flow

Respected sir,

How can i design and simulate cmos inverter using digital flow and also ineed to do prelayout ans post layout for the same cmos inverter..can i use cadence encounter for this experiments




tal

2G: Mobile Goes Digital

In last week's post, 1G Mobile: AMPS, TOPS, C-450, Radiocom 2000, and All Those Japanese Ones . I covered 1G mobile, the first analog standards. Then we went digital. 2G The Nordic countries...

[[ Click on the title to access the full blog on the Cadence Community site. ]]




tal

Tales from DAC: Cadence, AI, and You

Complexity is driving the urgency for advanced artificial intelligence systems more than ever—and that means someone has to supply the tools to create those systems. Cadence is up to the task: we’ve been expanding our AI offerings. If you haven’t already seen what Cadence can do for your AI needs, or if you’re not quite up-to-date on this whole AI boom, let this presentation given by K.T. Moore at the Cadence Theater at DAC bring you up to speed.

The technology behind AI isn’t as new as you’d think—the principles that govern how AI learns have been in development since 1959, when Arthur Samuel defined the concept of “machine learning.” At the time, there was nothing even resembling the necessary compute power to put Samuel’s concepts into practice—but now we can. AI designs are huge, and they’re massively parallel—simulating them on older computers and simulators would have taken ages; never mind how long it would take to do some by-hand measure like they had to do in the '60s.

But with advancements in server technology and the parallelization technology in products like Xcelium Parallel Logic Simulator and JasperGold smart technology, plus hardware-based engines like the Palladium and Protium platforms, verifying AI designs is not only possible—it’s easy.  But, read on, its not just about simulation technology.

AI tech is flooding the industry. It’s applicable to almost every vertical—cloud computing can use AI to intelligently manage a user’s required resources, consumer electronics are using it to tailor a user experience based on a whole host of collected data, automotive companies want to use AI to drive cars, healthcare to assist in diagnoses given a set of symptoms and a database of other, similar patients—and that’s saying nothing of the multitude of industrial applications. AI is also useful in the creation of developers’ tools themselves. Part of what’s causing the semiconductor industry boom is just this—an exploding interest in AI chips. And with 5G technology imminent, and with the looming billion-gate plus sizes of the SoCs that implement 5G, AI-assisted developers' tools might need to become the norm, not an outlier.

So: in all of this, where is Cadence?

Cadence is focusing its efforts on two areas, dubbed “machine learning inside” and “machine learning outside.” ML inside in the digital design flow refers to improving PPA, faster engines, and better testing and diagnostics. None of this physically affects how you use a tool, but it makes using that tool a much better experience. ML outside talks about the design flow in general, working toward an automated design flow, as well as productivity improvements across the flow. These things do change how you use a tool, but don’t worry, it’s all for the better.

Additionally, Cadence is working to improve design enablement; that is, hardware and software co-design. Smart Genus and Innovus solutions make designing your SoC easier than ever—using the full flow can result in up to a 21% PPA gain.

If you’re looking specifically for IP to enable AI on your SoC, the Tensilica DNA 100 processor has you covered, too. It’s great for companies designing edge or AI chips, offers great compression rates and efficient power usage, and has 4.7X the performance of other AI SoC IP on similar array sizes.

Cadence has you covered no matter where you’re going in this new world of AI systems—with our AI-enabled tools, IP,  and our strong partner ecosystem, you can be at ease knowing you’ll be supported no matter how complex your needs are.




tal

Tales from DAC: Semiconductor Design in MY Cloud? It's More Likely Than You Think

Everyone keeps talking about “the cloud” this and “the cloud” that these days—but you’re a semiconductor designer. Everyone keeps saying “the cloud” is revolutionizing all aspects of electronics design—but what does it mean for you? Cadence's own Tom Hackett discussed this in a presentation at the Cadence Theater during DAC 2019.

What people refer to as “the cloud” is commonly divided into three categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and software as a Service (SaaS). With IaaS, you bring your own software—i.e. loading your owned or appropriately licensed tools onto cloud hardware that you rent by the minute. This service is available from providers like Google Cloud Platform, Amazon Web Service, and Microsoft Azure. In PaaS (also available from the major cloud providers), you create your own offering using capabilities and a software design environment provided by the cloud vendor that makes subsequent scaling and distribution really easy because the service was “born in the cloud”.  Lastly, there’s SaaS, where the cloud is used to access and manage functionality and data without requiring users to set up or manage any of the underlying infrastructure used to provide it.  SaaS companies like Workday and Salesforce deliver their value in this manner.  The Cadence Cloud portfolio makes use of both IaaS and SaaS, depending on the customers’ interest.  Cadence doesn’t have PaaS offerings because our customers don’t create their own EDA software from building blocks that Cadence provides.

