as

A snapshot love story: what serial crystallography has done and will do for us

Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.




as

Likelihood-based interactive local docking into cryo-EM maps in ChimeraX

The interpretation of cryo-EM maps often includes the docking of known or predicted structures of the components, which is particularly useful when the map resolution is worse than 4 Å. Although it can be effective to search the entire map to find the best placement of a component, the process can be slow when the maps are large. However, frequently there is a well-founded hypothesis about where particular components are located. In such cases, a local search using a map subvolume will be much faster because the search volume is smaller, and more sensitive because optimizing the search volume for the rotation-search step enhances the signal to noise. A Fourier-space likelihood-based local search approach, based on the previously published em_placement software, has been implemented in the new emplace_local program. Tests confirm that the local search approach enhances the speed and sensitivity of the computations. An interactive graphical interface in the ChimeraX molecular-graphics program provides a convenient way to set up and evaluate docking calculations, particularly in defining the part of the map into which the components should be placed.




as

Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly

Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies uni­directionally.




as

Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus

β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharo­lyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.




as

The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era

The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.




as

Structure and stability of an apo thermophilic esterase that hydrolyzes polyhydroxybutyrate

Pollution from plastics is a global problem that threatens the biosphere for a host of reasons, including the time scale that it takes for most plastics to degrade. Biodegradation is an ideal solution for remediating bioplastic waste as it does not require the high temperatures necessary for thermal degradation and does not introduce additional pollutants into the environment. Numerous organisms can scavenge for bioplastics, such as polylactic acid (PLA) or poly-(R)-hydroxybutyrate (PHB), which they can use as an energy source. Recently, a promiscuous PHBase from the thermophilic soil bacterium Lihuaxuella thermophila (LtPHBase) was identified. LtPHBase can accommodate many substrates, including PHB granules and films and PHB block copolymers, as well as the unrelated polymers polylactic acid (PLA) and polycaprolactone (PCL). LtPHBase uses the expected Ser–His–Asp catalytic triad for hydrolysis at an optimal enzyme activity near 70°C. Here, the 1.75 Å resolution crystal structure of apo LtPHBase is presented and its chemical stability is profiled. Knowledge of its substrate preferences was extended to different-sized PHB granules. It is shown that LtPHBase is highly resistant to unfolding, with barriers typical for thermophilic enzymes, and shows a preference for low-molecular-mass PHB granules. These insights have implications for the long-term potential of LtPHBase as an industrial PHB hydrolase and shed light on the evolutionary role that this enzyme plays in bacterial metabolism.




as

Analysis of crystallographic phase retrieval using iterative projection algorithms

For protein crystals in which more than two thirds of the volume is occupied by solvent, the featureless nature of the solvent region often generates a constraint that is powerful enough to allow direct phasing of X-ray diffraction data. Practical implementation relies on the use of iterative projection algorithms with good global convergence properties to solve the difficult nonconvex phase-retrieval problem. In this paper, some aspects of phase retrieval using iterative projection algorithms are systematically explored, where the diffraction data and density-value distributions in the protein and solvent regions provide the sole constraints. The analysis is based on the addition of random error to the phases of previously determined protein crystal structures, followed by evaluation of the ability to recover the correct phase set as the distance from the solution increases. The properties of the difference-map (DM), relaxed–reflect–reflect (RRR) and relaxed averaged alternating reflectors (RAAR) algorithms are compared. All of these algorithms prove to be effective for crystallographic phase retrieval, and the useful ranges of the adjustable parameter which controls their behavior are established. When these algorithms converge to the solution, the algorithm trajectory becomes stationary; however, the density function continues to fluctuate significantly around its mean position. It is shown that averaging over the algorithm trajectory in the stationary region, following convergence, improves the density estimate, with this procedure outperforming previous approaches for phase or density refinement.




as

Orientational ordering and assembly of silica–nickel Janus particles in a magnetic field

