drive

Auger drive coupler assembly having a friction clutch for a combine harvester

An unload auger assembly for a combine harvester includes a drive coupler configured between adjacent first and second auger segments. The coupler includes a driver component and associated driver cog coupled to the first auger segment. A driven component and associated driven cog is coupled to the second auger segment. The driven cog is rotationally engaged by the driver cog to transmit rotational drive from the first auger segment to the second auger segment. A friction clutch is configured in-line between the driver component and driven component and rotationally couples the driver component to the driven up to a release torque value wherein the friction clutch disengages the driver component from the driven component.




drive

Driver assistance system for agricultural working machine

A driver assistance system for an agricultural working machine includes at least one control/regulating unit designed to adjust and monitor working parameters, quality parameters or both, of the agricultural working machine in an automatable manner based on use of a family of characteristics stored in the control/regulating unit. A selectable process implementation strategy is specified in order to automatically monitor or adjust at least one working parameter or quality parameter or both of the agricultural working machine. The driver assistance system suggests that the process implementation strategy be changed at least when the specified setpoint value of one or more of the quality parameters cannot be reached within the preselected process implementation strategy.




drive

Variator multiplex valve scheme for a torroidal traction drive transmision

An apparatus and method are disclosed for controlling fluid flow to a variator which responsive to separate high and low pressure fluids to control an output torque thereof. A first trim valve may be responsive to a first control signal to supply a first fluid at a fluid outlet thereof. A second trim valve may be responsive to a second control signal to supply a second fluid at a fluid outlet thereof. A variator switching sub-system may controllably supply the high pressure fluid and the low pressure fluid to the variator. A multiplex valve may be fluidly coupled to the outlets of the first and second trim valves, and may supply the first fluid as the high pressure fluid to the variator switching sub-system during at least one predefined operating condition and may otherwise supply the second fluid as the high pressure fluid to the variator switching sub-system.




drive

Motor generator system driven by V-belt

A motor-generator system for a vehicle, in which power transmission between a crankshaft of an engine and a motor-generator is performed by a V-belt wound around pulleys thereof, includes a speed controller controlling the rotational speed of the V-belt within a predetermined range and provided on a crankshaft pulley mounted on the crankshaft. The motor-generator system, among others, can maintain the power transmission force of the V-belt at a high level.




drive

Drive arrangement with an infinitely variable sub-gear box

In order to further develop drive arrangements with a continuously variable sub-gear mechanism, the invention proposes a drive arrangement with a continuously variable sub-gear mechanism having two circulating transmission elements, which are actively connected to one another via a circulating connecting element, having a hybrid drive comprising a first drive and at least one additional drive, and further having at least one output, wherein at least one of the two drives is interactively connected to the output, either directly or indirectly via the continuously variable sub-gear mechanism.




drive

Drive unit

A drive unit includes a main wheel having an annular member, and a plurality of driven rollers that are rotatably attached to the annular member, a plurality of first drive rollers and a plurality of second drive rollers, which are provided with the annular member between them and arranged such that they make contact with the outer peripheral faces of the driven rollers, a first holder and a second holder, which are arranged with the annular shaft between them and respectively hold the plurality of first drive rollers and the plurality of second drive rollers while allowing them to rotate, and a first drive unit and a second drive unit that rotationally drive the first holder and the second holder respectively; grooves are formed in the outer peripheral faces of the driven rollers at an angle to the circumferential direction thereof.




drive

Drive mechanism for infinitely variable transmission

A variator transmission comprises an input shaft (18), an input disc (10) mounted on the input shaft for rotation therewith and an output disc (12) facing the input disc and arranged to rotate coaxially therewith, the input and output discs defining between them a toroidal cavity. Two rollers (14, 16) are located in the toroidal cavity and first and second roller carriage means are provided upon which the first and second rollers respectively are rotatably mounted and end load means (34, 36) urge the rollers into contact with the input and output discs to transmit drive. The two roller carriage means are mounted on opposite sides of the pivotal axis of a lever (50) and the pivotal axis of the lever (50) is movable in both the radial and non-radial directions with respect to the rotational axis of the input and output discs.




