eat Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer By jnm.snmjournals.org Published On :: 2020-02-21T14:46:23-08:00 The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring. Full Article
eat Diagnosis of Hyper-progressive Disease in Patients Treated with Checkpoint Inhibitors using 18F-FDG PET/CT By jnm.snmjournals.org Published On :: 2020-02-21T14:46:23-08:00 Full Article
eat Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer By jnm.snmjournals.org Published On :: 2020-02-28T13:52:17-08:00 Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA. Full Article
eat Prognostic Value of 18F-FDG PET/CT in a Large Cohort of 495 Patients with Advanced Metastatic Neuroendocrine Neoplasms (NEN) Treated with Peptide Receptor Radionuclide Therapy (PRRT) By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The objective of this retrospective study was to determine the role of 18F-FDG PET/CT in a large cohort of 495 patients with metastatic neuroendocrine neoplasms (NENs) who were treated with peptide receptor radionuclide therapy (PRRT) with a long-term follow-up. Methods: The 495 patients were treated with 177Lu- and/or 90Y- DOTATOC/DOTATATE PRRT between 2/2002 and 7/2018. All subjects received both 68Ga-DOTATOC/TATE/NOC and 18F-FDG PET/CT prior to treatment and were followed 3-189 months. Kaplan-Meier analysis, log-rank test (Mantel-Cox), and Cox regression analysis were performed for overall survival (OS) and progression-free survival (PFS). Results: 199 patients (40.2%) presented with pancreatic NEN, 49 with CUP (cancer of unknown primary), 139 with midgut NEN, whereas the primary tumor was present in the rectum in 20, in the lung in 38, in the stomach in 8 and other locations in 42 patients. FDG-PET/CT was positive in 382 (77.2%) patients and 113 (22.8%) were FDG-negative before PRRT, while 100% were 68Ga-DOTATOC/TATE/NOC positive. For all patients, the median PFS and OS, defined from start of PRRT, were 19.6 mo and 58.7 mo, respectively. Positive FDG predicted shorter PFS (18.5 mo vs 24.1 mo; P = 0.0015) and OS (53.2 mo vs 83.1 mo; P < 0.001) than negative FDG. Amongst the pancreatic NEN, the median OS was 52.8 mo in FDG positive and 114.3 mo in FDG negative subjects (P = 0.0006). For all patients with positive 18F-FDG uptake, and a ratio of the highest SUVmax on 68Ga-SSTR PET to the most 18F-FDG-avid tumor lesions >2, the median OS was 53.0 mo, compared to 43.4 mo in those patients with a ratio <2 (P = 0.030). For patients with no 18F-FDG uptake (complete "mismatch" imaging pattern), the median OS was 108.3 mo vs 76.9 mo for SUVmax >15.0 and ≤15.0 on 68Ga-SSTR PET/CT, respectively. Conclusion: The presence of positive lesions on 18F-FDG PET is an independent prognostic factor in patients with NEN treated with PRRT. Metabolic imaging with 18F-FDG PET/CT compliments the molecular imaging aspect of 68Ga-SSTR PET/CT for the prognosis of survival after PRRT. High SSTR expression combined with negative 18F-FDG PET/CT imaging is associated with the most favorable long-term prognosis. Full Article
eat Radioiodine Ablation of Remaining Thyroid Lobe in Patients with Differentiated Thyroid Cancer Treated by Lobectomy. A systematic review and meta-analysis. By jnm.snmjournals.org Published On :: 2020-04-24T14:33:41-07:00 Purpose: We aimed to conduct a systematic review and meta-analysis of studies reporting the performance of radioactive iodine therapy (131-I therapy) in differentiating thyroid cancer (DTC) patients requiring a completion treatment following lobectomy. We also evaluated the response to 131-I therapy according to 2015ATA guidelines and the adverse events. Methods: A specific search strategy was designed to find articles evaluating the use of I-131 in patients with evidence of DTC after lobectomy. PubMed, CENTRAL, Scopus and Web of Science were searched. The search was updated until January 2020, without language restriction. Data were cross-checked and any discrepancy discussed. A proportion meta-analysis (with 95%CI) was performed using the random-effects model. Meta-regressions on I-131 success were attempted. Results: The pooled success ablation rate was 69% with better results in patients receiving a single administration of about 3.7 GBq; high heterogeneity was found (I2 85%), and publication bias was absent (Egger test: P = 0.57). Incomplete structural responses were recorded in only 14 of 695 (2%) patients enrolled in our analysis. Incomplete biochemical responses were observed in 8 to 24% of patients, with higher rates (24%) in patients receiving low radioiodine activities (~1.1 GBq) and lower rates (from 8 to 18%) in patients receiving higher activities of radioiodine (~3.7 Gbq). Neck pain due to thyroiditis was reported in up to 18% of patients but, in most cases, symptoms resolved after oral paracetamol or a short course of prednisone. Conclusion: Lobar ablation with 131-I is effective especially when high 131I activities are used. However, the rate of incomplete biochemical response to initial treatment appears to be slightly higher than the classical scheme of initial treatment of DTC. "Radioisotopic lobectomy" should be considered for patients with low-to-intermediate risk DTC requiring completion treatment after lobectomy due to specific individual risk factors and/or patient’s preferences. Full Article