The orientation ordering and assembly behavior of silica–nickel Janus particles in a static external magnetic field were probed by ultra small-angle X-ray scattering (USAXS). Even in a weak applied field, the net magnetic moments of the individual particles aligned in the direction of the field, as indicated by the anisotropy in the recorded USAXS patterns. X-ray photon correlation spectroscopy (XPCS) measurements on these suspensions revealed that the corresponding particle dynamics are primarily Brownian diffusion [Zinn, Sharpnack & Narayanan (2023). Soft Matter, 19, 2311–2318]. At higher fields, the magnetic forces led to chain-like configurations of particles, as indicated by an additional feature in the USAXS pattern. A theoretical framework is provided for the quantitative interpretation of the observed anisotropic scattering diagrams and the corresponding degree of orientation. No anisotropy was detected when the magnetic field was applied along the beam direction, which is also replicated by the model. The method presented here could be useful for the interpretation of oriented scattering patterns from a wide variety of particulate systems. The combination of USAXS and XPCS is a powerful approach for investigating asymmetric colloidal particles in external fields.




as

Dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval based on deep learning

Speckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray imaging owing to its flexible setup and simultaneous yields of phase, transmission and scattering images. However, traditional speckle-tracking imaging methods suffer from phase distortion at locations with abrupt changes in density, which is always the case for real samples, limiting the applications of the speckle-tracking X-ray imaging method. In this paper, we report a deep-learning based method which can achieve dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval. The calibration results of a phantom show that the profile of the retrieved phase is highly consistent with the theoretical one. Experiments of polyurethane foaming demonstrated that the proposed method revealed the evolution of the complicated microstructure of the bubbles accurately. The proposed method is a promising solution for dynamic X-ray imaging with high-accuracy phase retrieval, and has extensive applications in metrology and quantitative analysis of dynamics in material science, physics, chemistry and biomedicine.




as

The interoperability of crystallographic data and databases

Interoperability of crystallographic data with other disciplines is essential for the smooth and rapid progress of structure-based science in the computer age. Within crystallography and closely related subject areas, there is already a high level of conformance to the generally accepted FAIR principles (that data be findable, accessible, interoperable and reusable) through the adoption of common information exchange protocols by databases, publishers, instrument vendors, experimental facilities and software authors. Driven by the success within these domains, the IUCr has worked closely with CODATA (the Committee on Data of the International Science Council) to help develop the latter's commitment to cross-domain integration of discipline-specific data. The IUCr has, in particular, emphasized the need for standards relating to data quality and completeness as an adjunct to the FAIR data landscape. This can ensure definitive reusable data, which in turn can aid interoperability across domains. A microsymposium at the IUCr 2023 Congress provided an up-to-date survey of data interoperability within and outside of crystallography, expounded using a broad range of examples.




as

The curious case of proton migration under pressure in the malonic acid and 4,4'-bi­pyridine cocrystal

In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bi­pyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA−) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2−. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.




as

Transferable Hirshfeld atom model for rapid evaluation of aspherical atomic form factors

Form factors based on aspherical models of atomic electron density have brought great improvement in the accuracies of hydrogen atom parameters derived from X-ray crystal structure refinement. Today, two main groups of such models are available, the banks of transferable atomic densities parametrized using the Hansen–Coppens multipole model which allows for rapid evaluation of atomic form factors and Hirshfeld atom refinement (HAR)-related methods which are usually more accurate but also slower. In this work, a model that combines the ideas utilized in the two approaches is tested. It uses atomic electron densities based on Hirshfeld partitions of electron densities, which are precalculated and stored in a databank. This model was also applied during the refinement of the structures of five small molecules. A comparison of the resulting hydrogen atom parameters with those derived from neutron diffraction data indicates that they are more accurate than those obtained with the Hansen–Coppens based databank, and only slightly less accurate than those obtained with a version of HAR that neglects the crystal environment. The advantage of using HAR becomes more noticeable when the effects of the environment are included. To speed up calculations, atomic densities were represented by multipole expansion with spherical harmonics up to l = 7, which used numerical radial functions (a different approach to that applied in the Hansen–Coppens model). Calculations of atomic form factors for the small protein crambin (at 0.73 Å resolution) took only 68 s using 12 CPU cores.




as

Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity

Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.




as

Biophysical and structural study of La Crosse virus endonuclease inhibition for the development of new antiviral options