drive

Friction wheel drive

The invention is directed to a friction wheel drive with a driving roller capable of being driven in a rotary manner, which is mounted on a bearing unit so as to be rotatable about an axis of rotation. The bearing unit is displaceably guided transversely to the axis of rotation, and a circumferential surface of the driving roller can be brought into driving engagement with a friction surface. The bearing unit is coupled to a first mechanical forced guidance system, by which the driving roller, responding to a driving force acting in a first direction, can be automatically pressed against the friction surface with a contact pressing force that increases as the driving force increases. The bearing unit is also coupled to a second mechanical forced guidance system, by which the driving roller, responding to a driving force acting in an opposite second direction, can be automatically pressed against the friction surface with a contact pressing force that increases as the driving force increases.




drive

Full toroidal traction drive

A toroidal variable speed traction drive includes a driving disc and a driven disc. The discs have a common axis. A plurality of pairs of contacting rollers are interposed between the discs. The discs are urged together against the roller pairs (A) by a clamping force. Each of the rollers has a first rolling surface, by which it rolls on the other roller of the pair, and a second rolling surface by which it rolls on the toroidal surface of a corresponding disc. Each roller is mounted on a supporting axle about which it can rotate. The rotational axes of the rollers in a pair are supported in a plane that contains the two points where the rollers of the pair contact the discs. At least one of the rollers in each pair is adapted to be moved to adopt a stable position within the plane by the reactionary force exerted on it by the other roller of the pair.




drive

Variator switching valve scheme for a torroidal traction drive transmision

An apparatus for controlling a variator having at least one roller between two toroidal disks may include at least one actuator responsive to fluid pressure at separate high side and low side fluid inlets thereof to control torque applied by the at least one roller to the disks. First and second variator switching valves may each receive a first fluid at a first pressure and a second fluid at a second lesser pressure. The first and second variator switching valves supply the first fluid to the high side fluid inlet and the second fluid to the low side fluid inlet during two of four different operational states together defined by the variator switching valves, and supply the second fluid to the high side fluid inlet and the first fluid to the low side fluid inlet during each of the remaining two of the four different operational states.




drive

Drive train apparatus

A drive train apparatus (1) adapted for driving a pan and tilt head, which in use is intended to support a payload (for example a video camera), the apparatus includes respective successive drive elements (2, 3, 4) so coupled as to communicate a rotational movement applied at one end of the apparatus (1) from an output of a rotational input device (8) to a rotational output (16) disposed at the other end of the apparatus (1), in a manner whereby the rotational velocity of the rotational movement is reduced across the drive elements (2, 3, 4) thereby converting the torque applied to the input of each drive element (2, 3, 4) into an increased torque at the output of each drive element (2, 3, 4); a first stage one of the drive elements including a belt drive.




drive

Toroidal traction drive

A toroidal traction drive has an axial loading system with a primary loading component and a non-linear cam roller loading component.




drive

Systems and methods for asynchronous-frequency tracking of disk drive rotational vibration (RV) performance with position error signal (PES)

Systems and methods are provided that may be implemented to provide a mechanical indicator to correlate magnetic disk drive IOP performance with features of mechanical and/or acoustic vibrational frequencies that are generated and captured or sensed outside of the disk drive itself. In one example, disk drive PES data may be collected concurrently with the capture of mechanical and/or acoustic vibrational data at different and progressive locations of vibration source, vibration path and vibration receiver in a disk drive operating environment, e.g., such as for disk drives installed within a server and/or storage chassis enclosure. In such case, PES threshold may be utilized to correlate performance of Drive IOP or drive servo-mechanical performance as a function of measured characteristics of vibration source/s that impart vibration to a disk drive.




drive

Information storage device with a damping insert sheet between a housing bay and a disk drive