eat Inclusive Growth and Job Creation in Africa: The Outlook for 2019 and Beyond By feedproxy.google.com Published On :: Tue, 24 Sep 2019 15:25:01 +0000 Invitation Only Research Event 30 September 2019 - 1:30pm to 2:30pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Abebe Aemro Selassie, Director, African Department, International Monetary FundChair: Elizabeth Donnelly, Deputy Head and Research Fellow, Africa Programme, Chatham House The IMF projects real GDP growth of 3.3 per cent in 2019 for sub-Saharan Africa but there is a mixed picture across the continent with growth in Mauritania, Senegal, Ethiopia and Rwanda outstripping projected growth rates for South Africa and Nigeria, for example, while a handful of economies seek to emerge from crisis. Yet, as is increasingly well documented, even strong growth has not delivered lasting socio-economic transformation in many contexts. And that most pressing of needs – job creation including to accommodate, in the next 15 years, an increase in the working age population greater than that in the rest of the world combined – remains a pressing concern for governments and societies. With populations continuing to grow at faster rates than economic growth, and a significant proportion of jobs outside agriculture being in the informal sector, investment in formal labour markets is crucial to creating inclusive economic growth. At this event, the International Monetary Fund’s Africa Director, Abebe Aemro Selassie will discuss the outlook for sub-Saharan African economies in 2019 and progress towards achieving inclusive economic growth to accommodate future demographic change. Attendance at this event is by invitation only. Department/project Africa Programme, Inclusive Economic Growth, Governance and Technology Yusuf Hassan Parliamentary and Media Outreach Assistant, Africa Programme +44 (0) 20 7314 3645 Email Full Article
eat Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state. Full Article
eat Combined EGFR and ROCK Inhibition in Triple-negative Breast Cancer Leads to Cell Death Via Impaired Autophagic Flux [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with very limited therapeutic options. We have recently shown that the combined inhibition of EGFR and ROCK in TNBC cells results in cell death, however, the underlying mechanisms remain unclear. To investigate this, here we applied a mass spectrometry-based proteomic approach to identify proteins altered on single and combination treatments. Our proteomic data revealed autophagy as the major molecular mechanism implicated in the cells' response to combinatorial treatment. We here show that EGFR inhibition by gefitinib treatment alone induces autophagy, a cellular recycling process that acts as a cytoprotective response for TNBC cells. However, combined inhibition of EGFR and ROCK leads to autophagy blockade and accumulation of autophagic vacuoles. Our data show impaired autophagosome clearance as a likely cause of antitumor activity. We propose that the inhibition of the autophagic flux on combinatorial treatment is attributed to the major cytoskeletal changes induced on ROCK inhibition, given the essential role the cytoskeleton plays throughout the various steps of the autophagy process. Full Article
eat The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues. Full Article
eat Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver. Full Article
eat Public servants warned off internet sex and cheating sites after Ashley Madison hack By www.smh.com.au Published On :: Thu, 03 Sep 2015 13:30:00 GMT Marriage vows are one thing, but the public service Code of Conduct, that's serious. Full Article
eat Branching out after death: where next for the 'Internet of Things'? By www.smh.com.au Published On :: Wed, 30 Mar 2016 07:53:02 GMT It turns out that even death needs the internet. Full Article
eat Cyber security threat: Is Australia's power grid safe from hackers? By www.smh.com.au Published On :: Fri, 10 Nov 2017 13:15:00 GMT Cyber attacks have labelled the number one threat to power and utility companies worldwide, a new EY report has found. Full Article
eat Economic containment as a strategy of Great Power competition By feedproxy.google.com Published On :: Wed, 06 Nov 2019 09:24:14 +0000 6 November 2019 , Volume 95, Number 6 Dong Jung Kim Read online Economic containment has garnered repeated attention in the discourse about the United States' response to China. Yet, the attributes of economic containment as a distinct strategy of Great Power competition remain unclear. Moreover, the conditions under which a leading power can employ economic containment against a challenging power remain theoretically unelaborated. This article first suggests that economic containment refers to the use of economic policies to weaken the targeted state's material capacity to start military aggression, rather than to influence the competitor's behaviour over a specific issue. Then, this article suggests that economic containment becomes a viable option when the leading power has the ability to inflict more losses on the challenging power through economic restrictions, and this ability is largely determined by the availability of alternative economic partners. When the leading power cannot effectively inflict more losses on the challenging power due to the presence of alternative economic partners, it is better off avoiding economic containment. The author substantiates these arguments through case-studies of the United States' responses to the Soviet Union during the Cold War. The article concludes by examining the nature of the United States' recent economic restrictions against China. Full Article