All of these designations are great, but you’re a semiconductor designer. Presumably you use Workday or some similar software, or have in the past when you were an intern, but what about all of your tools? Those aren’t on the cloud.

Wait—actually, they are.

Using EDA tools in the cloud allows you to address complexity and data explosion issues you would have to simply struggle through before. Since you don’t have to worry about having the compute-power on-site, you can use way more power than you could before. You may be wary about this new generation of cloud-based tools, but don’t worry: the old rules of cloud computing no longer apply. Cloud capacity is far larger than it used to be, and it’s more secure. Updates to scheduling software means that resource competition isn’t as big of a deal anymore. Clouds today have nearly unlimited capacity—they’re so large that you don’t ever need to worry about running out of space.

The vast increase in raw compute available to designers through the cloud makes something like automotive functional safety verification, previously an extremely long verification task, doable in a reasonable time frame. With the cloud, it’s easy to scale the amount of compute you’re using to fit your task—whether it’s an automotive functional safety-related design or a small one.

Nowadays, the Cadence Cloud Portfolio brings you the best and brightest in cloud technology. No matter what your use case is, the Cadence Cloud Portfolio has a solution that works for you. You can even access the Palladium Cloud, allowing you to try out the benefits of an accelerator without having to buy one.

Cloud computing is the future of EDA. See the future here.




tal

Tales from DAC: Altair's HERO Is Your Hero

Emulators are great. They vastly speed up verification to the point where it’s hard to imagine life without them; as designs grow in complexity, simple simulation can’t keep up for the biggest designs. The extra oomph from emulation is almost a necessity for the top percentages of design sizes. However, many users of Palladium aren’t efficiently using their unit’s processing power, and as a result they’re missing out on the full speed-up potential that Palladium can provide.

Altair’s HERO is here for you. With its help, your Palladium unit can be even more amazing for your productivity than before.

HERO (that’s Hardware Emulator Resource Optimizer) adds emulator support to Altair’s Accelerator. You already know and love Altair’s scheduling tools; so why not make them do more for you, so you can be one of those people who are making the most out of their Palladium system?

Emulators are kind of like big computers, but it’s a lot harder to manage leftover resources on an emulator than it is on, say, a CPU. A scheduler like HERO neatly sidesteps this problem by more intelligently using the resources available to ensure that there’s a minimal patchwork of leftover resources to begin with.

HERO supports past generations of Palladium as well, so if you’re still using an older version, you can still take advantage of the upgrades HERO provides. There’s a wide variety of features HERO has that make your emulator easier to use. HERO separates a job into a “select” section and a “run” section: the “select” part makes a last-minute decision on which domains or boards to use, while the “run” part is the actual job. This makes it easier to ensure that your Palladium emulator is being used as efficiently as possible. Jobs are placed using “shapes”, which are a set of job types; these can be selected from a list of pre-defined ones by the user. Shapes can have special constraints if those are needed.

A new reservation system also helps HERO organize Palladium’s processing power better. HERO offers both “hard” reservations and “soft” reservations. A hard reservation locks other users out of reserving any part of the emulator at all, while a soft reservation allows a user to reserve a part of the emulator for a later use. Think of it like this: a soft reservation is like grabbing a ticket from the deli counter, while a hard reservation stops you from ever entering the market.

When using HERO, you can manage your entire verification workload. You’ll find that your utilization of your emulator vastly increases—it’s been reported that some users using only 30% of the capabilities of their Palladium unit(s) saw a massive increase to over 90% once they made the switch to HERO.

If you’re ready to take your Palladium productivity to the next level, Altair has a HERO for you.

To see the full presentation given by Andrea Casotto in the Cadence Theater at DAC 2019, check here.




tal

BoardSurfers: Training Insights - Fundamentals of PDN for Design and PCB Layout

What is a Power Distribution Network (PDN) after all but resistance, inductance, and capacitance in the PCB and components? And, of course, it is there to deliver the right current and voltage to each component on your PCB. But is that all? Are there oth...(read more)




tal

How to install PLL Macro Model Wizard?

Hello,

I am using virtuoso version IC 6.1.7-64b.500.1, and I am trying to follow the Spectre RF Workshop-Noise-Aware PLL Design Flow(MMSIM 7.1.1) pdf.

