meth N,N'-Bis(pyridin-3-ylmethyl)ethanediamide monohydrate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The molecular structure of the title bis-pyridyl substituted diamide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intramolecular amide-N—H⋯O(carbonyl) hydrogen bonds are formed, each closing an S(5) loop. Supramolecular tapes are formed in the crystal via amide-N—H⋯O(carbonyl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O—H⋯N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene-C—H⋯O(water) and methylene-C—H⋯π(pyridyl) interactions, give rise to a layer parallel to (10overline{1}); the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C—H⋯O(carbonyl) and pyridyl-C—H⋯C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal. Full Article text
meth Crystal structure, Hirshfeld surface analysis and computational study of bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) and of the copper(II) analogue By scripts.iucr.org Published On :: 2020-01-01 The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supramolecular layers in the ac plane are sustained by chlorobenzene-C—H⋯O(coordinated), chlorobenzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chlorobenzene)–π(chlorobenzene) interactions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by dichlorobenzene-C—H⋯π(fused-benzene ring) and π–π interactions between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supramolecular layers are also found in the crystal of (II), being stabilized by π–π interactions formed between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional interactions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The interaction energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing interaction in the crystal of (II). Full Article text
meth Two isostructural 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-ones: disorder and supramolecular assembly By scripts.iucr.org Published On :: 2020-01-01 Two new chalcones containing both pyrazole and thiophene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thiophene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the molecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds. Full Article text
meth Syntheses and crystal structures of 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid and 2,2,5-trimethyl-1,3-dioxane-5-carboxylic anhydride By scripts.iucr.org Published On :: 2020-01-01 In 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid, C8H14O4, the carboxyl group occupies an equatorial position on the 1,3-dioxane ring. In the crystal, O—H⋯O hydrogen bonds form chains of molecules, which are linked into a three-dimensional network by C—H⋯O hydrogen bonds. The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carboxylic anhydride, C16H26O7, consists of two independent molecules, which are linked by C—H⋯O hydrogen bonds. In the crystal, these units are connected into corrugated layers two molecules thick and parallel to the ab plane by additional C—H⋯O hydrogen bonds. Full Article text
meth Synthesis and crystal structure of (1,8-naphthyridine-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate dichloromethane monosolvate By scripts.iucr.org Published On :: 2020-01-01 The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenylpyrazole (ppz) ligand. The asymmetric unit comprises one [Ir(ppz)2(NAP)]+ cation, one PF6− counter-ion and one CH2Cl2 solvent molecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octahedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F interaction involving the solvent molecule, a three-dimensional network structure is formed. Full Article text
meth Bis{4-[(2-hydroxy-5-methoxy-3-nitrobenzylidene)amino]phenyl} ether By scripts.iucr.org Published On :: 2020-01-01 The molecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the molecule exhibits an imine E configuration. An intramolecular O—H⋯N hydrogen bond is present. In the crystal, the molecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin. Full Article text
meth Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohydrate By scripts.iucr.org Published On :: 2020-01-01 In the title molecule, C24H21N5O·H2O, the dihydrobenzodiazole moiety is not quite planar, while the whole molecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating molecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = dihydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the dihydrobenzodiazole units in adjacent layers intercalating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] interactions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
meth The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The crystal and molecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide molecule has a (+)-antiperiplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid molecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hydroxy-O—H⋯N(pyridyl) hydrogen bonds between the benzoic acid molecules and the pyridyl residues of the diamide leads to a three-molecule aggregate. Centrosymmetrically related aggregates assemble into a six-molecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supramolecular tape via amide-N—H⋯O(carbonyl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methylene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbonyl). These interactions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces. Full Article text
