cell TRF, Pakistan's IT cell for terror groups in Kashmir? By www.newkerala.com Published On :: Sun, 10 May 2020 07:47:01 +0530 Full Article
cell MALDI MS reveals that cells near a tumor aren’t so normal By feedproxy.google.com Published On :: Thu, 01 Apr 2010 10:00:00 EDT Researchers find that morphologically normal cells near a tumor have undergone molecular changes similar to the tumor cells. Full Article
cell Migrant workers in despair after cancellation of special trains By www.thehindu.com Published On :: Sat, 09 May 2020 23:20:20 +0530 A group headed to Bhubaneswar is now housed in shelters Full Article Andhra Pradesh
cell Unspooling the days of celluloid glory By www.thehindu.com Published On :: Sat, 09 May 2020 14:52:48 +0530 How a youngster discovered the nuances of filming in the town of Palampur Full Article Open Page
cell Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering By scripts.iucr.org Published On :: 2019-08-09 Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode. Full Article text
cell The HXD95: a modified Bassett-type hydrothermal diamond-anvil cell for in situ XRD experiments up to 5 GPa and 1300 K By scripts.iucr.org Published On :: 2020-01-29 A new diamond-anvil cell apparatus for in situ synchrotron X-ray diffraction measurements of liquids and glasses, at pressures from ambient to 5 GPa and temperatures from ambient to 1300 K, is reported. This portable setup enables in situ monitoring of the melting of complex compounds and the determination of the structure and properties of melts under moderately high pressure and high temperature conditions relevant to industrial processes and magmatic processes in the Earth's crust and shallow mantle. The device was constructed according to a modified Bassett-type hydrothermal diamond-anvil cell design with a large angular opening (θ = 95°). This paper reports the successful application of this device to record in situ synchrotron X-ray diffraction of liquid Ga and synthetic PbSiO3 glass to 1100 K and 3 GPa. Full Article text
cell Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport By scripts.iucr.org Published On :: 2020-04-29 The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands. Full Article text
cell The achievable resolution for X-ray imaging of cells and other soft biological material By scripts.iucr.org Published On :: 2020-03-07 X-ray imaging of soft materials is often difficult because of the low contrast of the components. This particularly applies to frozen hydrated biological cells where the feature of interest can have a similar density to the surroundings. As a consequence, a high dose is often required to achieve the desired resolution. However, the maximum dose that a specimen can tolerate is limited by radiation damage. Results from 3D coherent diffraction imaging (CDI) of frozen hydrated specimens have given resolutions of ∼80 nm compared with the expected resolution of 10 nm predicted from theoretical considerations for identifying a protein embedded in water. Possible explanations for this include the inapplicability of the dose-fractionation theorem, the difficulty of phase determination, an overall object-size dependence on the required fluence and dose, a low contrast within the biological cell, insufficient exposure, and a variety of practical difficulties such as scattering from surrounding material. A recent article [Villaneuva-Perez et al. (2018), Optica, 5, 450–457] concluded that imaging by Compton scattering gave a large dose advantage compared with CDI because of the object-size dependence for CDI. An object-size dependence would severely limit the applicability of CDI and perhaps related coherence-based methods for structural studies. This article specifically includes the overall object size in the analysis of the fluence and dose requirements for coherent imaging in order to investigate whether there is a dependence on object size. The applicability of the dose-fractionation theorem is also discussed. The analysis is extended to absorption-based imaging and imaging by incoherent scattering (Compton) and fluorescence. This article includes analysis of the dose required for imaging specific low-contrast cellular organelles as well as for protein against water. This article concludes that for both absorption-based and coherent diffraction imaging, the dose-fractionation theorem applies and the required dose is independent of the overall size of the object. For incoherent-imaging methods such as Compton scattering, the required dose depends on the X-ray path length through the specimen. For all three types of imaging, the dependence of fluence and dose on a resolution d goes as 1/d4 when imaging uniform-density voxels. The independence of CDI on object size means that there is no advantage for Compton scattering over coherent-based imaging methods. The most optimistic estimate of achievable resolution is 3 nm for imaging protein molecules in water/ice using lensless imaging methods in the water window. However, the attainable resolution depends on a variety of assumptions including the model for radiation damage as a function of resolution, the efficiency of any phase-retrieval process, the actual contrast of the feature of interest within the cell and the definition of resolution itself. There is insufficient observational information available regarding the most appropriate model for radiation damage in frozen hydrated biological material. It is advocated that, in order to compare theory with experiment, standard methods of reporting results covering parameters such as the feature examined (e.g. which cellular organelle), resolution, contrast, depth of the material (for 2D), estimate of noise and dose should be adopted. Full Article text
