ph

A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus. (arXiv:2005.02911v2 [quant-ph] UPDATED)

Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and $n$-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and $n$-grams into a quantum computer, and thereby speeding up the process of mapping $n$-grams to their hashes. The first phase will be to use KiloGram to find the top-$k$ hashes and $n$-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of $n$-grams, which can take on average $O(MN)$ time, whereas the quantum algorithm could take $O(sqrt{N})$ in the number of table lookups to find the desired hash values.




ph

Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED)

Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.




ph

Teaching Cameras to Feel: Estimating Tactile Physical Properties of Surfaces From Images. (arXiv:2004.14487v2 [cs.CV] UPDATED)

The connection between visual input and tactile sensing is critical for object manipulation tasks such as grasping and pushing. In this work, we introduce the challenging task of estimating a set of tactile physical properties from visual information. We aim to build a model that learns the complex mapping between visual information and tactile physical properties. We construct a first of its kind image-tactile dataset with over 400 multiview image sequences and the corresponding tactile properties. A total of fifteen tactile physical properties across categories including friction, compliance, adhesion, texture, and thermal conductance are measured and then estimated by our models. We develop a cross-modal framework comprised of an adversarial objective and a novel visuo-tactile joint classification loss. Additionally, we develop a neural architecture search framework capable of selecting optimal combinations of viewing angles for estimating a given physical property.




ph

Optimal Adjacent Vertex-Distinguishing Edge-Colorings of Circulant Graphs. (arXiv:2004.12822v2 [cs.DM] UPDATED)

A k-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value k for which G admits such coloring is denoted by $chi$'a (G). We prove that $chi$'a (G) = 2R + 1 for most circulant graphs Cn([[1, R]]).




ph

Personal Health Knowledge Graphs for Patients. (arXiv:2004.00071v2 [cs.AI] UPDATED)

Existing patient data analytics platforms fail to incorporate information that has context, is personal, and topical to patients. For a recommendation system to give a suitable response to a query or to derive meaningful insights from patient data, it should consider personal information about the patient's health history, including but not limited to their preferences, locations, and life choices that are currently applicable to them. In this review paper, we critique existing literature in this space and also discuss the various research challenges that come with designing, building, and operationalizing a personal health knowledge graph (PHKG) for patients.




ph

Subgraph densities in a surface. (arXiv:2003.13777v2 [math.CO] UPDATED)

Given a fixed graph $H$ that embeds in a surface $Sigma$, what is the maximum number of copies of $H$ in an $n$-vertex graph $G$ that embeds in $Sigma$? We show that the answer is $Theta(n^{f(H)})$, where $f(H)$ is a graph invariant called the `flap-number' of $H$, which is independent of $Sigma$. This simultaneously answers two open problems posed by Eppstein (1993). When $H$ is a complete graph we give more precise answers.




ph

Trees and Forests in Nuclear Physics. (arXiv:2002.10290v2 [nucl-th] UPDATED)

We present a simple introduction to the decision tree algorithm using some examples from nuclear physics. We show how to improve the accuracy of the classical liquid drop nuclear mass model by performing Feature Engineering with a decision tree. Finally, we apply the method to the Duflo-Zuker model showing that, despite their simplicity, decision trees are capable of improving the description of nuclear masses using a limited number of free parameters.




ph

Eccentricity terrain of $delta$-hyperbolic graphs. (arXiv:2002.08495v2 [cs.DM] UPDATED)