meth Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobicyclo[2.2.1]heptan-3-ylidene]hydrazinecarbothioamide By scripts.iucr.org Published On :: 2020-01-01 The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thiosemicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thiosemicarbazone], which maintains the chirality of the methylated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two molecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thiosemicarbazone isomer and the second the (1S)- isomer. In the crystal, the molecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S interactions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S interactions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) interactions. Full Article text
meth Crystal structure, DFT and Hirshfeld surface analysis of (E)-N'-[(1-chloro-3,4-dihydronaphthalen-2-yl)methylidene]benzohydrazide monohydrate By scripts.iucr.org Published On :: 2020-01-03 In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the dihydronaphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water molecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts. Full Article text
meth Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
meth Crystal structure, DFT and MEP study of (E)-2-{[(3-chlorophenyl)imino]methyl}-6-methylphenol By scripts.iucr.org Published On :: 2020-01-07 In the crystal structure of the title compound, C14H12ClNO, the molecules are linked through C—H⋯O hydrogen bonds and C—H⋯π interactions, forming chains parallel to the [010] direction. π–π interactions and intramolecular hydrogen bonds are also observed. The molecular geometry of the title compound in the ground state has been calculated using density functional theory at the B3LYP level with the 6–311++G(2d,2p) basis set. Additionally, frontier molecular orbital and molecular electrostatic potential map analyses were performed. Full Article text
meth Crystal structures of (E)-5-(4-methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one and [3,4-bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) By scripts.iucr.org Published On :: 2020-01-14 Recrystallization of (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one at room temperature from ethylene glycol in daylight afforded [3,4-bis(phenylethynyl)cyclobutane-1,2-diyl)bis(pyridin-2-ylmethanone], C32H22N2O2 (3), while (E)-5-(4-methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, C17H13NO (2), remained photoinert. This is the first experimental evidence that pentenynones can be photoreactive when fixed in nearly coplanar parallel positions. During the photoreaction, the bond lengths and angles along the pentenyne chain changed significantly, while the disposition of the pyridyl ring towards the keto group was almost unchanged. The cyclobutane ring adopts an rctt conformation. Full Article text
meth Synthesis, crystal structure and spectroscopic and Hirshfeld surface analysis of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde By scripts.iucr.org Published On :: 2020-01-21 The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intramolecular O—H⋯O hydrogen bond involving the adjacent hydroxy and nitro groups forms an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H⋯O hydrogen bond, forming slabs, which are linked by C=O⋯π interactions, forming a three-dimensional supramolecular structure. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid state. The molecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis. Full Article text
meth The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-dimethylanilino)-N-(3,4-dimethylphenyl)quinoline-3-carboxamide By scripts.iucr.org Published On :: 2020-01-17 The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and intermolecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the intermolecular interactions. Full Article text
meth (E)-{[(Butylsulfanyl)methanethioyl]amino}(4-methoxybenzylidene)amine: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-01-17 The title hydrazine carbodithioate, C13H18N2OS2, is constructed about a central and almost planar C2N2S2 chromophore (r.m.s. deviation = 0.0263 Å); the terminal methoxybenzene group is close to coplanar with this plane [dihedral angle = 3.92 (11)°]. The n-butyl group has an extended all-trans conformation [torsion angles S—Cm—Cm—Cm = −173.2 (3)° and Cm—Cm—Cm—Cme = 180.0 (4)°; m = methylene and me = methyl]. The most prominent feature of the molecular packing is the formation of centrosymmetric eight-membered {⋯HNCS}2 synthons, as a result of thioamide-N—H⋯S(thioamide) hydrogen bonds; these are linked via methoxy-C–H⋯π(methoxybenzene) interactions to form a linear supramolecular chain propagating along the a-axis direction. An analysis of the calculated Hirshfeld surfaces and two-dimensional fingerprint plots point to the significance of H⋯H (58.4%), S⋯H/H⋯S (17.1%), C⋯H/H⋯C (8.2%) and O⋯H/H⋯O (4.9%) contacts in the packing. The energies of the most significant interactions, i.e. the N—H⋯S and C—H⋯π interactions have their most significant contributions from electrostatic and dispersive components, respectively. The energies of two other identified close contacts at close to van der Waals distances, i.e. a thione–sulfur and methoxybenzene–hydrogen contact (occurring within the chains along the a axis) and between methylene-H atoms (occurring between chains to consolidate the three-dimensional architecture), are largely dispersive in nature. Full Article text