A novel information storage device is disclosed and claimed. The information storage device includes a device housing with a generally rectangular bay to accommodate a disk drive. The generally rectangular bay includes a base portion and a plurality of side portions. The information storage device further includes a damping insert sheet disposed between the disk drive and the base portion. The damping insert sheet has a plurality of elastomeric cushions, for example with a cushion thickness in the range 0.5 mm to 10 mm, and a spanning sheet, for example having a sheet thickness in the range 0.02 mm to 0.35 mm. Each of the plurality of elastomeric cushions is attached to the spanning sheet. Each of the plurality of elastomeric cushions contacts and is compressed between the generally rectangular bay and the disk drive.




drive

Slider including laser protection layer, head gimbal assembly, and disk drive unit with the same

A slider includes a substrate having a trailing edge, a leading edge opposite the trailing edge, and an air bearing surface connecting the trailing edge with the leading edge; a read/write transducer formed at the trailing edge; and a coat layer attached on the trailing edge and covering on the read/write transducer. The slider further includes a protection layer for shielding the read/write transducer thereby preventing the read/write transducer from damaging during a laser soldering process. The present invention can prevent the read/write transducer from damaging during the laser bonding process and, in turn improve the reading and writing performance of the slider. The invention also discloses an HGA and a disk drive unit.




drive

Damped dual stage actuation disk drive suspensions

Various embodiments concern a DSA suspension of a disk drive. The DSA suspension comprises a support configured to attach to the disk drive, the support comprising a proximal portion, a distal portion, and a linkage portion therebetween. The DSA head suspension system further comprises at least one motor mounted on the support, each motor positioned between the proximal portion and the distal portion. The DSA suspension further comprises a damper attached to some or all of the proximal portion, the motor(s), the distal portion, and the linkage portion. The damper can be a single layer or multilayered. The damper can comprise viscoelastic material. The damper can be adhesive. The damper may only be attached to the support and the motors and not to other components of the DSA suspension.




drive

Suspension with divided positive and negative write trace sections, and head gimbal assembly and disk drive unit with the same

A suspension includes a positive write trace and a negative write trace. The positive write trace is separated into at least two positive write trace sections located at two different layers respectively, and the negative write trace is separated into at least two negative write trace sections located at two different layers respectively. Each positive write trace section and each negative write trace section are alternately arranged along a longitudinal direction on two different layers, and the positive write trace sections at different layers are connected together via conductive crossovers, and the negative write trace sections are connected together via conductive crossovers. The present invention can obtain balanced propagation time in the stacked trace structure to reduce signal distortion, and obtain widened frequency bandwidth.




drive

Magnetic recording disk drive with write driver to write head transmission line with multiple segments having different numbers of conductive traces

A multiple-segment transmission line in a hard disk drive enables a wider optimization range of the slope, duration and amplitude of the transmission line overshoot (TLO) wave shape. There is a first segment with two traces for connection to the write driver circuitry, an end segment with two traces for connection to the write head and at least two intermediate segments. The number of traces in a segment is different from the number of traces in the segments to which the segment is immediately connected. There is an even number of traces in each segment and the traces in each segment are interleaved. The number of segments and the number of traces in each segment can be selected to achieve the desired impedance levels for the different segments to achieve the desired wave shape for the TLO. All of the traces on the transmission line are preferably coplanar.




drive

Grounding for a hard disk drive suspension tail

A flexible cable assembly (FCA) has a stiffener layer positioned in electrical contact with an electrical ground feature of the FCA, and a head stack assembly (HSA) may include a suspension tail electrically connected to the stiffener layer of the FCA, thus providing a robust ground path between the read/write head and the arm or E-block of the HSA. Additional efficient grounding techniques may include directly electrically connecting the suspension tail to the arm via a conductive adhesive, directly electrically connecting the FCA stiffener layer to the arm via a conductive screw, and/or directly electrically connecting the ground feature and the stiffener layer of the FCA to the arm using a ground post or screw.