A graph $G=(V,E)$ is $delta$-hyperbolic if for any four vertices $u,v,w,x$, the two larger of the three distance sums $d(u,v)+d(w,x)$, $d(u,w)+d(v,x)$, and $d(u,x)+d(v,w)$ differ by at most $2delta geq 0$. Recent work shows that many real-world graphs have small hyperbolicity $delta$. This paper describes the eccentricity terrain of a $delta$-hyperbolic graph. The eccentricity function $e_G(v)=max{d(v,u) : u in V}$ partitions the vertex set of $G$ into eccentricity layers $C_{k}(G) = {v in V : e(v)=rad(G)+k}$, $k in mathbb{N}$, where $rad(G)=min{e_G(v): vin V}$ is the radius of $G$. The paper studies the eccentricity layers of vertices along shortest paths, identifying such terrain features as hills, plains, valleys, terraces, and plateaus. It introduces the notion of $eta$-pseudoconvexity, which implies Gromov's $epsilon$-quasiconvexity, and illustrates the abundance of pseudoconvex sets in $delta$-hyperbolic graphs. In particular, it shows that all sets $C_{leq k}(G)={vin V : e_G(v) leq rad(G) + k}$, $kin mathbb{N}$, are $(2delta-1)$-pseudoconvex. Additionally, several bounds on the eccentricity of a vertex are obtained which yield a few approaches to efficiently approximating all eccentricities. An $O(delta |E|)$ time eccentricity approximation $hat{e}(v)$, for all $vin V$, is presented that uses distances to two mutually distant vertices and satisfies $e_G(v)-2delta leq hat{e}(v) leq {e_G}(v)$. It also shows existence of two eccentricity approximating spanning trees $T$, one constructible in $O(delta |E|)$ time and the other in $O(|E|)$ time, which satisfy ${e}_G(v) leq e_T(v) leq {e}_G(v)+4delta+1$ and ${e}_G(v) leq e_T(v) leq {e}_G(v)+6delta$, respectively. Thus, the eccentricity terrain of a tree gives a good approximation (up-to an additive error $O(delta))$ of the eccentricity terrain of a $delta$-hyperbolic graph.




ph

Evolutionary Dynamics of Higher-Order Interactions. (arXiv:2001.10313v2 [physics.soc-ph] UPDATED)

We live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in groups of more than two players. To remedy this, we introduce higher-order interactions, where a link can connect more than two individuals, and study their evolutionary dynamics. We first consider a public goods game on a uniform hypergraph, showing that it corresponds to the replicator dynamics in the well-mixed limit, and providing an exact theoretical foundation to study cooperation in networked groups. We also extend the analysis to heterogeneous hypergraphs that describe interactions of groups of different sizes and characterize the evolution of cooperation in such cases. Finally, we apply our new formulation to study the nature of group dynamics in real systems, showing how to extract the actual dependence of the synergy factor on the size of a group from real-world collaboration data in science and technology. Our work is a first step towards the implementation of new actions to boost cooperation in social groups.




ph

Measuring Social Bias in Knowledge Graph Embeddings. (arXiv:1912.02761v2 [cs.CL] UPDATED)

It has recently been shown that word embeddings encode social biases, with a harmful impact on downstream tasks. However, to this point there has been no similar work done in the field of graph embeddings. We present the first study on social bias in knowledge graph embeddings, and propose a new metric suitable for measuring such bias. We conduct experiments on Wikidata and Freebase, and show that, as with word embeddings, harmful social biases related to professions are encoded in the embeddings with respect to gender, religion, ethnicity and nationality. For example, graph embeddings encode the information that men are more likely to be bankers, and women more likely to be homekeepers. As graph embeddings become increasingly utilized, we suggest that it is important the existence of such biases are understood and steps taken to mitigate their impact.




ph

Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation. (arXiv:1905.00444v2 [quant-ph] UPDATED)

Noisy Intermediate-Scale Quantum (NISQ) computers are entering an era in which they can perform computational tasks beyond the capabilities of the most powerful classical computers, thereby achieving "Quantum Supremacy", a major milestone in quantum computing. NISQ Supremacy requires comparison with a state-of-the-art classical simulator. We report HPC simulations of hard random quantum circuits (RQC), which have been recently used as a benchmark for the first experimental demonstration of Quantum Supremacy, sustaining an average performance of 281 Pflop/s (true single precision) on Summit, currently the fastest supercomputer in the World. These simulations were carried out using qFlex, a tensor-network-based classical high-performance simulator of RQCs. Our results show an advantage of many orders of magnitude in energy consumption of NISQ devices over classical supercomputers. In addition, we propose a standard benchmark for NISQ computers based on qFlex.




ph

On analog quantum algorithms for the mixing of Markov chains. (arXiv:1904.11895v2 [quant-ph] UPDATED)

The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements.