meth Crystal structure of 4-methyl-N-(4-methylbenzyl)benzenesulfonamide By scripts.iucr.org Published On :: 2020-01-17 The title compound, C15H17NO2S, was synthesized via a substitution reaction between 4-methylbenzylamine and p-toluenesulfonyl chloride. In the crystal, N—H⋯O hydrogen bonds link the molecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two intermolecular C—H⋯π interactions that link these hydrogen-bonded ribbons into a three-dimensional network. Full Article text
meth Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and 4-chlorobenzoic acid By scripts.iucr.org Published On :: 2020-01-21 The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half molecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two molecules of 4-chlorobenzoic acid (CBA), each in general positions. Each 4LH2 molecule has a (+)antiperiplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 molecules. The anti conformation of the carbonyl groups enables the formation of intramolecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA molecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-molecule aggregates are formed via carboxylic acid-O—H⋯N(pyridyl) hydrogen bonding. These are connected into a supramolecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methylene-C—H⋯O(carbonyl) and CBA-C—H⋯O(amide) interactions. As revealed by a more detailed analysis of the molecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O interactions which provide interaction energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supramolecular tape. Full Article text
meth Crystal structure of 2-methyl-1,2,3,4-tetrahydroisoquinoline trihydrate By scripts.iucr.org Published On :: 2020-02-06 The crystal structure of the title compound, C10H13N·3H2O, a heterocyclic amine, was determined in the presence of water. The compound co-crystallizes with three water molecules in the asymmetric unit, which leads to the formation of hydrogen bonding in the crystal. Full Article text
meth Crystal structure of the mixed methanol and ethanol solvate of bis{3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II) By scripts.iucr.org Published On :: 2020-02-06 The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex molecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π interactions between the planar ligand moieties, which are further connected by C⋯O and C⋯C interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) interactions. Full Article text
meth Crystal structures and Hirshfeld surface analysis of trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}manganese(II) and trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyri By scripts.iucr.org Published On :: 2020-01-31 Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex molecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thiocyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octahedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The trimethylbenzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify these intermolecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)]. Full Article text
meth Crystal structure of {4-[10,15,20-tris(4-methoxyphenyl)porphyrin-5-yl]benzyl 2-diazoacetato}zinc(II) By scripts.iucr.org Published On :: 2020-01-31 In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazoester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazoester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal. Full Article text
meth Crystal structure, synthesis and thermal properties of bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)bis(methanol-κN)iron(II) By scripts.iucr.org Published On :: 2020-01-31 In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octahedrally coordinated by two N atoms of 4-benzoylpyridine ligands, two N atoms of two terminal isothiocyanate anions and two methanol molecules into discrete complexes that are located on centres of inversion. These complexes are linked via intermolecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoylpyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent molecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoylpyridine)2. Full Article text
meth Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis(perchlorate) dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-02-11 The crystal structure of title salt, C14H36N44+·2ClO4−·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding interactions with the cations. The crystal structure is consolidated by intermolecular hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network. Full Article text