eat The great Chinese surprise: the rupture with the United States is real and is happening By feedproxy.google.com Published On :: Wed, 04 Mar 2020 13:25:56 +0000 4 March 2020 , Volume 96, Number 2 Xiangfeng Yang Read Online Ample evidence exists that China was caught off guard by the Trump administration's onslaught of punishing acts—the trade war being a prime, but far from the only, example. This article, in addition to contextualizing their earlier optimism about the relations with the United States under President Trump, examines why Chinese leaders and analysts were surprised by the turn of events. It argues that three main factors contributed to the lapse of judgment. First, Chinese officials and analysts grossly misunderstood Donald Trump the individual. By overemphasizing his pragmatism while downplaying his unpredictability, they ended up underprepared for the policies he unleashed. Second, some ingrained Chinese beliefs, manifested in the analogies of the pendulum swing and the ‘bickering couple’, as well as the narrative of the ‘ballast’, lulled officials and scholars into undue optimism about the stability of the broader relationship. Third, analytical and methodological problems as well as political considerations prevented them from fully grasping the strategic shift against China in the US. Full Article
eat HDL and pancreatic {beta} cells: a SMO-king gun? By feedproxy.google.com Published On :: 2020-04-01 Liam R. BrunhamApr 1, 2020; 61:468-469Commentary Full Article
eat HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic {beta}-cells in vitro by activation of Smoothened By feedproxy.google.com Published On :: 2020-04-01 Mustafa YalcinkayaApr 1, 2020; 61:492-504Research Articles Full Article
eat Episode 16 - The internet of the Apple iBoards (IoAi) Pebble, death of Hoverboards and Twitter By play.acast.com Published On :: Fri, 27 May 2016 10:50:50 GMT This week host Matt Egan is joined by producer Chris to talk about the recent batch of new Pebble devices and the smartwatch market. Staff writer at PC Advisor Lewis Painter joins in to talk about the death of the hoverboard (13:00). Finally, regular podder David Price comes on to talk about Appl...oh Twitter, specifically changes to the character limit and the sad loss of the @ (24:00). See acast.com/privacy for privacy and opt-out information. Full Article
eat Episode 53 - The Internet of UberEATS Itself (IoUEI) Uber's mess, Apple's orchards and MWC's phones By play.acast.com Published On :: Fri, 24 Feb 2017 12:25:36 GMT Allow Matt Egan (and Shed7) to lull you into this week's pod as we tackle the big tech issues of the week. Staff Writer at Digital Arts Miriam Harris explains the latest HR and PR mess over at Uber. How long will consumers use a service when the company are clearly not treating its staff well? Then (16:30) Deputy Editor of Macworld UK David Price gets excited about Apple Park, the so-called 'spaceship campus' that has been under construction for years. May contain orchards. Finally (26:48) Senior Staff Writer at Tech Advisor Henry Burrell previews Mobile World Congress which gets underway on 26th February. Are any of the major handset launches worth your attention? See acast.com/privacy for privacy and opt-out information. Full Article pocast pod mobile world congress tech technology mwc 2017 apple uber sony huawei samsung LG blackberry motorola
eat Episode 87 - The Internet of Snoozing (IoS) New Gmail features, 'Chat' and AMD By play.acast.com Published On :: Fri, 27 Apr 2018 14:49:25 GMT A double Google header as Henry Burrell leads Scott Carey and Sean Bradley down the tech rabbit hole. Alphabet's most famous outlet has redesigned Gmail for desktop, but what does that mean for businesses and consumers. Will anyone notice?Then what is Chat? Not Google Chat or Android Chat, mind - just Chat. Will the Google-led initiative really transform text messaging on Android or is it doomed to forever to be a fragmented mess?Sean then talks us through the latest AMD processors to challenge Intel. Intel hasn't had the best of year's after Apple announced it is going solo. Is there a change afoot? See acast.com/privacy for privacy and opt-out information. Full Article