There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.




ph

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




ph

Constrained Restless Bandits for Dynamic Scheduling in Cyber-Physical Systems. (arXiv:1904.08962v3 [cs.SY] UPDATED)

Restless multi-armed bandits are a class of discrete-time stochastic control problems which involve sequential decision making with a finite set of actions (set of arms). This paper studies a class of constrained restless multi-armed bandits (CRMAB). The constraints are in the form of time varying set of actions (set of available arms). This variation can be either stochastic or semi-deterministic. Given a set of arms, a fixed number of them can be chosen to be played in each decision interval. The play of each arm yields a state dependent reward. The current states of arms are partially observable through binary feedback signals from arms that are played. The current availability of arms is fully observable. The objective is to maximize long term cumulative reward. The uncertainty about future availability of arms along with partial state information makes this objective challenging. Applications for CRMAB abound in the domain of cyber-physical systems. This optimization problem is analyzed using Whittle's index policy. To this end, a constrained restless single-armed bandit is studied. It is shown to admit a threshold-type optimal policy, and is also indexable. An algorithm to compute Whittle's index is presented. Further, upper bounds on the value function are derived in order to estimate the degree of sub-optimality of various solutions. The simulation study compares the performance of Whittle's index, modified Whittle's index and myopic policies.




ph

Machine learning topological phases in real space. (arXiv:1901.01963v4 [cond-mat.mes-hall] UPDATED)

We develop a supervised machine learning algorithm that is able to learn topological phases for finite condensed matter systems from bulk data in real lattice space. The algorithm employs diagonalization in real space together with any supervised learning algorithm to learn topological phases through an eigenvector ensembling procedure. We combine our algorithm with decision trees and random forests to successfully recover topological phase diagrams of Su-Schrieffer-Heeger (SSH) models from bulk lattice data in real space and show how the Shannon information entropy of ensembles of lattice eigenvectors can be used to retrieve a signal detailing how topological information is distributed in the bulk. The discovery of Shannon information entropy signals associated with topological phase transitions from the analysis of data from several thousand SSH systems illustrates how model explainability in machine learning can advance the research of exotic quantum materials with properties that may power future technological applications such as qubit engineering for quantum computing.




ph

A Local Spectral Exterior Calculus for the Sphere and Application to the Shallow Water Equations. (arXiv:2005.03598v1 [math.NA])

We introduce $Psimathrm{ec}$, a local spectral exterior calculus for the two-sphere $S^2$. $Psimathrm{ec}$ provides a discretization of Cartan's exterior calculus on $S^2$ formed by spherical differential $r$-form wavelets. These are well localized in space and frequency and provide (Stevenson) frames for the homogeneous Sobolev spaces $dot{H}^{-r+1}( Omega_{ u}^{r} , S^2 )$ of differential $r$-forms. At the same time, they satisfy important properties of the exterior calculus, such as the de Rahm complex and the Hodge-Helmholtz decomposition. Through this, $Psimathrm{ec}$ is tailored towards structure preserving discretizations that can adapt to solutions with varying regularity. The construction of $Psimathrm{ec}$ is based on a novel spherical wavelet frame for $L_2(S^2)$ that we obtain by introducing scalable reproducing kernel frames. These extend scalable frames to weighted sampling expansions and provide an alternative to quadrature rules for the discretization of needlet-like scale-discrete wavelets. We verify the practicality of $Psimathrm{ec}$ for numerical computations using the rotating shallow water equations. Our numerical results demonstrate that a $Psimathrm{ec}$-based discretization of the equations attains accuracy comparable to those of spectral methods while using a representation that is well localized in space and frequency.




ph

GeoLogic -- Graphical interactive theorem prover for Euclidean geometry. (arXiv:2005.03586v1 [cs.LO])

Domain of mathematical logic in computers is dominated by automated theorem provers (ATP) and interactive theorem provers (ITP). Both of these are hard to access by AI from the human-imitation approach: ATPs often use human-unfriendly logical foundations while ITPs are meant for formalizing existing proofs rather than problem solving. We aim to create a simple human-friendly logical system for mathematical problem solving. We picked the case study of Euclidean geometry as it can be easily visualized, has simple logic, and yet potentially offers many high-school problems of various difficulty levels. To make the environment user friendly, we abandoned strict logic required by ITPs, allowing to infer topological facts from pictures. We present our system for Euclidean geometry, together with a graphical application GeoLogic, similar to GeoGebra, which allows users to interactively study and prove properties about the geometrical setup.




ph

Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection. (arXiv:2005.03531v1 [cs.HC])

This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience.




ph

Linear Time LexDFS on Chordal Graphs. (arXiv:2005.03523v1 [cs.DM])