cell Supercell refinement: a cautionary tale By scripts.iucr.org Published On :: 2019-08-28 Theoretically, crystals with supercells exist at a unique crossroads where they can be considered as either a large unit cell with closely spaced reflections in reciprocal space or a higher dimensional superspace with a modulation that is commensurate with the supercell. In the latter case, the structure would be defined as an average structure with functions representing a modulation to determine the atomic location in 3D space. Here, a model protein structure and simulated diffraction data were used to investigate the possibility of solving a real incommensurately modulated protein crystal using a supercell approximation. In this way, the answer was known and the refinement method could be tested. Firstly, an average structure was solved by using the `main' reflections, which represent the subset of the reflections that belong to the subcell and in general are more intense than the `satellite' reflections. The average structure was then expanded to create a supercell and refined using all of the reflections. Surprisingly, the refined solution did not match the expected solution, even though the statistics were excellent. Interestingly, the corresponding superspace group had multiple 3D daughter supercell space groups as possibilities, and it was one of the alternate daughter space groups that the refinement locked in on. The lessons learned here will be applied to a real incommensurately modulated profilin–actin crystal that has the same superspace group. Full Article text
cell Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization By scripts.iucr.org Published On :: 2020-04-23 A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells. Full Article text
cell Combined X-ray and neutron single-crystal diffraction in diamond anvil cells By scripts.iucr.org Published On :: 2020-02-01 It is shown that it is possible to perform combined X-ray and neutron single-crystal studies in the same diamond anvil cell (DAC). A modified Merrill–Bassett DAC equipped with an inflatable membrane filled with He gas has been developed. It can be used on laboratory X-ray and synchrotron diffractometers as well as on neutron instruments. The data processing procedures and a joint structural refinement of the high-pressure synchrotron and neutron single-crystal data are presented and discussed for the first time. Full Article text
cell Li-ion half-cells studied operando during cycling by small-angle neutron scattering By scripts.iucr.org Published On :: 2020-01-31 Small-angle neutron scattering (SANS) was recently applied to the in situ and operando study of the charge/discharge process in Li-ion battery full-cells based on a pouch cell design. Here, this work is continued in a half-cell with a graphite electrode cycled versus a metallic lithium counter electrode, in a study conducted on the SANS-1 instrument of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum in Garching, Germany. It is confirmed that the SANS integrated intensity signal varies as a function of graphite lithiation, and this variation can be explained by changes in the squared difference in scattering length density between graphite and the electrolyte. The scattering contrast change upon graphite lithiation/delithiation calculated from a multi-phase neutron scattering model is in good agreement with the experimentally measured values. Due to the finite coherence length, the observed SANS contrast, which mostly stems from scattering between the (lithiated) graphite and the electrolyte phase, contains local information on the mesoscopic scale, which allows the development of lithiated phases in the graphite to be followed. The shape of the SANS signal curve can be explained by a core–shell model with step-wise (de)lithiation from the surface. Here, for the first time, X-ray diffraction, SANS and theory are combined to give a full picture of graphite lithiation in a half-cell. The goal of this contribution is to confirm the correlation between the integrated SANS data obtained during operando measurements of an Li-ion half-cell and the electrochemical processes of lithiation/delithiation in micro-scaled graphite particles. For a deeper understanding of this correlation, modelling and experimental data for SANS and results from X-ray diffraction were taken into account. Full Article text