eat Episode 90 - The Internet of Meaty Topics (IoMT) Digital afterlife, net neutrality and GDPR emails By play.acast.com Published On :: Wed, 23 May 2018 10:43:08 GMT Oh boy what a meaty session we have for you as Christina Mercer, Somrata Sarkar, David Price and Henry Burrell tackle three whopics (whopping topics) head on.Somrata takes us into the sometimes scary thoughts of our own digital afterlives. Should we be worried that we'll end up as misrepresentative chat bots one day? Who will have the authority to police the companies that harvest our data?Then Christina explains the knife edge America is on when it comes to net neutrality. Despite recent hope, there's still a chance the web across the pond will be ruthlessly metered and segmented.Finally David asks us if we've checked our unused email accounts recently, as there might be a lot of desperate noodle companies in there begging you to stay on their mailing lists. See acast.com/privacy for privacy and opt-out information. Full Article
eat Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments [Research] By feedproxy.google.com Published On :: 2020-03-31T13:35:14-07:00 In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g., precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary removed from the dataset. We evaluated the proposed approach on a series of benchmark controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it can facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats. Full Article
eat Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research] By feedproxy.google.com Published On :: 2020-04-07T14:34:38-07:00 The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D. Full Article
eat Wheat, Farmer's Woes By feedproxy.google.com Published On :: Mon, 06 Apr 2020 16:15:42 +0000 1 February 2008 , Number 3 Oliver Walston Farms at Thriplow Farm, Cambridgeshire Walston.jpg Full Article
eat International Arms Trade Treaty: Gun Control By feedproxy.google.com Published On :: Wed, 15 Apr 2020 11:39:18 +0000 1 October 2008 , Number 11 Nuclear, biological or chemical weapons and acts of terror may make the headlines, but it is conventional arms that take the lives in large numbers; maybe around a thousand a day. This month, a United Nations committee will try to find a way to limit the arms trade with a new treaty. For those facing the barrel of a gun, it cannot come a moment too soon. Paul Cornish Head, International Security Programme, Chatham House Field.jpg Full Article
eat Chemical, Biological, Radiological and Nuclear Terrorism: Tomorrow's Threat By feedproxy.google.com Published On :: Mon, 27 Apr 2020 13:23:42 +0000 1 March 2007 , Number 11 In early November, the retiring head of Britain’s Security Service MI5, Dame Eliza Manningham-Buller, warned that the danger of a terror attack was ‘serious’ and ‘growing’, with as many as thirty plots underway. Traditional terrorism of the sort practised by the Irish Republican Army has given way to the possibility, if not the expectation, that groups such as Al Qaeda might make use of chemical, biological, radiological and nuclear weapons and materials in an attack in Britain. So what are the dangers? GettyImages-200457787-001 copy.jpg Syrian Special Forces in gas masks, Saudi Arabia 1990 Full Article
eat Crimea’s Occupation Exemplifies the Threat of Attacks on Cultural Heritage By feedproxy.google.com Published On :: Tue, 04 Feb 2020 14:24:47 +0000 4 February 2020 Kateryna Busol Robert Bosch Stiftung Academy Fellow, Russia and Eurasia Programme @KaterynaBusol LinkedIn Societies, courts and policymakers should have a clearer awareness that assaults against cultural heritage constitute a creeping encroachment on a people’s identity, endangering its very survival. 2020-02-04-Bakhchysarai.jpg 'The destructive reconstruction of the 16th-century Bakhchysarai Palace is being conducted by a team with no experience of cultural sites, in a manner that erodes its authenticity and historical value.' Photo: Getty Images. Violations against cultural property – such as archaeological treasures, artworks, museums or historical sites – can be no less detrimental to the survival of a nation than the physical persecution of its people. These assaults on heritage ensure the hegemony of some nations and distort the imprint of other nations in world history, sometimes to the point of eradication.As contemporary armed conflicts in Syria, Ukraine and Yemen demonstrate, cultural property violations are not only a matter of the colonial past; they continue to be perpetrated, often in new, intricate ways.Understandably, from a moral perspective, it is more often the suffering of persons, rather than any kind of ‘cultural’ destruction, that receives the most attention from humanitarian aid providers, the media or the courts. Indeed, the extent of the damage caused by an assault on cultural property is not always immediately evident, but the result can be a threat to the survival of a people. This is strikingly exemplified by what is currently happening in Crimea.Ukraine’s Crimean peninsula has been occupied by Russia since February 2014, meaning that, under international law, the two states have been involved in an international armed conflict for the last six years.While much attention has been paid to the alleged war crimes perpetrated by the occupying power, reports by international organizations and the International Criminal Court (ICC) have been less vocal on the issue of cultural property in Crimea. Where they do raise it, they tend to confine their findings to the issue of