Lexicographic Depth First Search (LexDFS) is a special variant of a Depth First Search (DFS), which was introduced by Corneil and Krueger in 2008. While this search has been used in various applications, in contrast to other graph searches, no general linear time implementation is known to date. In 2014, K"ohler and Mouatadid achieved linear running time to compute some special LexDFS orders for cocomparability graphs. In this paper, we present a linear time implementation of LexDFS for chordal graphs. Our algorithm is able to find any LexDFS order for this graph class. To the best of our knowledge this is the first unrestricted linear time implementation of LexDFS on a non-trivial graph class. In the algorithm we use a search tree computed by Lexicographic Breadth First Search (LexBFS).




ph

Two Efficient Device Independent Quantum Dialogue Protocols. (arXiv:2005.03518v1 [quant-ph])

Quantum dialogue is a process of two way secure and simultaneous communication using a single channel. Recently, a Measurement Device Independent Quantum Dialogue (MDI-QD) protocol has been proposed (Quantum Information Processing 16.12 (2017): 305). To make the protocol secure against information leakage, the authors have discarded almost half of the qubits remaining after the error estimation phase. In this paper, we propose two modified versions of the MDI-QD protocol such that the number of discarded qubits is reduced to almost one-fourth of the remaining qubits after the error estimation phase. We use almost half of their discarded qubits along with their used qubits to make our protocol more efficient in qubits count. We show that both of our protocols are secure under the same adversarial model given in MDI-QD protocol.




ph

Sunny Pointer: Designing a mouse pointer for people with peripheral vision loss. (arXiv:2005.03504v1 [cs.HC])

We present a new mouse cursor designed to facilitate the use of the mouse by people with peripheral vision loss. The pointer consists of a collection of converging straight lines covering the whole screen and following the position of the mouse cursor. We measured its positive effects with a group of participants with peripheral vision loss of different kinds and we found that it can reduce by a factor of 7 the time required to complete a targeting task using the mouse. Using eye tracking, we show that this system makes it possible to initiate the movement towards the target without having to precisely locate the mouse pointer. Using Fitts' Law, we compare these performances with those of full visual field users in order to understand the relation between the accuracy of the estimated mouse cursor position and the index of performance obtained with our tool.




ph

Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG])

Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293.




ph

Bundle Recommendation with Graph Convolutional Networks. (arXiv:2005.03475v1 [cs.IR])

Bundle recommendation aims to recommend a bundle of items for a user to consume as a whole. Existing solutions integrate user-item interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner, which cannot explicitly model the affiliation between items and bundles, and fail to explore the decision-making when a user chooses bundles. In this work, we propose a graph neural network model named BGCN (short for extit{ extBF{B}undle extBF{G}raph extBF{C}onvolutional extBF{N}etwork}) for bundle recommendation. BGCN unifies user-item interaction, user-bundle interaction and bundle-item affiliation into a heterogeneous graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics. Through training based on hard-negative sampler, the user's fine-grained preferences for similar bundles are further distinguished. Empirical results on two real-world datasets demonstrate the strong performance gains of BGCN, which outperforms the state-of-the-art baselines by 10.77\% to 23.18\%.




ph

Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques. (arXiv:2005.03357v1 [eess.SP])

Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.




ph

Quantum correlation alignment for unsupervised domain adaptation. (arXiv:2005.03355v1 [quant-ph])

Correlation alignment (CORAL), a representative domain adaptation (DA) algorithm, decorrelates and aligns a labelled source domain dataset to an unlabelled target domain dataset to minimize the domain shift such that a classifier can be applied to predict the target domain labels. In this paper, we implement the CORAL on quantum devices by two different methods. One method utilizes quantum basic linear algebra subroutines (QBLAS) to implement the CORAL with exponential speedup in the number and dimension of the given data samples. The other method is achieved through a variational hybrid quantum-classical procedure. In addition, the numerical experiments of the CORAL with three different types of data sets, namely the synthetic data, the synthetic-Iris data, the handwritten digit data, are presented to evaluate the performance of our work. The simulation results prove that the variational quantum correlation alignment algorithm (VQCORAL) can achieve competitive performance compared with the classical CORAL.




ph

Interval type-2 fuzzy logic system based similarity evaluation for image steganography. (arXiv:2005.03310v1 [cs.MM])