meth Crystal structure and Hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid By scripts.iucr.org Published On :: 2020-02-06 The title compound, C20H36O2·CH3OH [systematic name: (3S)-4-[(S)-3-hydroxy-3-methylpent-4-en-1-yl]-3,4a,8,8-tetramethyldecahydronaphthalen-3-ol methanol monosolvate], is a methanol solvate of sclareol, a diterpene oil isolated from the medicinally important medicinal herb Salvia sclarea, commonly known as clary sage. It crystallizes in space group P1 (No. 1) with Z' = 2. The sclareol molecule comprises two trans-fused cyclohexane rings, each having an equatorially oriented hydroxyl group, and a 3-methylpent-1-en-3-ol side chain. In the crystal, Os—H⋯Os, Os—H⋯Om, Om—H⋯Os and Om—H⋯Om (s = sclareol, m = methanol) hydrogen bonds connect neighboring molecules into infinite [010] chains. The title compound exhibits weak anti-leishmanial activity (IC50 = 66.4 ± 1.0 µM ml−1) against standard miltefosine (IC50 = 25.8 ± 0.2 µM ml−1). Full Article text
meth The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis By scripts.iucr.org Published On :: 2020-02-18 The whole molecule of the cadmium(II) complex, diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline) (L), is generated by a twofold rotation symmetry; the twofold axis bisects the cadmium atom and the nitrogen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial dichloromethane solvate. In the crystal of I, the complex molecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex molecules are linked by a series of C—H⋯π interactions, forming layers lying parallel to the (1overline{1}1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds. Full Article text
meth Crystal structure, Hirshfeld surface analysis and DFT studies of 1,3-bis[2-methoxy-4-(prop-2-en-1-yl)phenoxy]propane By scripts.iucr.org Published On :: 2020-02-14 The asymmetric unit of the title compound, C23H28O4, comprises two half-molecules, with the other half of each molecule being completed by the application of twofold rotation symmetry. The two completed molecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent molecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C—H⋯π(ring) interactions. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.4%), H⋯C/C⋯H (21.8%) and H⋯O/O⋯H (12.3%) interactions. Optimized structures using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structures in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
meth Crystal structure of (4-chlorophenyl)(4-methylpiperidin-1-yl)methanone By scripts.iucr.org Published On :: 2020-03-13 The title compound, C13H16ClNO, contains a methylpiperidine ring in the stable chair conformation. The mean plane of the twisted piperidine ring subtends a dihedral angle of 39.89 (7)° with that of the benzene ring. In the crystal, weak C—H⋯O interactions link the molecules along the a-axis direction to form infinite molecular chains. H⋯H interatomic interactions, C—H⋯O intermolecular interactions and weak dispersive forces stabilize molecular packing and form a supramolecular network, as established by Hirshfeld surface analysis. Full Article text
meth Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
meth Crystal structure of (R)-5-[(R)-3-(4-chlorophenyl)-5-methyl-4,5-dihydroisoxazol-5-yl]-2-methylcyclohex-2-enone By scripts.iucr.org Published On :: 2020-02-18 The title compound, C17H18ClNO2, was prepared and isolated as a pure diastereoisomer, using column chromatography followed by a succession of fractional crystallizations. Its exact structure was fully identified via 1H NMR and confirmed by X-ray diffraction. It is built up from a central five-membered dihydroisoxazole ring to which a p-chlorophenyl group and a cyclohex-2-enone ring are attached in the 3 and 5 positions. The cyclohex-2-one and isoxazoline rings each exhibit an envelope conformation. The crystal packing features C—H⋯O, C—H⋯N and C—H⋯π interactions, which generate a three-dimensional network. Full Article text
meth Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine By scripts.iucr.org Published On :: 2020-02-28 The molecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H⋯O hydrogen bonds, as well as intermolecular C—H⋯π and π–π interactions, leading to the formation of sheets parallel to the ac plane. Full Article text
meth Crystal structure of 2-[bis(benzylsulfanyl)methyl]-6-methoxyphenol By scripts.iucr.org Published On :: 2020-03-03 The title compound, C22H22O2S2, 1, represents an example of an ortho-vanillin-based functionalized dithioether, which could be useful as a potential chelating ligand or bridging ligand for coordination chemistry. This dithioacetal 1 crystallizes in the orthorhombic space group Pbca. The phenyl rings of the benzyl groups and that of the vanillin unit form dihedral angles of 35.38 (6) and 79.77 (6)°, respectively. The crystal structure, recorded at 100 K, displays both weak intramolecular O—H⋯O and intermolecular O—H⋯S hydrogen bonding. Full Article text
meth Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation By scripts.iucr.org Published On :: 2020-02-25 The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane. Full Article text