cell Microstructure and water distribution in catalysts for polymer electrolyte fuel cells, elucidated by contrast variation small-angle neutron scattering By journals.iucr.org Published On :: By using small-angle neutron scattering (SANS) reinforced by scanning electron microscopy, the fine structure of catalysts for polymer electrolyte fuel cells has been investigated. The experimental data resulting from contrast variation with mixed light and heavy water (H2O/D2O) are well described by a core–shell model with fluctuations in concentration between water and Nafion. Full Article text
cell Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation By journals.iucr.org Published On :: The effects of relative humidity on a tetragonal crystal form of hen egg white lysozyme are studied via in situ laboratory X-ray powder diffraction. Full Article text
cell Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport By journals.iucr.org Published On :: This article reports conformational polymorphisms of the EF-hand protein MCFD2 which is involved in glycoprotein transport.. Full Article text
cell An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization By scripts.iucr.org Published On :: 2019-11-20 The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°. Full Article text
cell Technology developed for X-ray astronomy is being adapted to study cancer cells By insider.si.edu Published On :: Tue, 20 Apr 2010 12:44:36 +0000 Eric Silver of SAO is pursuing innovative and interdisciplinary uses of his technique for chemical imaging at the cellular level. The post Technology developed for X-ray astronomy is being adapted to study cancer cells appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Chandra X-Ray Observatory meteorites Smithsonian Astrophysical Observatory supernova technology
cell Smithsonian Conservation Biology Institute to help create frozen repository of sperm and embryonic cells for Great Barrier Reef corals By insider.si.edu Published On :: Thu, 19 May 2011 13:18:06 +0000 Researchers at the Smithsonian Conservation Biology Institute and partnering organizations will build a frozen repository of Great Barrier Reef coral sperm and embryonic cells. Genetic banks composed of frozen biomaterials hold strong promise for basic and applied research and conservation of species and genetic variation. The post Smithsonian Conservation Biology Institute to help create frozen repository of sperm and embryonic cells for Great Barrier Reef corals appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature biodiversity climate change conservation conservation biology coral reefs endangered species extinction fungi Smithsonian Conservation Biology Institute
cell Uganda park rangers with cell phones may help stop next world influenza epidemic By insider.si.edu Published On :: Fri, 03 Feb 2012 18:16:13 +0000 Today, Marra is helping launch an Animal Mortality Monitoring Program in Africa intended to serve as an early warning system for emerging infectious diseases that can pass from animal populations into the human population. The post Uganda park rangers with cell phones may help stop next world influenza epidemic appeared first on Smithsonian Insider. Full Article Q & A Research News Science & Nature mammals Migratory Bird Center Smithsonian Conservation Biology Institute Smithsonian's National Zoo
cell Magnetic Imaging of Living Cells By insider.si.edu Published On :: Fri, 26 Apr 2013 14:46:52 +0000 Magnetic field measurement techniques have long enabled scientists to probe the internal structure of biological and material samples. For example, magnetic resonance imaging (MRI) provides […] The post Magnetic Imaging of Living Cells appeared first on Smithsonian Insider. Full Article Research News Science & Nature Spotlight technology
cell Rare cancer cells discovered in naked mole rats By insider.si.edu Published On :: Thu, 21 Apr 2016 13:29:29 +0000 Bald from snout to tail with baggy wrinkled skin and beady eyes, eastern African naked mole rats (Heterocephalus glaber) are subterranean mammals long credited with […] The post Rare cancer cells discovered in naked mole rats appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature conservation biology mammals Smithsonian's National Zoo veterinary medicine
cell Astronomers propose cell phone search for galactic radio bursts By insider.si.edu Published On :: Tue, 14 Feb 2017 17:43:29 +0000 Fast radio bursts (FRBs) are brief spurts of radio emission, lasting just one-thousandth of a second, whose origins are mysterious. Fewer than two dozen have […] The post Astronomers propose cell phone search for galactic radio bursts appeared first on Smithsonian Insider. Full Article Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Milky Way planets Smithsonian Astrophysical Observatory