drive

Disk drive adjusting a defect threshold when scanning for defective sectors

A disk drive is disclosed including a disk having a plurality of sectors, and a head actuated over the disk. A defect threshold is initialized, and a first sector is read to generate a first read signal. The first read signal is processed to detect a defect in the first sector relative to the defect threshold. After detecting the defect, the defect threshold is adjusted and the first sector is reread to generate a second read signal. The second read signal is processed to detect the defect in the first sector relative to the adjusted defect threshold.




drive

Co-located gimbal-based dual stage actuation disk drive suspensions with offset motors

Various embodiments concern a dual stage actuation suspension that comprises a loadbeam having a load point projection. The suspension further comprises a gimbal assembly having a point of contact that is in contact with the load point projection such that the gimbal assembly can gimbal about the load point projection. The gimbal assembly is cantilevered from the loadbeam and has an axis of rotation aligned with the load point projection and the point of contact. The suspension further comprises a pair of motors mounted on the gimbal assembly and positioned proximal of the point of contact. The pair of motors is mounted between a tongue and a pair of spring arms to rotate the tongue about the point of contact and the load point projection. The loadbeam further comprises a void into which the pair of motors extends.




drive

Disk drive suspension with microactuator elements on respective slider sides and damper member on gimbal portion away from dimple

A slider and microactuator elements are disposed on a gimbal portion of a flexure. A tongue of the gimbal portion has a first tongue portion, a second tongue portion, and a hinge portion. A leading-side portion of the slider is movably disposed on the first tongue portion. A trailing-side portion of the slider is secured to the second tongue portion. The hinge portion is formed between the first tongue portion and the second tongue portion. The gimbal portion is provided with a damper member includes a viscoelastic material layer and a constrained plate. The damper member comprises a first damper and a second damper. The hinge portion is exposed between the first damper and the second damper. A dimple on a load beam contacts the hinge portion at a point of contact.




drive

Disk drive measuring fly height by applying a bias voltage to an electrically insulated write component of a head

A disk drive is disclosed comprising a disk, and a slider comprising a head, where the head comprises a write component electrically insulated from the slider. A bias voltage is applied to the write component, and a current flowing between the write component and the disk is measured, wherein the current is indicative of a fly height of the head.




drive

Disk drive unit having gas-liquid interface between fixed body and rotor

A disk drive unit includes a rotor configured to rotate a disk accommodated within a disk accommodating space and set thereon, a fixed body configured to rotatably support the rotor, a fluid dynamic pressure generating part provided between the fixed body and the rotor, and a plurality of ring-shaped members, provided in an overlapping manner along a direction of a rotational axis of the rotor within a space that communicates the disk accommodating space and a gas-liquid interface of the lubricant, and covering a gap between the rotor and the fixed body.




drive

System and method for event-driven live migration of multi-process applications

A system, method, and computer readable medium for asynchronous live migration of applications between two or more servers. The computer readable medium includes computer-executable instructions for execution by a processing system. Primary applications runs on primary hosts and one or more replicated instances of each primary application run on one or more backup hosts. Asynchronous live migration is provided through a combination of process replication, logging, barrier synchronization, checkpointing, reliable messaging and message playback. The live migration is transparent to the application and requires no modification to the application, operating system, networking stack or libraries.




drive

Asynchronous callback driven messaging request completion notification

Through an asynchronous callback enhancement, a thread makes a non-blocking request (e.g., send, receive, I/O) to a message passing interface library, and a callback routine is associated with the request as an asynchronous callback to the thread. The callback is queued for execution in the requesting thread and so has a deterministic execution context. Callback queuing may occur in response to another thread detecting that the request is complete. Further control over callback execution is provided by state transitions which determine whether the thread is open to processing (e.g., executing) an asynchronous callback. Callback association is done by a broad or by narrow association routines. An application which has processes organized in ranks, each including a communication thread with associated callback(s), and multiple worker threads. Interruptible wait enhancements may also be present.