misappropriation.However, as part of its larger policy of the annexation and Russification of the peninsula and its history, Russia has gone far beyond misappropriation.Crimean artefacts have been transferred to Russia – without security justification or Ukrainian authorization as required by the international law of occupation – to be showcased at exhibitions celebrating Russia’s own cultural heritage. In 2016, the Tretyakov Gallery in Moscow staged its record-breaking Aivazovsky exhibition, which included 38 artworks from the Aivazovsky Museum in the Crimean town of Feodosia.Other ‘cultural’ violations in the region include numerous unsanctioned archaeological excavations, whose findings are often unlawfully exported to Russia or end up on the black market.There is also the example of Russia’s plan to establish a museum of Christianity in Ukraine’s UNESCO World Heritage site, the Ancient City of Tauric Chersonese. This is an indication of Russia’s policy of asserting itself as a bastion of Orthodox Christianity and culture in the Slavic world, with Crimea as one of the centres.The harmful effects of Russia’s destructive cultural property policy can be seen in the situation of the Crimean Tatars, Ukraine’s indigenous Muslim people. Already depleted by a Stalin-ordered deportation in 1944 and previously repressed by the Russian Empire, the Crimean Tatars are now facing the destruction of much of the remainder of their heritage.For example, Muslim burial grounds have been demolished to build the Tavrida Highway, which leads to the newly built Kerch Bridge connecting the peninsula to Russia.The destructive reconstruction of the 16th-century Bakhchysarai Palace – the only remaining complete architectural ensemble of the indigenous people, included in the UNESCO World Heritage Tentative List – is another example of how the very identity of the Crimean Tatars is being threatened. This reconstruction is being conducted by a team with no experience of cultural sites, in a manner that erodes its authenticity and historical value – which is precisely as Russia intends.There is a solid body of international and domestic law covering Russia’s treatment of Crimea’s cultural property.Under the 1954 Hague Convention for the Protection of Cultural Property in the Event of Armed Conflict – ratified by both Ukraine and Russia – the occupying power must facilitate the safeguarding efforts of the national authorities in occupied territories. States parties must prevent any vandalism or misappropriation of cultural property, and, according to the first protocol of the convention, the occupying power is required to prevent any export of artefacts from the occupied territory.The 1907 Hague Regulations and the 1949 Fourth Geneva Convention confirm that the authentic domestic legislation continues to apply in occupied territories. This leaves Russia with no excuse for non-compliance with Ukraine’s cultural property laws and imposing its own rules unless absolutely necessary.Besides, both Ukrainian and Russian criminal codes penalise pillage in occupied territory, as well as unsanctioned archaeological excavations. As an occupying power, Russia must not just abstain from such wrongdoings in Crimea, but also duly investigate and prosecute the alleged misconduct.The clarity of the international legal situation demonstrates that no exhibitions in continental Russia and no archaeological excavations which are not sanctioned by Ukraine can be justified. Likewise, any renovation or use of cultural sites, especially those on permanent or tentative UNESCO lists, must only be conducted pursuant to consultancy with and approval of the Ukrainian authorities.But the resonance of the Crimean case goes beyond law and touches on issues of the very survival of a people. The Soviet deportation of the Crimean Tatars in 1944 did not only result in the deaths of individuals. Their footprints in Crimea have been gradually erased by baseless treason charges, the long exile of the indigenous community from their native lands and ongoing persecution.First the Soviet Union and now Russia have targeted the Crimean Tatars’ cultural heritage to undermine their significance in the general historical narrative, making attempts to preserve or celebrate this culture seem futile. Russia is thus imposing its own historical and political hegemony at the expense of the Crimean Tatar and Ukrainian layers of Crimean history.As exemplified by occupied Crimea, the manipulation and exploitation of cultural heritage can serve an occupying power’s wider policies of appropriating history and asserting its own dominance. Domestic cultural property proceedings are challenging due to the lack of access to the occupied territory, but they should still be pursued.More effort is needed in the following areas: case prioritization; informing the documenters of alleged violations about the spectrum of cultural property crimes; developing domestic investigative and prosecutorial capacity, including by involving foreign expert consultancy; more proactively seeking bilateral and multilateral cooperation in art crime cases; liaising with auction houses (to track down objects originating from war-affected areas) and museums (to prevent the exhibition of the artefacts from occupied territories).When possible, cultural property crimes should also be reported to the ICC.Additionally, more international – public, policy, media and jurisprudential – attention to such violations is needed. Societies, courts and policymakers should have a clearer awareness that assaults against cultural heritage constitute a creeping encroachment on a people’s identity, endangering its very survival. Full Article