Similarity measure, also called information measure, is a concept used to distinguish different objects. It has been studied from different contexts by employing mathematical, psychological, and fuzzy approaches. Image steganography is the art of hiding secret data into an image in such a way that it cannot be detected by an intruder. In image steganography, hiding secret data in the plain or non-edge regions of the image is significant due to the high similarity and redundancy of the pixels in their neighborhood. However, the similarity measure of the neighboring pixels, i.e., their proximity in color space, is perceptual rather than mathematical. This paper proposes an interval type 2 fuzzy logic system (IT2 FLS) to determine the similarity between the neighboring pixels by involving an instinctive human perception through a rule-based approach. The pixels of the image having high similarity values, calculated using the proposed IT2 FLS similarity measure, are selected for embedding via the least significant bit (LSB) method. We term the proposed procedure of steganography as IT2 FLS LSB method. Moreover, we have developed two more methods, namely, type 1 fuzzy logic system based least significant bits (T1FLS LSB) and Euclidean distance based similarity measures for least significant bit (SM LSB) steganographic methods. Experimental simulations were conducted for a collection of images and quality index metrics, such as PSNR, UQI, and SSIM are used. All the three steganographic methods are applied on datasets and the quality metrics are calculated. The obtained stego images and results are shown and thoroughly compared to determine the efficacy of the IT2 FLS LSB method. Finally, we have done a comparative analysis of the proposed approach with the existing well-known steganographic methods to show the effectiveness of our proposed steganographic method.




ph

Phase retrieval of complex-valued objects via a randomized Kaczmarz method. (arXiv:2005.03238v1 [cs.IT])

This paper investigates the convergence of the randomized Kaczmarz algorithm for the problem of phase retrieval of complex-valued objects. While this algorithm has been studied for the real-valued case}, its generalization to the complex-valued case is nontrivial and has been left as a conjecture. This paper establishes the connection between the convergence of the algorithm and the convexity of an objective function. Based on the connection, it demonstrates that when the sensing vectors are sampled uniformly from a unit sphere and the number of sensing vectors $m$ satisfies $m>O(nlog n)$ as $n, m ightarrowinfty$, then this algorithm with a good initialization achieves linear convergence to the solution with high probability.




ph

Nonlinear model reduction: a comparison between POD-Galerkin and POD-DEIM methods. (arXiv:2005.03173v1 [physics.comp-ph])

Several nonlinear model reduction techniques are compared for the three cases of the non-parallel version of the Kuramoto-Sivashinsky equation, the transient regime of flow past a cylinder at $Re=100$ and fully developed flow past a cylinder at the same Reynolds number. The linear terms of the governing equations are reduced by Galerkin projection onto a POD basis of the flow state, while the reduced nonlinear convection terms are obtained either by a Galerkin projection onto the same state basis, by a Galerkin projection onto a POD basis representing the nonlinearities or by applying the Discrete Empirical Interpolation Method (DEIM) to a POD basis of the nonlinearities. The quality of the reduced order models is assessed as to their stability, accuracy and robustness, and appropriate quantitative measures are introduced and compared. In particular, the properties of the reduced linear terms are compared to those of the full-scale terms, and the structure of the nonlinear quadratic terms is analyzed as to the conservation of kinetic energy. It is shown that all three reduction techniques provide excellent and similar results for the cases of the Kuramoto-Sivashinsky equation and the limit-cycle cylinder flow. For the case of the transient regime of flow past a cylinder, only the pure Galerkin techniques are successful, while the DEIM technique produces reduced-order models that diverge in finite time.




ph

Avoiding 5/4-powers on the alphabet of nonnegative integers. (arXiv:2005.03158v1 [math.CO])

We identify the structure of the lexicographically least word avoiding 5/4-powers on the alphabet of nonnegative integers. Specifically, we show that this word has the form $p au(varphi(z) varphi^2(z) cdots)$ where $p, z$ are finite words, $varphi$ is a 6-uniform morphism, and $ au$ is a coding. This description yields a recurrence for the $i$th letter, which we use to prove that the sequence of letters is 6-regular with rank 188. More generally, we prove $k$-regularity for a sequence satisfying a recurrence of the same type.




ph

A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction. (arXiv:2005.03137v1 [quant-ph])

In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI.




ph

Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph])

Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation.




ph

Exploratory Analysis of Covid-19 Tweets using Topic Modeling, UMAP, and DiGraphs. (arXiv:2005.03082v1 [cs.SI])