meth Crystal structure analysis of ethyl 3-(4-chlorophenyl)-1,6-dimethyl-4-methylsulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate By scripts.iucr.org Published On :: 2020-02-25 In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect molecules along [100]. Full Article text
meth Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophe By scripts.iucr.org Published On :: 2020-03-03 The title crystal structure is assembled from the superposition of two molecular structures, (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methylthiophene-2-carbaldehyde and 1-(5-chlorothiophen-2-yl)ethanone. In the extended structure of the major chalcone component, molecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π interactions, leading to a compact three-dimensional supramolecular assembly. Full Article text
meth Crystal structure and Hirshfeld surface analysis of 4-allyl-2-methoxy-6-nitrophenol By scripts.iucr.org Published On :: 2020-02-28 The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-methoxyphenol) with a mixture of nitric acid and sulfuric acid, consists of three independent molecules of similar geometry. Each molecule displays an intramolecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by intermolecular C—H⋯O hydrogen bonds in addition to π–π stacking interactions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H⋯H (39.6%), O⋯H/H⋯O (37.7%), C⋯H/H⋯C (12.5%) and C⋯C (4%) are the most important contributors towards the crystal packing. Full Article text
meth Crystal structures of the recreational drug N-(4-methoxyphenyl)piperazine (MeOPP) and three of its salts By scripts.iucr.org Published On :: 2020-03-05 Crystal structures are reported for N-(4-methoxyphenyl)piperazine (MeOPP), (I), and for its 3,5-dinitrobenzoate, 2,4,6-trinitrophenolate (picrate) and 4-aminobenzoate salts, (II)–(IV), the last of which crystallizes as a monohydrate. In MeOPP, C11H16N2O, (I), the 4-methoxyphenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the molecules are linked into simple C(10) chains by N—H⋯O hydrogen bonds. In each of the salts, i.e., C11H17N2O+·C7H3N2O6−, (II), C11H17N2O+·C6H2N3O7−, (III), and C11H17N2O+·C7H6NO2−·H2O, (IV), the effectively planar 4-methoxyphenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N—H⋯O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds. Full Article text
meth Bis(4-hydroxy-N-isopropyl-N-methyltryptammonium) fumarate: a new crystalline form of miprocin By scripts.iucr.org Published On :: 2020-03-10 The title compound, bis(4-hydroxy-N-isopropyl-N-methyltryptammonium) (4-HO-MiPT) fumarate (systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium} but-2-enedioate), 2C14H21N2O+·C4H2O42−, has a singly protonated tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by N—H⋯O and O—H⋯O hydrogen bonds. These chains are a combination of R42(20) rings, and C22(15) and C44(30) parallel chains along (110). They are further consolidated by N—H⋯π interactions. There are two two-component types of disorder impacting the tryptammonium fragment with a 0.753 (7):0.247 (7) occupancy ratio and one of the fumarate oxygen atoms with a 0.73 (8):0.27 (8) ratio. Full Article text
meth Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro-N-[4-(methylsulfanyl)phenyl]acetamide By scripts.iucr.org Published On :: 2020-03-31 In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the molecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯S/S⋯H. π–π interactions between inversion-related molecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum. Full Article text
meth Intramolecular 1,5-S⋯N σ-hole interaction in (E)-N'-(pyridin-4-ylmethylidene)thiophene-2-carbohydrazide By scripts.iucr.org Published On :: 2020-03-17 The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The molecular conformation is nearly planar and features an intramolecular chalcogen bond between the thiophene S and the imine N atoms. Within the crystal, the strongest interactions between molecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise intermolecular interactions within the stacks are considerably larger than those found for the interactions between the layers. Full Article text
meth Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis[chloridochromate(VI)] dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-03-10 The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chlorochromate anion and one chloride anion. Both the Cl− anion and chlorochromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chlorochromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network. Full Article text
meth Crystal structure of (R,S)-2-hydroxy-4-(methylsulfanyl)butanoic acid By scripts.iucr.org Published On :: 2020-03-17 The title compound, a major animal feed supplement, abbreviated as HMTBA and alternatively called dl-methionine hydroxy analogue, C5H10O3S, (I), was isolated in pure anhydrous monomeric form. The melting point is 302.5 K and the compound crystallizes in the monoclinic space group P21/c, with two conformationally non-equivalent molecules [(IA) and (IB)] in the asymmetric unit. The crystal structure is formed by alternating polar and non-polar layers running along the bc plane and features an extensive hydrogen-bonding network within the polar layers. The Hirshfeld surface analysis revealed a significant contribution of non-polar H⋯H and H⋯S interactions to the packing forces for both molecules. Full Article text