eat Erratum: FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice [Errata] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Full Article
eat Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH. Full Article
eat Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses. Full Article
eat HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic {beta}-cells in vitro by activation of Smoothened [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Loss of pancreatic β-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of β-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and β-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in β-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced β-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased β-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and β-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO Full Article
eat HDL and pancreatic {beta} cells: a SMO-king gun? [Commentary] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Full Article
eat Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
eat Problem Notes for SAS®9 - 65914: You see the error "Driver does not support this optional feature" after trying to insert or append data to a Databricks table By feedproxy.google.com Published On :: Fri, 1 May 2020 14:23:57 EST You can create create a Databricks table by using PROC SQL, but you cannot insert data into the table. PROC APPEND cannot create a new table or append data to an existing table. Full Article JDBCBNDL+SAS/ACCESS+Interface+to+JDBC
eat Management of severe acute pancreatitis By feeds.bmj.com Published On :: Monday, December 2, 2019 - 13:11 Full Article
eat Current and future treatments for tuberculosis By feeds.bmj.com Published On :: Monday, March 2, 2020 - 11:05 Full Article
eat ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress. Full Article
eat Delineating an extracellular redox-sensitive module in T-type Ca2+ channels [Membrane Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing a high-affinity metal-binding site formed by the extracellular IS1–IS2 and IS3–IS4 loops of domain I and a cluster of extracellular cysteines in the IS1–IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide, as well as a reactive oxygen species–producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His191 in Cav3.2 reduced the channel's sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1–IS2 loop of Cav3.2 reduced its sensitivity to MTSES and SP. We hypothesize that oxidative modification of IS1–IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2 so that it becomes sensitive to ambient zinc. Full Article
eat Overexpression of GPR40 in Pancreatic {beta}-Cells Augments Glucose Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice By diabetes.diabetesjournals.org Published On :: 2009-02-10T11:50:44-08:00 Objective: GPR40 is a G protein-coupled receptor regulating free fatty acid-induced insulin secretion. We have generated transgenic mice overexpressing the human GPR40 gene (hGPR40-Tg) under control of the mouse insulin II promoter and have used them to examine the role of GPR40 in the regulation of insulin secretion and glucose homeostasis. Research Design and Methods: Normal (C57BL/6J) and diabetic (KK) mice overexpressing the human GPR40 gene under control of the insulin II promoter were generated, and their glucose metabolism and islet function were analyzed. Results: In comparison with nontransgenic littermates, hGPR40-Tg mice exhibited improved oral glucose tolerance with an increase in insulin secretion. Although islet morphological analysis showed no obvious differences between hGPR40-Tg and nontransgenic (NonTg) mice, isolated islets from hGPR40-Tg mice enhanced insulin secretion in response to high glucose (16 mM) than those from NonTg mice with unchanged low glucose (3 mM)-stimulated insulin secretion. In addition, hGPR40-Tg islets significantly increased insulin secretion against a naturally occurring agonist palmitate in the presence of 11 mM glucose. hGPR40-Tg mice were also found to be resistant to high fat diet-induced glucose intolerance, and hGPR40-Tg harboring KK mice showed augmented insulin secretion and improved oral glucose tolerance compared to nontransgenic littermates. Conclusions: Our results suggest that GPR40 may have a role in regulating glucose-stimulated insulin secretion and plasma glucose levels in vivo, and that pharmacological activation of GPR40 may provide a novel insulin secretagogue beneficial for the treatment of type 2 diabetes. Full Article