I could find the workshop library "pllMMLib", but I cannot find PLL Macro Model Wizard, and I attached my screen.

Could you please help me install the module "PLL Macro Model Wizard"?

Thanks a lot!




tal

Farmers, Technology and Freedom of Choice: A Tale of Two Satyagrahas

This is the 23rd installment of The Rationalist, my column for the Times of India.

I had a strange dream last night. I dreamt that the government had passed a law that made using laptops illegal. I would have to write this column by hand. I would also have to leave my home in Mumbai to deliver it in person to my editor in Delhi. I woke up trembling and angry – and realised how Indian farmers feel every single day of their lives.

My column today is a tale of two satyagrahas. Both involve farmers, technology and the freedom of choice. One of them began this month – but first, let us go back to the turn of the millennium.

As the 1990s came to an end, cotton farmers across India were in distress. Pests known as bollworms were ravaging crops across the country. Farmers had to use increasing amounts of pesticide to keep them at bay. The costs of the pesticide and the amount of labour involved made it unviable – and often, the crops would fail anyway.

Then, technology came to the rescue. The farmers heard of Bt Cotton, a genetically modified type of cotton that kept these pests away, and was being used around the world. But they were illegal in India, even though no bad effects had ever been recorded. Well, who cares about ‘illegal’ when it is a matter of life and death?

Farmers in Gujarat got hold of Bt Cotton seeds from the black market and planted them. You’ll never guess what happened next. As 2002 began, all cotton crops in Gujarat failed – except the 10,000 hectares that had Bt Cotton. The government did not care about the failed crops. They cared about the ‘illegal’ ones. They ordered all the Bt Cotton crops to be destroyed.

It was time for a satyagraha – and not just in Gujarat. The late Sharad Joshi, leader of the Shetkari Sanghatana in Maharashtra, took around 10,000 farmers to Gujarat to stand with their fellows there. They sat in the fields of Bt Cotton and basically said, ‘Over our dead bodies.’ ¬Joshi’s point was simple: all other citizens of India have access to the latest technology from all over. They are all empowered with choice. Why should farmers be held back?

The satyagraha was successful. The ban on Bt Cotton was lifted.

There are three things I would like to point out here. One, the lifting of the ban transformed cotton farming in India. Over 90% of Indian farmers now use Bt Cotton. India has become the world’s largest producer of cotton, moving ahead of China. According to agriculture expert Ashok Gulati, India has gained US$ 67 billion in the years since from higher exports and import savings because of Bt Cotton. Most importantly, cotton farmers’ incomes have doubled.

Two, GMO crops have become standard across the world. Around 190 million hectares of GMO crops have been planted worldwide, and GMO foods are accepted in 67 countries. The humanitarian benefits have been massive: Golden Rice, a variety of rice packed with minerals and vitamins, has prevented blindness in countless new-born kids since it was introduced in the Philippines.

Three, despite the fear-mongering of some NGOs, whose existence depends on alarmism, the science behind GMO is settled. No harmful side effects have been noted in all these years, and millions of lives impacted positively. A couple of years ago, over 100 Nobel Laureates signed a petition asserting that GMO foods were safe, and blasting anti-science NGOs that stood in the way of progress. There is scientific consensus on this.

The science may be settled, but the politics is not. The government still bans some types of GMO seeds, such as Bt Brinjal, which was developed by an Indian company called Mahyco, and used successfully in Bangladesh. More crucially, a variety called HT Bt Cotton, which fights weeds, is also banned. Weeding takes up to 15% of a farmer’s time, and often makes farming unviable. Farmers across the world use this variant – 60% of global cotton crops are HT Bt. Indian farmers are so desperate for it that they choose to break the law and buy expensive seeds from the black market – but the government is cracking down. A farmer in Haryana had his crop destroyed by the government in May.

On June 10 this year, a farmer named Lalit Bahale in the Akola District of Maharashtra kicked off a satyagraha by planting banned seeds of HT Bt Cotton and Bt Brinjal. He was soon joined by thousands of farmers. Far from our urban eyes, a heroic fight has begun. Our farmers, already victimised and oppressed by a predatory government in countless ways, are fighting for their right to take charge of their lives.

As this brave struggle unfolds, I am left with a troubling question: All those satyagrahas of the past by our great freedom fighters, what were they for, if all they got us was independence and not freedom?