This paper illustrates five different techniques to assess the distinctiveness of topics, key terms and features, speed of information dissemination, and network behaviors for Covid19 tweets. First, we use pattern matching and second, topic modeling through Latent Dirichlet Allocation (LDA) to generate twenty different topics that discuss case spread, healthcare workers, and personal protective equipment (PPE). One topic specific to U.S. cases would start to uptick immediately after live White House Coronavirus Task Force briefings, implying that many Twitter users are paying attention to government announcements. We contribute machine learning methods not previously reported in the Covid19 Twitter literature. This includes our third method, Uniform Manifold Approximation and Projection (UMAP), that identifies unique clustering-behavior of distinct topics to improve our understanding of important themes in the corpus and help assess the quality of generated topics. Fourth, we calculated retweeting times to understand how fast information about Covid19 propagates on Twitter. Our analysis indicates that the median retweeting time of Covid19 for a sample corpus in March 2020 was 2.87 hours, approximately 50 minutes faster than repostings from Chinese social media about H7N9 in March 2013. Lastly, we sought to understand retweet cascades, by visualizing the connections of users over time from fast to slow retweeting. As the time to retweet increases, the density of connections also increase where in our sample, we found distinct users dominating the attention of Covid19 retweeters. One of the simplest highlights of this analysis is that early-stage descriptive methods like regular expressions can successfully identify high-level themes which were consistently verified as important through every subsequent analysis.




ph

Evaluating text coherence based on the graph of the consistency of phrases to identify symptoms of schizophrenia. (arXiv:2005.03008v1 [cs.CL])

Different state-of-the-art methods of the detection of schizophrenia symptoms based on the estimation of text coherence have been analyzed. The analysis of a text at the level of phrases has been suggested. The method based on the graph of the consistency of phrases has been proposed to evaluate the semantic coherence and the cohesion of a text. The semantic coherence, cohesion, and other linguistic features (lexical diversity, lexical density) have been taken into account to form feature vectors for the training of a model-classifier. The training of the classifier has been performed on the set of English-language interviews. According to the retrieved results, the impact of each feature on the output of the model has been analyzed. The results obtained can indicate that the proposed method based on the graph of the consistency of phrases may be used in the different tasks of the detection of mental illness.




ph

Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption. (arXiv:2005.03002v1 [cs.CR])

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.




ph

Chronic Traumatic Encephalopathy (CTE) in Amateur Athletes

A new study suggests that vulnerability to CTE is not limited to professional athletes.




ph

24 Must-Know Graphic Design Terms

Graphic design is everywhere — it’s used in traditional marketing efforts like billboards and fliers, and more importantly, it’s used in nearly every single digital marketing initiative from web design to social media marketing. If you’re a business that’s working with a digital marketing agency for any number of marketing campaigns (especially web design), it’s […]

The post 24 Must-Know Graphic Design Terms appeared first on WebFX Blog.




ph

Psychology of Color [Infographic]

Perhaps no choice is as vital to marketing as color. Whether you are selecting the color for a product or for your email marketing campaign, color has a tremendous impact on all of us. Subconsciously, we associate different colors with different things. This infographic examines the psychology of color and looks at some common associations […]

The post Psychology of Color [Infographic] appeared first on WebFX Blog.




ph

Build a Real-Time Phone Conversation Analytics

What Is Real-Time Conversation Analytics?

In contrast to post-call conversation analytics, which provides insights after the fact, real-time call conversation analytics can point them out at present times.

In this blog, I will walk through the essential steps to build a web app that can analyze call conversations in real-time to assist an agent. Once we’re finished, we’ll have an app which will:





ph

The Fox Theater cancels all events, including Spokane Symphony concerts, through April 10

As the threat of the Coronavirus spreads throughout the country, public events everywhere are being canceled and postponed for public safety concerns. The Fox Theater is the latest venue to follow suit, closing its doors and canceling all events through April 10.…




ph

CANCELED CONCERTS: Phish and Dave Matthews at the Gorge, the Festival at Sandpoint, Browne's Addition summer concerts

This is normally the time of year when we're up to our eyeballs in concert announcements, but in these topsy-turvy times, we're instead having to write about all the concerts being canceled due to COVID-19. It's a real bummer.…




ph

Spokane Symphony launches Musicians' Relief Fund to help local classical stars survive the pandemic

You might not know it from the fancy attire they wear on stage at the Fox Theater, but for the musicians in the Spokane Symphony, it's a part-time gig. It's a prestigious gig, to be sure, but like most artists, for the musicians, it's just one piece of a puzzle full of hustle they have to solve to make a living.…



  • Arts & Culture

ph

The Spokane County Sheriff's Office has discretely acquired technology that enables them to bypass phone passwords