eat Glucagon Resistance at the Level of Amino Acid Turnover in Obese Subjects with Hepatic Steatosis By diabetes.diabetesjournals.org Published On :: 2020-01-23T08:19:19-08:00 Glucagon secretion is regulated by circulating glucose, but it has turned out that amino acids also play an important role, and that hepatic amino acid metabolism and glucagon are linked in a mutual feed-back cycle, the liver-alpha cell axis. On this background, we hypothesized that hepatic steatosis might impair glucagon’s action on hepatic amino acid metabolism and lead to hyperaminoacidemia and hyperglucagonemia.We subjected 15 healthy lean and 15 obese steatotic male participants to a pancreatic clamp with somatostatin and evaluated hepatic glucose and amino acid metabolism during basal and high physiological levels of glucagon. The degree of steatosis was evaluated from liver biopsies.Total RNA sequencing of liver biopsies revealed perturbations in the expression of genes predominantly involved in amino acid metabolism in the obese steatotic individuals. This group was also characterized by fasting hyperglucagonemia, hyperaminoacidemia and an absent lowering of amino acid levels in response to high levels of glucagon. Endogenous glucose production was similar between lean and obese individuals.Our results suggest that hepatic steatosis causes resistance to the effect of glucagon on amino acid metabolism resulting in increased amino acid concentrations as well as increased glucagon secretion providing a likely explanation of fatty liver-associated hyperglucagonemia. Full Article
eat Novel Detection and Restorative Levodopa Treatment for Pre-Clinical Diabetic Retinopathy By diabetes.diabetesjournals.org Published On :: 2020-02-12T12:37:27-08:00 Diabetic retinopathy (DR) is diagnosed clinically by directly viewing retinal vascular changes during ophthalmoscopy or through fundus photographs. However, electroretinography (ERG) studies in humans and rodents have revealed that retinal dysfunction is demonstrable prior to the development of visible vascular defects. Specifically, delays in dark-adapted ERG oscillatory potential (OP) implicit times in response to dim flash stimuli (<-1.8 log cd·s/m2) occur prior to clinically-recognized diabetic retinopathy. Animal studies suggest that retinal dopamine deficiency underlies these early functional deficits. Here, we randomized persons with diabetes, without clinically detectable retinopathy, to treatment with either low or high dose Sinemet (levodopa plus carbidopa) for 2 weeks and compared their ERG findings with those of control (no DM) subjects. We assessed dim flash stimulated OP delays using a novel hand-held ERG system (RETeval) at baseline, 2 and 4 weeks. RETeval recordings identified significant OP implicit-time delays in persons with diabetes without retinopathy compared to age-matched controls (p<0.001). After two weeks of Sinemet treatment, OP implicit times were restored to control values, and these improvements persisted even after a two-week washout. We conclude that detection of dim flash OP delays could provide early detection of DR, and that Sinemet treatment may reverse retinal dysfunction. Full Article
eat Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic {beta}-cells By diabetes.diabetesjournals.org Published On :: 2020-04-24T09:55:27-07:00 A sustained increase in intracellular Ca2+ concentration (referred to herein as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high fat diet (HFD) on Abcc8 knock-out mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation and mitochondrial biogenesis, and their key regulator Ppargc1a. Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure. Full Article
eat Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival. Full Article
eat Secretory Functions of Macrophages in the Human Pancreatic Islet are Regulated by Endogenous Purinergic Signaling By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity. Full Article
eat Lactogens Reduce Endoplasmic Reticulum Stress-induced Rodent and Human {beta}-cell Death and Diabetes Incidence in Akita Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway, endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines if lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita mice, a rodent model of ER stress-induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of pro-apoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Akita mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Akita littermates. These are the first studies in any cell type demonstrating lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress. Full Article
eat Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment after Acute Myocardial Infarction in Patients with Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-24T19:07:13-07:00 Type 2 diabetes mellitus predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (n=1147, n=265 diabetic; n=882 non-diabetic) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF), global longitudinal, circumferential and radial strains (GLS, GCS and GRS), LA reservoir, conduit and booster pump strains, as well as infarct size, edema and microvascular obstruction. Predefined endpoints were major adverse cardiovascular events (MACE) within 12 months. Diabetic patients had impaired LA reservoir (19.8 vs. 21.2%, p<0.01) and conduit strains (7.6 vs. 9.0%, p<0.01) but not ventricular function or myocardial damage. They were at higher risk of MACE than non-diabetic patients (10.2% vs. 5.8%, p<0.01) with most MACE occurring in patients with LVEF≥35%. Whilst LVEF (p=0.045) and atrial reservoir strain (p=0.024) were independent predictors of MACE in non-diabetic patients, GLS was in diabetic patients (p=0.010). Considering patients with diabetes and LVEF≥35% (n=237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above LVEF. Full Article