cell Histone H1 eviction by the histone chaperone SET reduces cell survival following DNA damage [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-03-17T03:51:28-07:00 Imke K. Mandemaker, Di Zhou, Serena T. Bruens, Dick H. Dekkers, Pernette J. Verschure, Raghu R. Edupuganti, Eran Meshorer, Jeroen A. Demmers, and Jurgen A. MarteijnMany chromatin remodeling and modifying proteins are involved in the DNA damage response by stimulating repair or inducing DNA damage signaling. Interestingly, here we identified that down regulation of the H1-interacting protein SET results in increased resistance to a wide variety of DNA damaging agents. We found that this increased resistance is not the result of an inhibitory effect of SET on DNA repair, but rather the consequence of a suppressed apoptotic response to DNA damage. We further provide evidence that the histone chaperone SET is responsible for the eviction of H1 from chromatin. Knock down of H1 in SET-depleted cells resulted in re-sensitization of cells to DNA damage, suggesting that the increased DNA damage resistance in SET-depleted cells is the result of enhanced retention of H1 on chromatin. Finally, clonogenic survival assays show that SET and p53 are epistatic in attenuating DNA damage-induced cell death. Altogether, our data show a role for SET in the DNA damage response as a regulator of cell survival following genotoxic stress. Full Article
cell CLIC4 is a cytokinetic cleavage furrow protein that regulates cortical cytoskeleton stability during cell division [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-03-17T03:51:28-07:00 Eric Peterman, Mindaugas Valius, and Rytis PrekerisDuring mitotic cell division, the actomyosin cytoskeleton undergoes several dynamic changes that play key roles in progression through mitosis. While the regulators of cytokinetic ring formation and contraction are well-established, proteins that regulate cortical stability during anaphase and telophase have been understudied. Here, we describe a role for CLIC4 in regulating actin and actin-regulators at the cortex and cytokinetic cleavage furrow during cytokinesis. We first describe CLIC4 as a new component of the cytokinetic cleavage furrow that is required for successful completion of mitotic cell division. We also demonstrate that CLIC4 regulates the remodeling of sub-plasma membrane actomyosin network within the furrow by recruiting MST4 kinase and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in regulating cortex stiffness and blebbing during late stages of cytokinetic furrowing. Full Article
cell {beta}1 integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumour cell invasion [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-03-23T03:21:37-07:00 Olivia R. Grafinger, Genya Gorshtein, Tyler Stirling, Megan I. Brasher, and Marc G. CoppolinoMalignant cancer cells can invade extracellular matrix (ECM) through the formation of F-actin-rich subcellular structures termed invadopodia. ECM degradation at invadopodia is mediated by matrix metalloproteinases (MMPs), and recent findings indicate that membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP) has a primary role in this process. Maintenance of an invasive phenotype is dependent on internalization of MT1-MMP from the plasma membrane and its recycling to sites of ECM remodeling. Internalization of MT1-MMP is dependent on its phosphorylation, and here we examine the role of β1 integrin-mediated signaling in this process. Activation of β1 integrin using the antibody P4G11 induced phosphorylation and internalization of MT1-MMP and resulted in increased cellular invasiveness and invadopodium formation in vitro. We also observed phosphorylation of Src and epidermal growth factor receptor (EGFR) and an increase in their association in response to β1 integrin activation, and determined that Src and EGFR promote phosphorylation of MT1-MMP on Thr567. These results suggest that MT1-MMP phosphorylation is regulated by a β1 integrin-Src-EGFR signaling pathway that promotes recycling of MT1-MMP to sites of invadopodia formation during cancer cell invasion. Full Article
cell Primary myeloid cell proteomics and transcriptomics: importance of ss tubulin isotypes for osteoclast function [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-07T06:16:39-07:00 David Guerit, Pauline Marie, Anne Morel, Justine Maurin, Christel Verollet, Brigitte Raynaud-Messina, Serge Urbach, and Anne BlangyAmong hematopoietic cells, osteoclasts (Oc) and immature dendritic cells (Dc) are closely related myeloid cells with distinct functions; Oc participate skeleton maintenance while Dc sample the environment for foreign antigens. Such specificities rely on profound modifications of gene and protein expression during Oc and Dc differentiation. We provide global proteomic and transcriptomic analyses of primary mouse Oc and Dc, based on original SILAC and RNAseq data. We established specific signatures for Oc and Dc including genes and proteins of unknown functions. In particular, we showed that Oc and Dc have the same α and β tubulin isotypes repertoire but that Oc express much more β tubulin isotype Tubb6. In both mouse and human Oc, we demonstrate that elevated expression of Tubb6 in Oc is necessary for correct podosomes organization and thus for the structure of the sealing zone, which sustains the bone resorption apparatus. Hence, lowering Tubb6 expression hindered Oc resorption activity. Overall, we highlight here potential new regulators of Oc and Dc biology and illustrate the functional importance of the tubulin isotype repertoire in the biology of differentiated cells. Full Article