meth Synthesis and crystal structures of two 1,3-di(alkyloxy)-2-(methylsulfanyl)imidazolium tetrafluoridoborates By scripts.iucr.org Published On :: 2020-03-17 Two salts were prepared by methylation of the respective imidazoline-2-thione at the sulfur atom, using Meerwein's salt (trimethyloxonium tetrafluoridoborate) in CH2Cl2. 1,3-Dimethoxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (1), C6H11N2O2S+·BF4−, displays a syn conformation of its two methoxy groups relative to each other whereas the two benzyloxy groups present in 1,3-dibenzyloxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (2), C18H19N2O2S+·BF4−, adopt an anti conformation. In the molecules of 1 and 2, the methylsulfanyl group is rotated out of the plane of the respective heterocyclic ring. In both crystal structures, intermolecular interactions are dominated by C—H⋯F—B contacts, leading to three-dimensional networks. The tetrafluoridoborate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by rotation about one of the B—F bonds. Full Article text
meth Crystal structure and Hirshfeld surface analysis of 2-amino-3-hydroxypyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide By scripts.iucr.org Published On :: 2020-03-27 The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts. Full Article text
meth Structural investigation of methyl 3-(4-fluorobenzoyl)-7-methyl-2-phenylindolizine-1-carboxylate, an inhibitory drug towards Mycobacterium tuberculosis By scripts.iucr.org Published On :: 2020-03-20 The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its molecular conformation is stabilized via C—H⋯O intramolecular interactions. The supramolecular network mainly comprises C—H⋯O, C—H⋯F and C—H⋯π interactions, which contribute towards the formation of the crystal structure. The different intermolecular interactions have been further analysed via Hirshfeld surface analysis and fingerprint plots. Full Article text
meth Crystal structure of a new phenyl(morpholino)methanethione derivative: 4-[(morpholin-4-yl)carbothioyl]benzoic acid By scripts.iucr.org Published On :: 2020-03-27 4-[(Morpholin-4-yl)carbothioyl]benzoic acid, C12H13NO3S, a novel phenyl(morpholino)methanethione derivative, crystallizes in the monoclinic space group P21/n. The morpholine ring adopts a chair conformation and the carboxylic acid group is bent out slightly from the benzene ring mean plane. The molecular geometry of the carboxylic group is characterized by similar C—O bond lengths [1.266 (2) and 1.268 (2) Å] as the carboxylate H atom is disordered over two positions. This molecular arrangement leads to the formation of dimers through strong and centrosymmetric low barrier O—H⋯O hydrogen bonds between the carboxylic groups. In addition to these intermolecular interactions, the crystal packing consists of two different molecular sheets with an angle between their mean planes of 64.4 (2)°. The cohesion between the different layers is ensured by C—H⋯S and C—H⋯O interactions. Full Article text
meth Crystal structure, Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione By scripts.iucr.org Published On :: 2020-03-27 In the fused ring system of the title compound, C32H37NO4, the central dihydropyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the dihydropyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclohexenone rings adopt envelope conformations with the tetrasubstituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the dihydropyridine ring. In the crystal, molecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertake to determine the chemical reactivity of the title compound. Full Article text
meth Crystal structures of (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide By scripts.iucr.org Published On :: 2020-04-03 The title complexes, (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the orthorhombic space group Pccn, both with Z = 4. Full Article text
meth Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol By scripts.iucr.org Published On :: 2020-04-03 The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
meth Crystal structures of {1,1,1-tris[(salicylaldimino)methyl]ethane}gallium as both a pyridine solvate and an acetonitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)methyl]ethane}indium dichloro By scripts.iucr.org Published On :: 2020-04-03 The sexadentate ligand 1,1,1-tris[(salicylideneamino)methyl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the acetonitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)indium(III) dichloromethane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octahedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N intermolecular hydrogen-bonding interactions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported. Full Article text