drive

Dynamic rule management for kernel mode filter drivers

A method for providing rules for a plurality of processes from a user mode to a kernel mode of a computer is disclosed. The method includes providing to the kernel mode a policy for at least a first process of the plurality of processes, the policy indicating at least when and/or how notifications are to be provided from the kernel mode to the user mode upon detection in the kernel mode of launching of the first process. The method further includes selecting, from the rules stored in the user mode, rules related to the launching of the first process, in response to receiving from the kernel mode a first notification in accordance with the policy, and providing the selected rules related to the launching of the first process from the user mode to at least one of the one or more filter drivers in the kernel mode.




drive

Rotary-driven tool for cutting machining with a cutting body

A rotary-driven tool for cutting machining, in particular a drilling tool with a cutting body and a holder with a shaft piece is disclosed, with at least a cutter and a dovetail-shaped region on the cutting body and a matching dovetail recess on the holder. The cutting body can only be inserted in the holder laterally to a longitudinal axis of the holder. In order to fix the cutting body, opposing flank sections of the dovetail recess, between which the dovetail-shaped region fits can be moved over each other by means of a screw connection in the holder and on fixing the cutting body said body is subjected to a force on the axial direction by the screw connection. In one aspect, the cutting body is a cutting head and the axial force is exclusively generated by the dovetail-shaped region in cooperation with the dovetail recess in the holder.




drive

Insertion and removal assembly for installing and removing data storage drives in an enclosure

An insertion and removal assembly for installing and removing hard drives from an enclosure, such as a computer chassis, is provided. The insertion and removal assembly includes a sliding member configured to receive a hard drive, a lever handle rotatably connected to the sliding member and an attachment wall having a plurality of protrusions defining a plurality of slots, each slot configured to receive one sliding member. A user reveals a slot for accepting the installation of the hard drive in the enclosure by pushing a tab on the attachment wall near a distal portion of the lever handle to release the lever handle and then pulling the lever handle outward exposing the sliding member. A hard drive is inserted into the sliding member and pushed inwardly into the chassis. Conversely, the sliding member can contain a hard drive which is partially ejected by unlatching and subsequently pulling the lever.




drive

Positioning structure for removable hard drive

A positioning structure for a removable hard drive includes an enclosure and a tray. The enclosure is used for being mounted by the hard drive, and disposed with a plurality of positioning holes. The tray includes a bottom and two side walls vertically extending therefrom. A space being is formed by the bottom and the side walls. The bottom is formed with a plurality of positioning pillars corresponding to the positioning holes. The enclosure is received in the space, and the positioning holes are correspondingly inserted by the positioning pillars.




drive

Single-phase brushless motor drive circuit

A driving circuit for a single-phase-brushless motor includes a driving-signal-generating circuit to generate a driving signal for supplying, to a driving coil of the single-phase-brushless motor, first- and second-driving currents alternately with a de-energized period therebetween, an output circuit, and a zero-cross-detecting circuit. While measuring a driving cycle from a start of an energized period, during which the output circuit supplies the first- or the second-driving current to the driving coil, to a time when the zero-cross-detecting circuit detects a zero cross of an induced voltage, generated across the driving coil, during the de-energized period, the driving-signal-generating circuit determines a length of a subsequent energized period based on the measured driving cycle, when the zero-cross-detecting circuit detects the zero-cross, and the driving-signal-generating circuit determines a length of an immediately previous energized period as a length of a subsequent energized period, when the zero-cross-detecting circuit does not detect the zero-cross.




drive

Brushless motor drive apparatus and drive method

The present invention relates to a drive apparatus and drive method for switching an energization mode when a voltage of a non-energized phase of a brushless motor crosses a threshold. In threshold learning, first, the brushless motor is stopped at an initial position. The brushless motor is then rotated by performing phase energization based on the energization mode from the stopped state. The voltage of the non-energized phase at an angular position of switching the energization mode is detected from a maximum value or a minimum value of the voltage of the non-energized phase during the rotation, and the threshold is learned based on the detected voltage. Alternatively, the brushless motor is positioned at the angular position of switching the energization mode by maintaining one energization mode, and then the energization mode is switched to the next energization mode. The voltage of the non-energized phase immediately after the switching to the energization mode is detected, and the detected voltage of the non-energized phase is learned as the threshold used to determine the timing of switching to the next energization mode.