The large Bunyavirales order includes several families of viruses with a segmented ambisense (−) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors.




as

Structural insights into the molecular mechanism of phytoplasma immunodominant membrane protein

Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP–F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases.




as

Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements

Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.




as

Chromic soft crystals based on luminescent platinum(II) complexes

Platinum(II) complexes of square-planar geometry are interesting from a crystal engineering viewpoint because they exhibit strong luminescence based on the self-assembly of molecular units. The luminescence color changes in response to gentle stimuli, such as vapor exposure or weak mechanical forces. Both the molecular and the crystal designs for soft crystals are critical to effectively generate the chromic luminescence phenomenon of Pt(II) complexes. In this topical review, strategies for fabricating chromic luminescent Pt(II) complexes are described from a crystal design perspective, focusing on the structural regulation of Pt(II) complexes that exhibit assembly-induced luminescence via metal–metal interactions and structural control of anionic Pt(II) complexes using cations. The research progress on the evolution of various chromic luminescence properties of Pt(II) complexes, including the studies conducted by our group, are presented here along with the latest research outcomes, and an overview of the frontiers and future potential of this research field is provided.




as

Photoinduced bidirectional mesophase transition in vesicles containing azo­benzene amphiphiles

The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospho­lipids and azo­benzene amphiphiles. We observed reversible and reproducible transitions between the lamellar and Pn3m cubic phase after illuminating the sample for 5 min with light of 365 and 455 nm wavelengths, respectively, to switch between the cis and trans states of the azo­benzene N=N double bond. These light-controlled mesophase transitions were found for mixed complexes with up to 20% content of the photosensitive molecule and at temperatures below the gel-to-liquid crystalline phase transition temperature of 33°C. Our results demonstrate the potential to design bespoke model systems to study the response of membrane lipids and proteins upon changes in mesophase without altering the environment and thus provide a possible basis for drug delivery systems.




as

From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system

Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery.




as

A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.




as

A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction

The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm.




as

High-accuracy measurement, advanced theory and analysis of the evolution of satellite transitions in manganese Kα using XR-HERFD

Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner.




as

Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.




as

Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution

Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.




as

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.




as

Phase quantification using deep neural network processing of XRD patterns

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present.




as

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




as

A predicted model-aided one-step classification–multireconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification–multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.




as

Structure of MltG from Mycobacterium abscessus reveals structural plasticity between composed domains

MltG, a membrane-bound lytic transglycosyl­ase, has roles in terminating glycan polymerization in peptidoglycan and incorporating glycan chains into the cell wall, making it significant in bacterial cell-wall biosynthesis and remodeling. This study provides the first reported MltG structure from Mycobacterium abscessus (maMltG), a superbug that has high antibiotic resistance. Our structural and biochemical analyses revealed that MltG has a flexible peptidoglycan-binding domain and exists as a monomer in solution. Further, the putative active site of maMltG was disclosed using structural analysis and sequence comparison. Overall, this study contributes to our understanding of the transglycosyl­ation reaction of the MltG family, aiding the design of next-generation antibiotics targeting M. abscessus.




as

Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith

Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by Rietveld refinement and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.




as

Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond–millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied pico­second–millisecond spectroscopic intermediates.




as

Ab initio crystal structures and relative phase stabilities for the aleksite series, PbnBi4Te4Sn+2

