mma

When the man fails to consummate a marriage

Social and cultural myths around sex may also become prominent.




mma

Muhammad Ali moots Iran fight and Macau ferry raised from the sea: headlines from 40 years ago

Muhammad Ali offering to help free Iran hostages, a contest pitting an abacus against a calculator and an Indian hospital using patients as guinea pigs made the headlines 40 years ago this week.May 4, 1980● The Macau ferry Fatshan, which capsized during Typhoon Rose in August 1971, was brought to the surface by a Chinese salvage team. Three skeletons, believed to be the remains of three of the victims trapped in the vessel when it sank near northeastern Lantau Island, were discovered inside the…




mma

Here's why fans believe Emma Stone is now married to Dave McCary

Emma Stone recently wore a wedding during a live chat with some other celebrities




mma

In the Pacific, urgent action is the key to addressing COVID-19 -- by Emma Veve

Pacific nations, led by the smallest and least well-off, moved decisively to restrict travel from a fast-growing list of COVID-19 affected countries.




mma

Youth involvement key to keeping Asia’s skies clear -- by Emma Marsden, Bulganmurun Tsevegjav , William Lucht, Muskaan Chopra

To reduce air pollution, national and city government policy makers, their development partners, academe, and the private sector need to work with young people. 




mma

COVID-19, locusts and floods: East Africa's triple dilemma

East Africa's "triple threat" — the coronavirus, locusts, and floods — are not mutually exclusive. In fact, each is inextricably linked.




mma

Chair’s Summary of the Committee Discussion on 7 February 2020

This paper documents the Chair's Summary of the Development Effectiveness Committee (DEC) discussion held on 7 February 2020.  DEC and the Independent Evaluation Department (IED) discussed three topics presented by IED: Evaluation Capacity Development (ECD), Independent Evaluation Methods, and DEC-IED Retrospective/Prospective Exchange.




mma

Chair’s Summary of the Committee Discussion on 25 March 2020

This paper documents the Chair's Summary of the Development Effectiveness Committee (DEC) discussion held on 25 March 2020. The commitee discussed the sector-wide evaluation report ADB Support for Transport, 2010-2018.




mma

Chair’s Summary of the Committee Discussion on 14 April 2020

This paper documents the Chair's Summary of the Development Effectiveness Committee (DEC) discussion held on 14 April 2020. The commitee discussed the 2019 Development Effectiveness Review (DEfR), and the 2019 Annual Portfolio Performance Report (APPR).




mma

2017 International Comparison Program for Asia and the Pacific: Purchasing Power Parities and Real Expenditures — A Summary Report

This publication provides estimates of purchasing power parities (PPPs) and real expenditures for 22 economies in Asia and the Pacific. These are summary regional results from the 2017 cycle of the International Comparison Program (ICP).




mma

World’s highest mammal discovered at the top of a Mars-like volcano

The highest dwelling mammal – a mouse – has been discovered at 6700 metres above sea level, where conditions are so harsh they have been compared to Mars




mma

Your Money: Get aid or go bust? Small businesses face dilemma

Sara Pauly is not one of those small business owners scrambling to fill out paperwork for part of the more than $350 billion in government aid available through the Paycheck Protection Program or the...




mma

Drug May Help Against Inflammatory Breast Cancer

Title: Drug May Help Against Inflammatory Breast Cancer
Category: Health News
Created: 4/27/2009 9:26:00 AM
Last Editorial Review: 4/27/2009 12:00:00 AM




mma

Muhammad Ali's Daughter Champions Fight Against Parkinson's Disease

Title: Muhammad Ali's Daughter Champions Fight Against Parkinson's Disease
Category: Health News
Created: 5/3/2013 10:35:00 AM
Last Editorial Review: 5/3/2013 12:00:00 AM




mma

The New PubMed Updated: Summary Display with Full Author List, Send to: Citation manager, PubMed Format, and More

The New PubMed Updated: Summary display includes the full author list and other citation details; Send to: Citation manager is available; RIS format is replaced by PubMed format; Search details include individual term translations; Citations in the Clipboard have been added to History as search number #0.




mma

Study Ties Brain Inflammation to Several Types of Dementia

Title: Study Ties Brain Inflammation to Several Types of Dementia
Category: Health News
Created: 3/18/2020 12:00:00 AM
Last Editorial Review: 3/18/2020 12:00:00 AM




mma

Balanitis (Inflammation of the Head of the Penis)

Title: Balanitis (Inflammation of the Head of the Penis)
Category: Diseases and Conditions
Created: 6/24/2013 12:00:00 AM
Last Editorial Review: 11/22/2019 12:00:00 AM




mma

Therapeutic and Prophylactic Antitumor Activity of an Oral Inhibitor of Fucosylation in Spontaneous Mammary Cancers