eat Integrated Pancreatic Blood Flow: Bi-Directional Microcirculation Between Endocrine and Exocrine Pancreas By diabetes.diabetesjournals.org Published On :: 2020-04-28T11:00:56-07:00 The pancreatic islet is a highly-vascularized endocrine micro-organ. The unique architecture of rodent islets, a so-called core-mantle arrangement seen in 2D images, led researchers to seek functional implications for islet hormone secretion. Three models of islet blood flow were previously proposed, all based on the assumption that islet microcirculation occurs in an enclosed structure. Recent electrophysiological and molecular biological studies using isolated islets also presumed uni-directional flow. Using intravital analysis of the islet microcirculation in mice, we find that islet capillaries are continuously integrated to those in the exocrine pancreas, which makes the islet circulation rather open, not self-contained. Similarly in human islets, the capillary structure was integrated with pancreatic microvasculature in its entirety. Thus, islet microcirculation has no relation to islet cytoarchitecture, which explains its well-known variability throughout species. Furthermore, tracking fluorescent-labeled red blood cells at the endocrine-exocrine interface revealed bi-directional blood flow, with similar variability in blood flow speed in both the intra- and extra-islet vasculature. To date, the endocrine and exocrine pancreas have been studied separately by different fields of investigators. We propose that the open circulation model physically links both endocrine and exocrine parts of the pancreas as a single organ through the integrated vascular network. Full Article
eat The Effects of B1344, a Novel Fibroblast Growth Factor 21 Analog, on Nonalcoholic Steatohepatitis in Nonhuman Primates By diabetes.diabetesjournals.org Published On :: 2020-04-30T07:18:52-07:00 Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting PEGylated FGF21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy, and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease, administration of B1344 via subcutaneous injection for eleven weeks caused a profound reduction of hepatic steatosis, inflammation and fibrosis, and amelioration of liver injury and hepatocyte death as evidenced by liver biopsy and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkey, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, administration of B1344 were performed in mice fed with methionine and choline deficiency diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis at a dose-dependent manner. These results provide preclinical validation for an innovative therapeutics to NAFLD, and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans. Full Article
eat Dextran Sulfate Protects Pancreatic {beta}-Cells, Reduces Autoimmunity and Ameliorates Type 1 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-05-07T07:53:04-07:00 A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D. Full Article
eat Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway By diabetes.diabetesjournals.org Published On :: 2020-05-07T08:35:09-07:00 Mitochondrial protein FAM3A suppresses hepatic gluconeogenesis and lipogenesis. This study aimed to screen drug(s) that activates FAM3A expression and evaluate its effect(s) on hyperglycemia and steatosis. Drug-repurposing methodology predicted that antidepressive drug doxepin was among the drugs that potentially activated FAM3A expression. Doxepin was further validated to stimulate the translocation of transcription factor HNF4α from the cytoplasm into the nucleus, where it promoted FAM3A transcription to enhance ATP synthesis, suppress gluconeogenesis, and reduce lipid deposition in hepatocytes. HNF4α antagonism or FAM3A deficiency blunted doxepin-induced suppression on gluconeogenesis and lipid deposition in hepatocytes. Doxepin administration attenuated hyperglycemia, steatosis, and obesity in obese diabetic mice with upregulated FAM3A expression in liver and brown adipose tissues (BAT). Notably, doxepin failed to correct dysregulated glucose and lipid metabolism in FAM3A-deficient mice fed on high-fat diet. Doxepin’s effects on ATP production, Akt activation, gluconeogenesis, and lipogenesis repression were also blunted in FAM3A-deficient mouse livers. In conclusion, FAM3A is a therapeutic target for diabetes and steatosis. Antidepressive drug doxepin activates FAM3A signaling pathways in liver and BAT to improve hyperglycemia and steatosis of obese diabetic mice. Doxepin might be preferentially recommended as an antidepressive drug in potential treatment of patients with diabetes complicated with depression. Full Article