drive

Predictive pulse width modulation for an open delta H-bridge driven high efficiency ironless permanent magnet machine

Embodiments of the present method and system permit an effective method for determining the optimum selection of pulse width modulation polarity and type including determining machine parameters, inputting the machine parameters into a predicted duty cycle module, determining the optimum polarity of the pulse width modulation for a predicted duty cycle based on a pulse width modulation generation algorithm, and determining the optimum type of the pulse width modulation for a predicted duty cycle based on the pulse width modulation generation algorithm.




drive

Motor drive unit

A switching element is switched off after having been switched on for only a short time interval called a first predetermined time interval, and a determination is made, based on a mode of a change in a contact point potential (a regeneration voltage) between an electric motor and the switching element when the switching element as switched off, as to whether or not one of the electric motor and the switching element has failed. Next, the switching element is switched on for a time interval called a second predetermined time interval, which is longer than the first predetermined time interval, and a determination is made, based on the magnitude of the contact point potential at that time, as to which one of the electric motor and the switching element has failed. It is thus possible for a failure of the switching element and electric motor to be detected.




drive

Method and device for detecting rotor position in a permanent magnet synchronous motor-driven washing machine

A device and method to determine the stopping rotor position of a washing machine motor includes an inverter, a permanent magnet synchronous motor, and an electronic motor controller. The controller determines the stopped rotor position of the motor by measuring induced currents in the stator field coils of the motor. While the motor is de-energized and slowly rotating, the controller directs the inverter to connect all of the stator field coils of the motor together. The stator field coils may be connected to a common D.C. rail, output from an A.C.-D.C. converter of the washing machine. In an embodiment, the controller determines the rotor position based on the polarities of current induced in the stator field coils. In another embodiment, the controller determines the rotor position based on the phase angle and angular frequency of the three phase currents, transformed into a stationary reference frame.




drive

System and method for temperature estimation in an integrated motor drive

A system to monitor the temperature of power electronic devices in a motor drive includes a base plate defining a planar surface on which the electronic devices and/or circuit boards within the motor drive may be mounted. The power electronic devices are mounted to the base plate through the direct bond copper (DBC). A circuit board is mounted to the base plate which includes a temperature sensor mounted on the circuit board proximate to the power electronic devices. The temperature sensor generates a digital signal corresponding to the temperature measured by the sensor. A copper pad is included between each layer of the circuit board and between the first layer of the circuit board and the sensor. The circuit board also includes vias extending through each layer of the board. The copper pads and vias establish a thermally conductive path between the temperature sensor and the base plate.




drive

Motor driven power steering and method for driving the same

A motor driven power steering (MDPS) may include: a vehicle speed sensor configured to sense vehicle speed; a temperature sensor configured to sense a temperature of a power pack; a current sensor configured to sense an amount of current applied to the MDPS; a storage unit configured to store a thermal resistance value based on the vehicle speed with respect to the temperature of the power pack; and a control unit configured to calculate an estimated temperature by reflecting the thermal resistance value based on the vehicle speed with respect to the temperature of the power pack and the current amount applied to the MDPS into a temperature estimation function, and drive a motor according to the calculated estimated temperature.




drive

Robot drive with magnetic spindle bearings

A drive section for a substrate transport arm including a frame, at least one stator mounted within the frame, the stator including a first motor section and at least one stator bearing section and a coaxial spindle magnetically supported substantially without contact by the at least one stator bearing section, where each drive shaft of the coaxial spindle includes a rotor, the rotor including a second motor section and at least one rotor bearing section configured to interface with the at least one stator bearing section, wherein the first motor section is configured to interface with the second motor section to effect rotation of the spindle about a predetermined axis and the at least one stator bearing section is configured to effect at least leveling of a substrate transport arm end effector connected to the coaxial spindle through an interaction with the at least one rotor bearing section.