2-fluorofucose (2FF) inhibits protein and cellular fucosylation. Afucosylation of IgG antibodies enhances antibody-dependent cell-mediated cytotoxicity by modulating antibody affinity for FcRIIIa, which can impact secondary T-cell activation. Immune responses toward most common solid tumors are dominated by a humoral immune response rather than the presence of tumor-infiltrating cytotoxic T cells. IgG antibodies directed against numerous tumor-associated proteins are found in the sera of both patients with breast cancer and transgenic mice bearing mammary cancer. We questioned whether 2FF would have antitumor activity in two genetically distinct transgenic models; TgMMTV-neu (luminal B) and C3(1)-Tag (basal) mammary cancer. 2FF treatment significantly improved overall survival. The TgMMTV-neu doubled survival time compared with controls [P < 0.0001; HR, 7.04; 95% confidence interval (CI), 3.31–15.0], and survival was significantly improved in C3(1)-Tag (P = 0.0013; HR, 3.36; 95% CI, 1.58–7.14). 2FF treated mice, not controls, developed delayed-type hypersensitivity and T-cell responses specific for syngeneic tumor lysates (P < 0.0001). Serum IgG from 2FF-treated mice enhanced tumor lysis more efficiently than control sera (P = 0.004). Administration of 2FF for prophylaxis, at two different doses, significantly delayed tumor onset in both TgMMTV-neu; 20 mmol/L (P = 0.0004; HR, 3.55; 95% CI, 1.60–7.88) and 50 mmol/L (P = 0.0002; HR: 3.89; 95% CI, 1.71–8.86) and C3(1)-Tag; 20 mmol/L (P = 0.0020; HR, 2.51; 95% CI, 1.22–5.18), and 50 mmol/L (P = 0.0012; HR, 3.36; 95% CI, 1.57–7.18). Mammary cancer was prevented in 33% of TgMMTV-neu and 26% of C3(1)-Tag. 2FF has potent antitumor effects in mammary cancer models. The agent shows preclinical efficacy for both cancer treatment and prevention.




mma

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




mma

Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews]

Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.




mma

Gamma Interferon Is Required for Chlamydia Clearance but Is Dispensable for T Cell Homing to the Genital Tract

ABSTRACT

While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-). However, it is unclear what role NR1 production or sensing of IFN- plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-–/–, and IFN-R–/– NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN- from either NR1 T cells or endogenous cells, further highlighting the importance of IFN- in clearing C. trachomatis infection.

IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.




mma

A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner

ABSTRACT

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.

IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.




mma

Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells

ABSTRACT

RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.

IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.




mma

EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways

ABSTRACT

The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections.

IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen.




mma

The BIR2/BIR3-Associated Phospholipase D{gamma}1 Negatively Regulates Plant Immunity

Plants have evolved effective strategies to defend themselves against pathogen invasion. Starting from the plasma membrane with the recognition of microbe-associated molecular patterns (MAMPs) via pattern recognition receptors, internal cellular signaling pathways are induced to ultimately fend off the attack. Phospholipase D (PLD) hydrolyzes membrane phospholipids to produce phosphatidic acid (PA), which has been proposed to play a second messenger role in immunity. The Arabidopsis (Arabidopsis thaliana) PLD family consists of 12 members, and for some of these, a specific function in resistance toward a subset of pathogens has been shown. We demonstrate here that Arabidopsis PLD1, but not its close homologs PLD2 and PLD3, is specifically involved in plant immunity. Genetic inactivation of PLD1 resulted in increased resistance toward the virulent bacterium Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungus Botrytis cinerea. As pld1 mutant plants responded with elevated levels of reactive oxygen species to MAMP treatment, a negative regulatory function for this PLD isoform is proposed. Importantly, PA levels in pld1 mutants were not affected compared to stressed wild-type plants, suggesting that alterations in PA levels are not likely the cause for the enhanced immunity in the pld1 line. Instead, the plasma-membrane-attached PLD1 protein colocalized and associated with the BAK1-INTERACTING RECEPTOR-LIKE KINASES BIR2 and BIR3, which are known negative regulators of pattern-triggered immunity. Moreover, complex formation of PLD1 and BIR2 was further promoted upon MAMP treatment. Hence, we propose that PLD1 acts as a negative regulator of plant immune responses in complex with immunity-related proteins BIR2 and BIR3.




mma

Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930




mma

Surfactant Protein-A Protects against IL-13-Induced Inflammation in Asthma [MUCOSAL IMMUNOLOGY]

Key Points

  • SP-A is a collectin and plays a key role in innate immunity in the lung.