Density functional theory methods are applied to crystal structures and stabilities of phases from the aleksite homologous series, PbnBi4Te4Sn+2 (n = homologue number). The seven phases investigated correspond to n = 0 (tetradymite), 2 (aleksite-21R and -42R), 4 (saddlebackite-9H and -18H), 6 (unnamed Pb6Bi4Te4S8), 8 (unnamed Pb8Bi4Te4S10), 10 (hitachiite) and 12 (unnamed Pb12Bi4Te4S14). These seven phases correspond to nine single- or double-module structures, each comprising an odd number of atom layers, 5, 7, (5.9), 9, (7.11), 11, 13, 15 and 17, expressed by the formula: S(MpXp+1)·L(Mp+1Xp+2), where M = Pb, Bi and X = Te, S, p ≥ 2, and S and L = number of short and long modules, respectively. Relaxed structures show a and c values within 1.5% of experimental data; a and the interlayer distance dsub decrease with increasing PbS content. Variable Pb—S bond lengths contrast with constant Pb—S bond lengths in galena. All phases are n-fold superstructures of a rhombohedral subcell with c/3 = dsub*. Electron diffraction patterns show two brightest reflections at the centre of dsub*, described by the modulation vector qF = (i/N) · dsub*, i = S + L. A second modulation vector, q = γ · csub*, shows a decrease in γ, from 1.8 to 1.588, across the n = 0 to n = 12 interval. The linear relationship between γ and dsub allows the prediction of any theoretical phases beyond the studied compositional range. The upper PbS-rich limit of the series is postulated as n = 398 (Pb398Bi4Te4S400), a phase with dsub (1.726 Å) identical to that of trigonal PbS within experimental error. The aleksite series is a prime example of mixed layer compounds built with accretional homology principles.




as

Elastic and inelastic strain in submicron-thick ZnO epilayers grown on r-sapphire substrates by metal–organic vapour phase deposition

A significant part of the present and future of optoelectronic devices lies on thin multilayer heterostructures. Their optical properties depend strongly on strain, being essential to the knowledge of the stress level to optimize the growth process. Here the structural and microstructural characteristics of sub-micron a-ZnO epilayers (12 to 770 nm) grown on r-sapphire by metal–organic chemical vapour deposition are studied. Morphological and structural studies have been made using scanning electron microscopy and high-resolution X-ray diffraction. Plastic unit-cell distortion and corresponding strain have been determined as a function of film thickness. A critical thickness has been observed as separating the non-elastic/elastic states with an experimental value of 150–200 nm. This behaviour has been confirmed from ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy measurements. An equation that gives the balance of strains is proposed as an interesting method to experimentally determine this critical thickness. It is concluded that in the thinnest films an elongation of the Zn—O bond takes place and that the plastic strained ZnO films relax through nucleation of misfit dislocations, which is a consequence of three-dimensional surface morphology.




as

Supramolecular architectures in multicomponent crystals of imidazole-based drugs and tri­thio­cyanuric acid

The structures of three multicomponent crystals formed with imidazole-based drugs, namely metronidazole, ketoconazole and miconazole, in conjunction with tri­thio­cyanuric acid are characterized. Each of the obtained adducts represents a different category of crystalline molecular forms: a cocrystal, a salt and a cocrystal of salt. The structural analysis revealed that in all cases, the N—H⋯N hydrogen bond is responsible for the formation of acid–base pairs, regardless of whether proton transfer occurs or not, and these molecular pairs are combined to form unique supramolecular motifs by centrosymmetric N—H⋯S interactions between acid molecules. The complex intermolecular forces acting in characteristic patterns are discussed from the geometric and energetic perspectives, involving Hirshfeld surface analysis, pairwise energy estimation, and natural bond orbital calculations.




as

Following the guidelines for communicating commensurate magnetic structures: real case examples

A few real case examples are presented on how to report magnetic structures, with precise step-by-step explanations, following the guidelines of the IUCr Commission on Magnetic Structures [Perez-Mato et al. (2024). Acta Cryst. B80, 219–234]. Four examples have been chosen, illustrating different types of single-k magnetic orders, from the basic case to more complex ones, including odd-harmonics, and one multi-k order. In addition to acquainting researchers with the process of communicating commensurate magnetic structures, these examples also aim to clarify important concepts, which are used throughout the guidelines, such as the transformation to a standard setting of a magnetic space group.




as

Solvatomorphism in a series of copper(II) complexes with the 5-phenyl­imidazole/perchlorate system as ligands

In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenyl­imidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenyl­imidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(di­methyl­formamide) (7), 2(acetone) (8), 2(tetra­hydro­furane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(di­ethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole–H⋯Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the di­ethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2–6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7–11), linking the complexes and contributing to the stability of the crystalline compounds.




as

Importance of powder diffraction raw data archival in a curated database for materials science applications