drive

Boom drive apparatus, multi-arm robot apparatus, electronic device processing systems, and methods for transporting substrates in electronic device manufacturing systems with web extending from hub

Boom drive apparatus for substrate transport systems and methods are described. The boom drive apparatus is adapted to drive one or more multi-arm robots rotationally mounted to the boom to efficiently put or pick substrates. The boom drive apparatus has a boom including a hub, a web, a first pilot above the web, and a second pilot below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom above the a web, a second driven member rotationally mounted to the boom below the a web, and a first and second transmission members coupling the driving members to driven members located outboard on the boom. Numerous other aspects are provided.




drive

Adjunct therapy device having driver with cavity for hemostatic agent

An instrument is configured to receive a staple cartridge to staple tissue and expel a fluid from within a container in the staple cartridge. The staple cartridge has an upper deck including staple apertures and orifices formed therein. The orifices are in fluid communication with the containers. The staple cartridge includes staple drivers having a driver body to translate a staple and a container protrusion to expel the fluid out the orifices. The fluid may be expelled while driving the staples out through the staple apertures. The container may be vertically compressible container or, in one alternative, may be a container having a channel and a sealant that is configured to be pierced as the fluid is expelled. Some configurations for the fluid include a hemostatic agent, thrombin, a gel, or a medicament. The containers may also be formed as reservoirs defined within the upper deck and/or cartridge body.




drive

Surgical device having multiple drivers

A surgical device is provided, the surgical device including a first driver for performing a first movement function; a second driver for performing a second movement function; a first rotatable drive shaft configured, upon actuation, to cause selective engagement of one of the first and second drivers with a second rotatable drive shaft, wherein the second rotatable drive shaft is configured to drive the selectively engaged one of the first and second drivers. Third and fourth drivers may also be included. The drivers may function to rotate a shaft portion of the surgical device relative to, and about the longitudinal axis of, a handle; move a jaw portion relative to the shaft portion; move a first jaw relative to a second jaw; and/or move a surgical member within the second jaw.




drive

Display device having an improved video signal drive circuit

A display device has a video circuit for pixels arranged in a matrix. The video circuit includes a digital data store section; a transfer-data processing section for generating a data signal at a time assigned to one of gray scale levels for the data in synchronism with a supplied clock; a gray-scale voltage generator for generating gray-scale voltages; a selection gate circuit for successively generating gate pulses associated with the gray-scale voltages, in synchronism with the clock; and a gray-scale voltage selector circuit for receiving the data signal via a selection-data transfer line provided for each of plural columns of the pixels, and for successively selecting the gray-scale voltages from the gray-scale voltage generator, in synchronism with the gate pulses. The gray-scale voltage selector circuit outputs as the video signal, one of the gray-scale voltages selected from the successively selected gray-scale voltages in synchronism with the data signal.




drive

Motor-driven compressor

A motor-driven compressor includes a connector to which a first and second conductors are connected, and a connector case receiving the connector. The connector case includes a first case member and a second case member. A seal member is provided between the first and second case members. The first case member has a first sealing surface extending along the periphery of the first case member. The second case member has a second sealing surface extending along the periphery of the second case member and facing the first sealing surface. The seal member includes a main seal portion for sealing between the first sealing surface and the second sealing surface. The main seal portion has a first peripheral seal portion for sealing the periphery of the first conductor inserted therethrough and has a second peripheral seal portion for sealing the periphery of the second conductor inserted therethrough.