Cops are hackers now, too.…



  • News/Local News

ph

'We obviously have a Camp Hope 2.0-type situation': photos from Thursday night's homeless camp police confrontation

At around 5:30 pm on Thursday, there were two camps of people set up in Coeur d'Alene Park in Browne's Addition.…



  • News/Local News

ph

Graphene prepared by using edge functionalization of graphite

Disclosed is a method for producing graphene functionalized at its edge positions of graphite. Organic material having one or more functional groups is reacted with graphite in reaction medium comprising methanesulfonic acid and phosphorus pentoxide, or in reaction medium comprising trifluoromethanesulfonic acid, to produce graphene having organic material fuctionalized at edges. And then, high purity and large scaled graphene and film can be obtained by dispersing, centrifugal separating the functionalized graphene in a solvent and reducing, in particular heat treating the graphene. According to the present invention graphene can be produced inexpensively in a large amount with a minimum loss of graphite. (FIG. 1)




ph

Production of alpha, omega-diols

Disclosed herein are processes for preparing an α,ω-Cn-diol, wherein n is 5 or greater, from a feedstock comprising a Cn oxygenate. In one embodiment, the process comprises contacting the feedstock with hydrogen gas in the presence of a catalyst comprising Pt, Cu, Ni, Pd, Pt, Rh, Ir, Ru, or Fe on a WO3 or WOx support. In one embodiment, the process comprises contacting the feedstock with hydrogen in the presence of a catalyst comprising a metal M1 and a metal M2 or an oxide of M2, and optionally a support. In one embodiment, M1 is Pd, Pt, or Ir; and M2 is Mo, W, V, Mn, Re, Zr, Ni, Cu, Zn, Cr, Ge, Sn, Ti, Au, or Co. The Cn oxygenate may be obtained from a biorenewable resource.




ph

Process for the preparation of crystalline forms of agomelatine and novel polymorph thereof

The invention concerns a new process for the preparation of crystalline form of agomelatine from a solution of agomelatine in a solvent, characterized in that the agomelatine is crystallized by instantaneous precipitation from said solution, at a temperature equal to or below −10° C.




ph

Process for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines

A process for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines comprising (1) providing a mixture of 1,3-cyanocyclohexane carboxaldehyde and/or 1,4-cyanocyclohexane carboxaldehyde; (2) contacting said mixture with a metal carbonate based solid bed or a weak base anion exchange resin bed at a temperature from 15 to 40 ° C. for a period of at least 1 minute; (3) thereby treating said mixture, wherein said treated mixture has a pH in the range of 6 to 9; (4) feeding said treated mixture, hydrogen, and ammonia into a continuous reductive amination reactor system; (6) contacting said treated mixture, hydrogen, and ammonia with each other in the presence of one or more heterogeneous metal based catalyst systems at a temperature from 80 ° C. to 160 ° C. and a pressure from 700 to 3500 psig; (7) thereby producing one or more cycloaliphatic diamines is provided.




ph

Process for preparing alkylated p-phenylenediamines

A process for preparing alkylated p-phenylenediamine having the steps of reacting aniline and nitrobenzene in presence of a complex base catalyst to obtain 4-aminodiphenylamine intermediates, hydrogenating the 4-aminodiphenylamine intermediates to 4-aminodiphenylamine in presence of a hydrogenation catalyst, and reductively alkylating the 4-aminodiphenylamine to alkylated p-phenylenediamine.




ph

Process for the conversion of aliphatic cyclic amines to aliphatic diamines

A process for conversion of aliphatic bicyclic amines to aliphatic diamines including contacting one or more bicyclic amines selected from the group consisting of 3-azabicyclo[3.3.1]nonane and azabicyclo[3.3.1]non-2-ene with ammonia and hydrogen, and alcohols in the presence of heterogeneous metal based catalyst systems, a metal selected from the group consisting of Co, Ni, Ru, Fe, Cu, Re, Pd, and their oxides at a temperature from 140° C. to 200° C. and a pressure from 1540 to 1735 psig for at least one hour reactor systems; forming a product mixture comprising aliphatic diamine(s), bicyclic amine(s), ammonia, hydrogen, and alcohol(s); removing said product mixture from the reactor system; removing at least some of the ammonia, hydrogen, water, alcohols, bicyclic amines from said product mixture; thereby separating the aliphatic diamines from said product mixture.