In recent years, there is a significant interest from the crystallographic and materials science communities to have access to raw diffraction data. The effort in archiving raw data for access by the user community is spearheaded by the International Union of Crystallography (IUCr) Committee on Data. In materials science, where powder diffraction is extensively used, the challenge in archiving raw data is different to that from single crystal data, owing to the very nature of the contributions involved. Powder diffraction (X-ray or neutron) data consist of contributions from the material under study as well as instrument specific parameters. Having raw powder diffraction data can be essential in cases of analysing materials with poor crystallinity, disorder, micro structure (size/strain) etc. Here, the initiative and progress made by the International Centre for Diffraction Data (ICDDR) in archiving powder X-ray diffraction raw data in the Powder Diffraction FileTM (PDFR) database is outlined. The upcoming 2025 release of the PDF-5+ database will have more than 20 800 raw powder diffraction patterns that are available for reference.




as

K0.72Na1.71Ca5.79Si6O19 – the first oligosilicate based on [Si6O19]-hexamers and its stability compared to cyclo­silicates

Synthesis experiments were conducted in the quaternary system K2O–Na2O–CaO–SiO2, resulting in the formation of a previously unknown compound with the composition K0.72Na1.71Ca5.79Si6O19. Single crystals of sufficient size and quality were recovered from a starting mixture with a K2O:Na2O:CaO:SiO2 molar ratio of 1.5:0.5:2:3. The mixture was confined in a closed platinum tube and slowly cooled from 1150°C at a rate of 0.1°C min−1 to 700°C before being finally quenched in air. The structure has tetragonal symmetry and belongs to space group P4122 (No. 91), with a = 7.3659 (2), c = 32.2318 (18) Å, V = 1748.78 (12) Å3, and Z = 4. The silicate anion consists of highly puckered, unbranched six-membered oligomers with the composition [Si6O19] and point group symmetry 2 (C2). Although several thousands of natural and synthetic oxosilicates have been structurally characterized, this compound is the first representative of a catena-hexasilicate anion, to the best of our knowledge. Structural investigations were completed using Raman spectroscopy. The spectroscopic data was interpreted and the bands were assigned to certain vibrational species with the support of density functional theory at the HSEsol level of theory. To determine the stability properties of the novel oligosilicate compared to those of the chemically and structurally similar cyclo­silicate combeite, we calculated the electronegativity of the respective structures using the electronegativity equalization method. The results showed that the molecular electronegativity of the cyclo­silicate was significantly higher than that of the oligostructure due to the different connectivities of the oxygen atoms within the molecular units.




as

Search for missing symmetry in the Inorganic Crystal Structure Database (ICSD)

An exhaustive search for missing symmetry was performed for 223 076 entries in the ICSD (2023-2 release). Approximately 0.65% of them can be described with higher symmetry than reported. Out of the identified noncentrosymmetric entries, ∼74% can be described by centrosymmetric space groups; this has implications for compatible physical properties. It is proposed that the information on the correct space group is included in the ICSD.




as

Determining magnetic structures in GSAS-II using the Bilbao Crystallographic Server tool k-SUBGROUPSMAG

The embedded call to a special version of the web-based Bilbao Crystallographic Server tool k-SUBGROUPSMAG from within GSAS-II to form a list of all possible commensurate magnetic subgroups of a parent magnetic grey group is described. It facilitates the selection and refinement of the best commensurate magnetic structure model by having all the analysis tools including Rietveld refinement in one place as part of GSAS-II. It also provides the chosen magnetic space group as one of the 1421 possible standard Belov–Neronova–Smirnova forms or equivalent non-standard versions.




as

When a dream comes true: birth of the African Crystallographic Association (AfCA)

This paper summarizes brief perspectives on the historic process of establishing an African Crystallographic Association (AfCA) and includes representative references. It covers activities within four arbitrarily selected, approximate time slots, i.e., 1890s–1999, 2000–2013, 2014–2019 and 2020–2023. A genuine attempt is made to include appropriate role players, organizations and accompanying events within these periods. It concludes with the official admission of AfCA as the fifth Regional Associate of the IUCr at the 26th Congress and General Assembly of the IUCr in Melbourne, Australia in 2023.