cell Chondrosarcoma-associated gene 1 (CSAG1) maintains the integrity of the mitotic centrosome in cells with defective p53 [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Hem Sapkota, Jonathan D. Wren, and Gary J. GorbskyCentrosomes focus microtubules to promote mitotic spindle bipolarity, a critical requirement for balanced chromosome segregation. Comprehensive understanding of centrosome function and regulation requires a complete inventory of components. While many centrosome components have been identified, others may yet remain undiscovered. We have used a bioinformatics approach, based on "guilt by association" expression to identify novel mitotic components among the large group of predicted human proteins that have yet to be functionally characterized. Here we identify Chondrosarcoma-Associated Gene 1 (CSAG1) in maintaining centrosome integrity during mitosis. Depletion of CSAG1 disrupts centrosomes and leads to multipolar spindles more effectively in cells with compromised p53 function. Thus, CSAG1 may reflect a class of "mitotic addiction" genes whose expression is more essential in transformed cells. Full Article
cell LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Victor J. F. Kitano, Yoko Ohyama, Chiyomi Hayashida, Junta Ito, Mari Okayasu, Takuya Sato, Toru Ogasawara, Maki Tsujita, Akemi Kakino, Jun Shimada, Tatsuya Sawamura, and Yoshiyuki HakedaOsteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO pre-OCLs, while the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR~ABCG1~PE translocation to cell surface~cell-cell fusion) in multinucleation of OCLs. Full Article
cell Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-16T06:39:33-07:00 Olga Kopach, Noemi Esteras, Selina Wray, Dmitri A. Rusakov, and Andrey Y. AbramovFrontotemporal dementia and parkinsonism (FTDP-17) caused by the 10+16 splice-site mutation in the MAPT provides an established platform to model tau-related dementia in vitro. Human iPSC-derived neurons have been shown to recapitulate the neurodevelopmental profile of tau pathology during in vitro corticogenesis as in the adult human brain. However, the neurophysiological phenotype of these cells has remained unknown, leaving unanswered questions over the functional relevance and the gnostic power of this disease model. Here we used electrophysiology to explore the membrane properties and intrinsic excitability of the generated neurons to find that human cells mature by ~150 days of neurogenesis to become compatible with matured cortical neurons. In earlier FTDP-17, neurons, however, exhibited a depolarized resting membrane potential associated with increased resistance and reduced voltage-gated Na+- and K+-channel-mediated conductance. The Nav1.6 protein was reduced in FTDP-17. These led to a reduced cell capability of induced firing and changed action potential waveform in FTDP-17. The revealed neuropathology may thus contribute to the clinicopathological profile of the disease. This sheds new light on the significance of human models of dementia in vitro. Full Article
cell Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-21T05:32:09-07:00 Karolina Losenkova, Mariachiara Zuccarini, Marika Karikoski, Juha Laurila, Detlev Boison, Sirpa Jalkanen, and Gennady G. YegutkinExtracellular adenosine mediates diverse anti-inflammatory, angiogenic and vasoactive effects and becomes an important therapeutic target for cancer, which has been translated into clinical trials. This study was designed to comprehensively assess adenosine metabolism in prostate and breast cancer cells. We identified cellular adenosine turnover as a complex cascade, comprised of (a) the ectoenzymatic breakdown of ATP via sequential nucleotide pyrophosphatase/phosphodiesterase-1, ecto-5’-nucleotidase/CD73 and adenosine deaminase reactions, and ATP re-synthesis through counteracting adenylate kinase and nucleoside diphosphokinase; (b) the uptake of nucleotide-derived adenosine via equilibrative nucleoside transporters; and (c) the intracellular adenosine phosphorylation into ATP by adenosine kinase and other nucleotide kinases. The exposure of cancer cells to 1% O2 for 24 hours triggered ~2-fold up-regulation of CD73, without affecting nucleoside transporters, adenosine kinase activity and cellular ATP content. The ability of adenosine to inhibit the tumor-initiating potential of breast cancer cells via receptor-independent mechanism was confirmed in vivo using a xenograft mouse model. The existence of redundant pathways controlling extracellular and intracellular adenosine provides a sufficient justification for reexamination of the current concepts of cellular purine homeostasis and signaling in cancer. Full Article