drive

Utility vehicle drive system

A hybrid drive system for a utility vehicle (1) which operates with an internal combustion engine (12) and an electrical generator (80), motor (86) and storage means (84). Auxiliary hydraulic functions (93,94) may be powered by the electric motor (86). An output of the engine (12) is mechanically coupled to a multi-ratio transmission (10) which has a hydrostatic driveline (24) and an output which is mechanically coupled to propulsion means. With the engine switched off, the electric motor powers a hydraulic pump (91) which generates pressurized fluid to operate auxiliary functions. In addition, the pressurized fluid may be exploited in a secondary propulsion mode to drive a hydraulic motor (92) in the hydrostatic transmission to propel the vehicle in a low emission, low noise output mode.




drive

Light source, use of a driver and method for driving

The invention relates to solid state light source, a use of a driver circuit for driving a light emitting element (150) of a solid state light source, a method for driving a light emitting element (150) of a solid state light source and a corresponding computer program. The invention provides that for a large amount of an AC period the light emitting element (150) is directly supplied with the AC input directly forwarded by the driver circuit, wherein nevertheless it is prevented that power exceeding a desired level reaches the light emitting element (150). The invention is aimed at a realization with simplified components and/or reduced costs in comparison to known techniques.




drive

Stage circuit and scan driver using the same

A stage circuit and a scan driver using the same that is capable of concurrently (e.g., simultaneously) or progressively supplying a scan signal to a plurality of scan lines. The stage circuit includes a progressive driver and a concurrent driver.




drive

Shift register, signal line drive circuit, liquid crystal display device

A shift register includes a plurality of stages of unit circuits each including a flip-flop. Each of the unit circuits generates, by obtaining a sync signal in accordance with an output from the flip-flop, an output signal. The flip-flop includes a first switch and a second switch and a latch circuit for latching a signal supplied thereto and outputting the signal as the output from the flip-flop. A first shift direction signal is supplied to the latch circuit via the first switch, and the second shift direction signal is supplied to the latch circuit via the second switch. In each unit circuit other than those of the first and last stages, an output signal from a previous stage is supplied to a control terminal of the first switch, and an output signal from a subsequent stage is supplied to a control terminal of the second switch.




drive

Reset circuit for gate driver on array, array substrate, and display

A reset circuit for Gate Driver on Array, an array substrate and a display is used for increasing reliability and long-term stability of a GOA circuit and thus improving performance of the GOA circuit. The GOA reset circuit includes a first electronic switch circuit (301) connected to an input terminal of a GOA unit of the Gate Driver on Array (INPUT); and a second electronic switch circuit connected to an output terminal of the GOA unit (OUTPUT), wherein the first electronic switch circuit (301) is connected to a low level signal terminal and is switched on to connect the low level signal terminal to a reset terminal of the GOA unit (RESET) when the input terminal of the GOA unit (INPUT) is at a high level; and the second electronic switch circuit (302) is connected to a high level signal terminal and is switched on to connect the high level signal terminal to the reset terminal of the GOA unit (RESET) when the output terminal of the GOA unit (OUTPUT) is at a high level.




drive

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Driver circuit, display device, and electronic device

To suppress malfunctions in a shift register circuit. A shift register having a plurality of flip-flop circuits is provided. The flip-flop circuit includes a transistor 11, a transistor 12, a transistor 13, a transistor 14, and a transistor 15. When the transistor 13 or the transistor 14 is turned on in a non-selection period, the potential of a node A is set, so that the node A is prevented from entering into a floating state.




drive

Scanning signal line drive circuit and display device provided with same

A stage constituent circuit of a display device drive circuit includes a first-node to a third-node, a thin-film transistor that changes a potential of a scanning signal toward a VDD potential when a potential of the first-node is in a HIGH level, a thin-film transistor that changes a potential of a different stage control signal toward a potential of a clock when a potential of the second-node is in the HIGH level, a capacitor between the first-node and the second-node, and a capacitor between the second-node and the third-node. The potential of the first-node is raised on the basis of a different stage control signal output from the stage constituent circuit in the different stage, and then the potential of the second-node and a potential of the third-node are sequentially raised. Herein, an amplitude of the clock is set to be smaller than an amplitude of the scanning signal.