  • SP-A modulates inflammation in airway epithelial cells from patients with asthma.

  • SP-A modulates IL-13–induced inflammation through downstream IL-6/STAT3 signaling.




    mma

    Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B-Dependent Activation of the Aryl Hydrocarbon Receptor [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • 5-HT2B agonists stimulate AhR transcriptional activation in human macrophages.

  • Serotonin-induced expression of AhR target genes is 5-HT2B dependent in macrophages.




    mma

    Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • The augmented ISG profile of RdRP mice develops largely postnatally.

  • Elevated ISG expression is then maintained through adulthood.

  • The ISG signature in adults requires persistent type I IFN signaling.




    mma

    Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q [INNATE IMMUNITY AND INFLAMMATION]

    Key Points

  • ApoE was found in complex with C4d in RA patient SF.

  • Deposited ApoE activates complement whereas ApoE in solution is inhibitory.

  • Posttranslational modifications alter ApoE's capacity to bind FH and C4BP.




    mma

    Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • L. donovani induces histone lysine methyltransferases/demethylases in the host.

  • L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization.

  • Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host.




    mma

    Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT]

    Key Points

  • E4 is an enhancer element that regulates transcriptions of TCR genes.

  • E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs.

  • Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs.




    mma

    IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth [CLINICAL AND HUMAN IMMUNOLOGY]

    Key Points

  • IRAK1 is hyperactivated in human preterm birth and in mouse and rhesus IUI models.

  • IRAK1 deletion and inhibition reduces preterm birth.

  • IRAK1 induces preterm birth by upregulating COX-2.




    mma

    Early Endothelial Activation Precedes Glycocalyx Degradation and Microvascular Dysfunction in Experimentally Induced Plasmodium falciparum and Plasmodium vivax Infection [Host Response and Inflammation]

    Endothelial activation and microvascular dysfunction are key pathogenic processes in severe malaria. We evaluated the early role of these processes in experimentally induced Plasmodium falciparum and P. vivax infection. Participants were enrolled in induced blood-stage malaria clinical trials. Plasma osteoprotegerin, angiopoietin-2, and von Willebrand Factor (vWF) levels were measured as biomarkers of endothelial activation. Microvascular function was assessed using peripheral arterial tonometry and near-infrared spectroscopy, and the endothelial glycocalyx was assessed by sublingual videomicroscopy and measurement of biomarkers of degradation. Forty-five healthy, malaria-naive participants were recruited from 5 studies. Osteoprotegerin and vWF levels increased in participants following inoculation with P. vivax (n = 16) or P. falciparum (n = 15), with the angiopoietin-2 level also increasing in participants following inoculation with P. falciparum. For both species, the most pronounced increase was seen in osteoprotegerin. This was particularly marked in participants inoculated with P. vivax, where the osteoprotegerin level correlated with the levels of parasitemia and the malaria clinical score. There were no changes in measures of endothelial glycocalyx or microvascular function. Plasma biomarkers of endothelial activation increased in early P. falciparum and P. vivax infection and preceded changes in the endothelial glycocalyx or microvascular function. The more pronounced increase in osteoprotegerin suggests that this biomarker may play a role in disease pathogenesis.




    mma

    GABARAPL2 Is Critical for Growth Restriction of Toxoplasma gondii in HeLa Cells Treated with Gamma Interferon [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

    Gamma interferon (IFN-)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN- stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that -aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN--treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN- -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN--dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response.




    mma

    Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile [Host Response and Inflammation]

    Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum. Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum.




    mma

    Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-{kappa}B Pathway, Inhibiting Hallmark NF-{kappa}B-Induced Proinflammatory Gene Expression [Virus-Cell Interactions]

    The nuclear factor kappa B (NF-B) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-B, illustrated by proteasome-dependent degradation of the inhibitory NF-B regulator IB and nuclear translocation and phosphorylation of the NF-B subunit p65. PRV-induced persistent activation of NF-B does not result in expression of negative feedback loop genes, like the gene for IBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-B activation. Hence, PRV infection triggers persistent NF-B activation in an unorthodox way and dramatically modulates the NF-B signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-B signaling, which may aid the virus in modulating early proinflammatory responses in the infected host.