cell Serine 319 phosphorylation is necessary and sufficient to induce a Cx37 conformation that leads to arrested cell cycling [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T02:35:34-07:00 Samantha-Su Z. Taylor, Nicole L. Jacobsen, Tasha K. Pontifex, Paul Langlais, and Janis M. BurtConnexin 37 (Cx37) expression profoundly suppresses proliferation of rat insulinoma (Rin) cells in a manner dependent on gap junction channel (GJCh) functionality and the presence and phosphorylation status of its carboxyl-terminus (CT). In Rin cells growth arrested by induced Cx37 expression, serine 319 (S319) is frequently phosphorylated. Preventing phosphorylation at this site (alanine substitution; S319A) relieved Cx37 of its growth suppressive effect whereas mimicking phosphorylation at this site (aspartate substitution; S319D) enhanced Cx37's growth suppressive properties. Like Cx37-WT, -S319D GJChs and hemichannels (HChs) preferred the closed state, rarely opening fully, and gated slowly. In contrast, Cx37-S319A channels preferred open states, opened fully, and gated rapidly. These data indicate that phosphorylation-dependent conformational differences in Cx37 protein and channel function underlie Cx37-induced growth arrest vs. growth permissive phenotypes. That the closed state of -WT and Cx37-S319D GJChs and HChs favors growth arrest suggests that rather than specific permeants mediating cell cycle arrest, the closed conformation instead supports interaction of Cx37 with growth regulatory proteins that result in growth arrest. Full Article
cell A functional in vitro cell-free system for studying DNA repair in isolated nuclei [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-05-06T08:30:40-07:00 Isabella Guardamagna, Elisabetta Bassi, Monica Savio, Paola Perucca, Ornella Cazzalini, Ennio Prosperi, and Lucia A. StivalaAssessing DNA repair is an important endpoint to study the DNA damage response for investigating the biochemical mechanisms of this process and the efficacy of chemotherapy, which often uses DNA damaging compounds. Numerous in vitro methods to biochemically characterize DNA repair mechanisms have been developed so far. However, they show some limitations mainly due to the lack of chromatin organization. Here we describe a functional cell-free system to study DNA repair synthesis in vitro, using G1-phase nuclei isolated from human cells treated with different genotoxic agents. Upon incubation in the correspondent damage-activated cytosolic extracts, containing biotin-16-dUTP, nuclei are able to initiate DNA repair synthesis. The use of specific DNA synthesis inhibitors markedly decreased biotinylated dUTP incorporation, indicating the specificity of the repair response. Exogenously added human recombinant PCNA protein, but not the sensors of UV-DNA damage DDB2 or DDB1, stimulated UVC induced dUTP incorporation. In contrast, a DDB2PCNA- mutant protein, unable to associate with PCNA, interfered with DNA repair synthesis. Given its responsiveness to different type of DNA lesions, this system offers an additional tool to study DNA repair mechanisms. Full Article
cell LIN28A binds to meiotic gene transcripts and modulates translation in male germ cells [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-05-06T08:30:40-07:00 Mei Wang, Luping Yu, Shu Wang, Fan Yang, Min Wang, Lufan Li, and Xin WuRNA-binding protein LIN28A is required for maintaining tissue homeostasis, including the reproductive system, but the underlying mechanisms on how LIN28A regulates germline progenitors remain unclear. Here, we dissected LIN28A-binding targets using high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse testes. LIN28A preferentially binds to CDS or 3'UTR regions through these sites with GGAG(A) sequences enriched within mRNAs. Further investigation of Lin28a null mouse testes indicated that meiosis-associated mRNAs mediated by LIN28A were differentially expressed. Next, ribosome profiling revealed that the mRNA levels of these targets were significantly reduced in polysome fractions, and their protein expression levels decreased in the Lin28a null mouse testes, even when meiotic arrest in null mouse testes was not apparent. Collectively, these findings provide a set of binding targets that are regulated by LIN28A, which may potentially be the mechanism for the prominent role of LIN28A in regulating mammalian undifferentiated spermatogonia fates and male fertility. Full Article
cell Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-05-07T00:45:50-07:00 Stephen Kershaw, David J. Morgan, James Boyd, David G. Spiller, Gareth Kitchen, Egor Zindy, Mudassar Iqbal, Magnus Rattray, Chris M. Sanderson, Andrew Brass, Claus Jorgensen, Tracy Hussell, Laura C. Matthews, and David W. RayGlucocorticoids (GCs) act through the glucocorticoid receptor (GR) to regulate immunity, energy metabolism, and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. We show GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following glucocorticoid treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture. Full Article