The India Uncut Blog © 2010 Amit Varma. All rights reserved.
Follow me on Twitter.




tal

ORCAD 17.2 Win 10 Install Error

I'm trying to re-install ORCAD 17.2  in a PC from a DVD which I have upgraded from Win 7 to Win 10 and  now has a new 500GB SSD. While installing I got a Windows Application Error  0xc000007b. When I try to run ORCAD I get the same Error.

Looking for ways to fix this problem.




tal

QSPI Direct Access bare metal SW driver

Hello,

I'm reading the Design specification for IP6514E.

We will use the DAC mode.

It would seem to be very simple but I don't see any code sequence, i.e.

  1.Write 03(Basic Read) to this register

  2, Write start adress to this register

  3. Write "execute" to this register

  4. Read the data from this register

Thanks,

Stefan




tal

News18 Urdu: Latest News Nainital

visit News18 Urdu for latest news, breaking news, news headlines and updates from Nainital on politics, sports, entertainment, cricket, crime and more.






tal

Kguard Digital Video Recorder Bypass Issues

A deficiency in handling authentication and authorization has been found with Kguard 104/108/v2 models. While password-based authentication is used by the ActiveX component to protect the login page, all the communication to the application server at port 9000 allows data to be communicated directly with insufficient or improper authorization. Proof of concept exploit included.




tal

G DATA TOTAL SECURITY 25.4.0.3 Active-X Buffer Overflow

G DATA TOTAL SECURITY version 25.4.0.3 suffers from an active-x buffer overflow vulnerability.





tal

Nigerian Prince Swaps The Sweet Talk For Keyloggers And Exploits







tal

Dassault Systèmes Named Key Supplier by Groupe PSA for its Digital Transformation

•Dassault Systèmes becomes the first and only software provider today to be recognized as Groupe PSA’s preferred digital partner •Dassault Systèmes and Groupe PSA engage in long-term strategy with the intent to further deploy the 3DEXPERIENCE platform •New level of partnership will enable Groupe PSA to improve efficiency and innovation in challenging marketplace




tal

Lockheed Martin Selects Dassault Systèmes’ 3DEXPERIENCE Platform to Support Digital Engineering Initiatives

•Lockheed Martin deploys the 3DEXPERIENCE platform as an engineering and manufacturing planning toolset •Multi-year collaboration aims to speed timelines and improve efficiencies of next generation products •Digital experience platform approach drives advances in complex, sophisticated aircraft innovation




tal

Dassault Systèmes Q3 and YTD Total Revenue and EPS Growth Up Double-digits; On Track for 5-year Doubling of non-IFRS EPS to €3.50 for 2019

VÉLIZY-VILLACOUBLAY, France — October 24, 2019 — Dassault Systèmes (Euronext Paris: #13065, DSY.PA) announces IFRS unaudited financial results for the third quarter and nine months ended September 30, 2019. These results were reviewed by the Group’s Board of Directors on October 23, 2019. This press release also includes financial information on a non-IFRS basis with reconciliations included in the Appendix to this communication. All IFRS and non-IFRS figures are presented in compliance...




tal

Hack A Nintendo DS To Make An Awesome Digital Sketchbook





tal

RFID-Hack Hits 1 Billion Digital Access Cards Worldwide





tal

Sneaky Malware Disguises Itself As An Adobe Flash Installer





tal

Adobe Patches Important Bugs In Connect And Digital Edition





tal

Key Reinstallation: Forcing Nonce Reuse In WPA2

Whitepaper called Reinstallation Attacks: Forcing Nonce Reuse in WPA2. This research paper will be presented on at the Computer and Communications Security (CCS) conference on November 1, 2017. This paper details a flaw in the WPA2 protocol itself and most devices that makes use of WPA2 are affected.





tal

Aleza Portal 1.6 Insecure Cookie

Aleza Portal version 1.6 suffers from an insecure cookie handling vulnerability that allows for SQL injection.




tal

Totaljs CMS 12.0 Insecure Admin Session Cookie

Totaljs CMS version 12.0 mints an insecure cookie that can be used to crack the administrator password.









tal

Online Job Portal 1.0 Cross Site Request Forgery

Online Job Portal version 1.0 suffers from a cross site request forgery vulnerability.




tal

Hospitals Must Secure Vital Backend Networks Before It's Too Late





tal

Liferay Portal Java Unmarshalling Remote Code Execution

This Metasploit module exploits a Java unmarshalling vulnerability via JSONWS in Liferay Portal versions prior to 6.2.5 GA6, 7.0.6 GA7, 7.1.3 GA4, and 7.2.1 GA2 to execute code as the Liferay user. Tested against 7.2.0 GA1.