    IMPORTANCE The NF-B transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-B, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-B activation shares some mechanistic features with canonical NF-B activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IB kinase (IKK) and even renders infected cells resistant to canonical NF-B activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-B activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-B activation.




    mma

    A genome-wide association study identifies key modulators of complement factor H binding to malondialdehyde-epitopes [Immunology and Inflammation]

    Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g.,...




    mma

    Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells [Immunology and Inflammation]

    Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell...




    mma

    AKT Regulates Mitotic Progression of Mammalian Cells by Phosphorylating MASTL, Leading to Protein Phosphatase 2A Inactivation [Research Article]

    Microtubule-associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl) kinase, has an important role in the regulation of mitosis. By inhibiting protein phosphatase 2A (PP2A), it plays a crucial role in activating one of the most important mitotic kinases, known as cyclin-dependent kinase 1 (CDK1). MASTL has been seen to be upregulated in various types of cancers and is also involved in tumor recurrence. It is activated by CDK1 through phosphorylations in the activation/T-loop, but the complete mechanism of its activation is still unclear. Here, we report that AKT phosphorylates MASTL at residue T299, which plays a critical role in its activation. Our results suggest that AKT increases CDK1-mediated phosphorylation and hence the activity of MASTL, which, in turn, promotes mitotic progression through PP2A inhibition. We also show that the oncogenic potential of AKT is augmented by MASTL activation, since AKT-mediated proliferation in colorectal cell lines can be attenuated by inhibiting and/or silencing MASTL. In brief, we report that AKT plays an important role in the progression of mitosis in mammalian cells and that it does so through the phosphorylation and activation of MASTL.




    mma

    Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System [Research Article]

    The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B–/–). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.




    mma

    The effects of elevated temperature and PCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus [RESEARCH ARTICLE]

    Daniel P. Small, Piero Calosi, Samuel P. S. Rastrick, Lucy M. Turner, Stephen Widdicombe, and John I. Spicer

    Regulation of extracellular acid–base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2. At 13°C, H. gammarus juveniles were able to fully compensate for acid–base disturbances caused by the exposure to elevated seawater PCO2 at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2, indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid–base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.




    mma

    Plasma Biomarkers of Tubular Injury and Inflammation Are Associated with CKD Progression in Children

    Background

    After accounting for known risk factors for CKD progression in children, clinical outcomes among children with CKD still vary substantially. Biomarkers of tubular injury (such as KIM-1), repair (such as YKL-40), or inflammation (such as MCP-1, suPAR, TNF receptor-1 [TNFR-1], and TNFR-2) may identify children with CKD at risk for GFR decline.

    Methods

    We investigated whether plasma KIM-1, YKL-40, MCP-1, suPAR, TNFR-1, and TNFR-2 are associated with GFR decline in children with CKD and in subgroups defined by glomerular versus nonglomerular cause of CKD. We studied participants of the prospective CKiD Cohort Study which enrolled children with an eGFR of 30–90 ml/min per 1.73 m2 and then assessed eGFR annually. Biomarkers were measured in plasma collected 5 months after study enrollment. The primary endpoint was CKD progression, defined as a composite of a 50% decline in eGFR or incident ESKD.

    Results

    Of the 651 children evaluated (median age 11 years; median baseline eGFR of 53 ml/min per 1.73 m2), 195 (30%) had a glomerular cause of CKD. Over a median follow-up of 5.7 years, 223 children (34%) experienced CKD progression to the composite endpoint. After multivariable adjustment, children with a plasma KIM-1, TNFR-1, or TNFR-2 concentration in the highest quartile were at significantly higher risk of CKD progression compared with children with a concentration for the respective biomarker in the lowest quartile (a 4-fold higher risk for KIM-1 and TNFR-1 and a 2-fold higher risk for TNFR-2). Plasma MCP-1, suPAR, and YKL-40 were not independently associated with progression. When stratified by glomerular versus nonglomerular etiology of CKD, effect estimates did not differ significantly.

    Conclusions

    Higher plasma KIM-1, TNFR-1, and TNFR-2 are independently associated with CKD progression in children.




    mma

    Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease

    Background

    The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression.

    Method

    To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines.

    Results

    Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells.

    Conclusions

    STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.




    mma

    Interaction between Epithelial Sodium Channel {gamma}-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct

    Background

    Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient.

    Methods

    To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule–specific knockout mice lacking ENaC subunits to assess the ENaC’s effect on claudin-8 expression.

    Results

    Overexpression or silencing of the ENaC -subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule–specific ENaC -subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule–specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance.

    Conclusions

    Our data reveal the specific coupling between ENaC -subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.




    mma

    The Role of Noninvasive Ventilation in Cystic Fibrosis: A Cochrane Review Summary With Commentary




    mma

    Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947 [Articles]

    The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti–cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR Ki were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes.

    SIGNIFICANCE STATEMENT

    GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti–choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.




    mma

    Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology]

    The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis.




    mma

    ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology]

    Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.




    mma

    Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells [Signal Transduction]

    The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11–7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.