cell new google account and cell phone no other cell phone By www.bleepingcomputer.com Published On :: 2019-12-11T16:30:17-05:00 Full Article
cell Cell scientist to watch - Alba Diz-Munoz By jcs.biologists.org Published On :: 2020-04-16 Apr 16, 2020; 133:jcs245373-jcs245373CELL SCIENTISTS TO WATCH Full Article
cell Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation By jcs.biologists.org Published On :: 2020-04-09 Georgi DimchevApr 9, 2020; 133:jcs239020-jcs239020Articles Full Article
cell Bacterial cell division at a glance By jcs.biologists.org Published On :: 2020-04-08 Christopher R. MahoneApr 8, 2020; 133:jcs237057-jcs237057CELL SCIENCE AT A GLANCE Full Article
cell Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis By jcs.biologists.org Published On :: 2020-04-24 Norbert VolkmarApr 24, 2020; 133:jcs243519-jcs243519REVIEW Full Article
cell ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis By jcs.biologists.org Published On :: 2020-04-08 Jordi LambertApr 8, 2020; 133:jcs235762-jcs235762Articles Full Article
cell Guidelines Released for Embryonic Stem Cell Research By feedproxy.google.com Published On :: Tue, 26 Apr 2005 05:00:00 GMT The National Academies today recommended guidelines for research involving human embryonic stem cells, and urged all institutions conducting such research to establish oversight committees to ensure that the new guidelines will be followed. Full Article
cell New Report Calls on Federal and State Collaboration to Address Brucellosis Transmission From Elk By feedproxy.google.com Published On :: Wed, 31 May 2017 05:00:00 GMT Efforts to control brucellosis in the Greater Yellowstone Area (GYA) should focus on reducing the risk of transmission from elk, which are now viewed as the primary source of the infection in new cases occurring in cattle and domestic bison, says a new report by the National Academies of Sciences, Engineering, and Medicine. Full Article
cell Tiny thermometer measures how mitochondria heat up the cell by unleashing proton energy By feedproxy.google.com Published On :: 2019-09-04T07:00:00Z Full Article
cell Researchers identify fundamental properties of cells that affect how tissue structures form By feedproxy.google.com Published On :: 2019-08-29T07:00:00Z Full Article
cell Tiny thermometer measures how mitochondria heat up the cell by unleashing proton energy By feedproxy.google.com Published On :: 2019-09-04T07:00:00Z Full Article
cell Solar cell efficiency boosted with pine tree-like nanotube needle By ec.europa.eu Published On :: Thu, 12 Feb 2015 9:23:19 GMT ‘Dye-sensitised solar cells’ (DSSCs) are an alternative to traditional silicon photovoltaic (PV) cells. They have a number of advantages over traditional PV solar cells, including greater flexibility and lower manufacturing cost, but they are less efficient at turning sunlight into electricity. Taking inspiration from nature, new research has doubled their efficiency using pine tree-shaped nanotubes. Full Article
cell Nanotechnology cuts costs and improves efficiency of photovoltaic cells By ec.europa.eu Published On :: Thu, 12 Feb 2015 9:23:19 GMT Researchers have summarised the most effective ways that nanostructures can improve the efficiency and lower costs of photovoltaic (PV) solar cells in a recent analysis. Sculpting ultra-thin solar cell surfaces at the nano-scale has been found to effectively boost their efficiency. Full Article
cell New energy-efficient manufacture of perovskite solar cells that rivals silicon solar cells By ec.europa.eu Published On :: Thu, 12 Feb 2015 9:23:19 GMT ‘Perovskite solar cells’ (PSCs) are less costly than conventional silicon solar cells, but one of their key components is energy-intensive to manufacture as high temperatures are needed. Now researchers have identified new alternative materials for this component which cut energy demands as they can be produced at low temperatures. Full Article
cell Potential health risks from different forms of nanosized cellulose crystals By ec.europa.eu Published On :: Thu, 12 Feb 2015 9:23:19 GMT A new study has found evidence for lung toxicity of different forms of ‘cellulose nanocrystals’ (CNCs) in mice. The study suggests that physical characteristics, such as length, of the CNC relates to the type of effect it has on the lung. These nanosized crystals, made from plant-derived materials, are increasingly being used in novel applications, such as cleaning up oil spills in water and flexible electronic displays, and consumer products, which raises concerns about their potential health impacts. Full Article
cell Methods to increase indium supplies for the manufacture of thin-film solar cells By ec.europa.eu Published On :: Thu, 12 Nov 2015 9:23:19 GMT Shortages of indium, a key metal found in thin-film solar cells, could limit their large-scale deployment in the future. A new study has outlined four ways that indium supplies could be increased to meet future demand. For example, indium could be extracted more efficiently from zinc ores, or historic wastes containing indium could be processed to extract the element. Full Article