as

Crystal structure and Hirshfeld surface analysis of dieth­yl (3aS,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetra­hydro-1H,3H,4H,7H-3a,6:7,9a-di­epoxy­benzo[de]isochromene-4,5-di­carboxyl­ate

In the title compound, C18H22O7, two hexane rings and an oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. The crystal structure features C—H⋯O hydrogen bonds, which link the mol­ecules into a three-dimensional network. According to a Hirshfeld surface study, H⋯H (60.3%) and O⋯H/H⋯O (35.3%) inter­actions are the most significant contributors to the crystal packing.




as

Temperature-dependent solid-state phase transition with twinning in the crystal structure of 4-meth­oxy­anilinium chloride

At room temperature, the title salt, C7H10NO+·Cl−, is ortho­rhom­bic, space group Pbca with Z' = 1, as previously reported [Zhao (2009). Acta Cryst. E65, o2378]. Between 250 and 200 K, there is a solid-state phase transition to a twinned monoclinic P21/c structure with Z' = 2. We report the high temperature structure at 250 K and the low-temperature structure at 100 K. In the low-temperature structure, the –NH3 hydrogen atoms are ordered and this group has a different orientation in each independent mol­ecule, in keeping with optimizing N—H⋯Cl hydrogen bonding, some of which are bifurcated: these hydrogen bonds have N⋯Cl distances in the range 3.1201 (8)–3.4047 (8) Å. In the single cation of the high-temperature structure, the NH hydrogen atoms are disordered into the average of the two low-temperature positions and the N⋯Cl hydrogen bond distances are in the range 3.1570 (15)–3.3323 (18) Å. At both temperatures, the meth­oxy group is nearly coplanar with the rest of the mol­ecule, with the C—C—O—C torsion angles being −7.0 (2)° at 250 K and −6.94 (12) and −9.35 (12)° at 100 K. In the extended ortho­rhom­bic structure, (001) hydrogen-bonded sheets occur; in the monoclinic structure, the sheets propagate in the (010) plane.




as

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butyl­benzoate: work carried out as part of the AFRAMED project

In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking inter­actions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface.




as

Synthesis and crystal structure of a cadmium(II) coordination polymer based on 4,4'-(1H-1,2,4-triazole-3,5-di­yl)dibenzoate

The asymmetric unit of the title compound, catena-poly[[[aqua­bis­(pyridine-κN)cadmium(II)]-μ2-4,4'-(1H-1,2,4-triazole-3,5-di­yl)dibenzoato-κ4O,O':O'',O'''] 4.5-hydrate], {[Cd(C16H9N3O4)(C5H5N)2(H2O)]·4.5H2O}n or {[Cd(bct)(py)2(H2O)]·4.5H2O}n (I), consists of a Cd2+ cation coordinated to one bct2– carboxyl­ate dianion, two mol­ecules of pyridine and a water mol­ecule as well as four and a half water mol­ecules of crystallization. The metal ion in I possesses a penta­gonal–bipyramidal environment with the four O atoms of the two bidentately coordinated carboxyl­ate groups and the N atom of a pyridine mol­ecule forming the O4N equatorial plane, while the N atom of another pyridine ligand and the O atom of the water mol­ecule occupy the axial positions. The bct2– bridging ligand connects two metal ions via its carb­oxy­lic groups, resulting in the formation of a parallel linear polymeric chain running along the [1overline{1}1] direction. The coordinated water mol­ecule of one chain forms a strong O—H⋯O hydrogen bond with the carboxyl­ate O atom of a neighboring chain, leading to the formation of double chains with a closest distance of 5.425 (7) Å between the cadmium ions belonging to different chains. Aromatic π–π stacking inter­actions between the benzene fragments of the anions as well as between the coordinated pyridine mol­ecules belonging to different chains results in the formation of sheets oriented parallel to the (overline{1}01) plane. As a result of hydrogen-bonding inter­actions involving the water mol­ecules of crystallization, the sheets are joined together in a three-dimensional network.




as

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.




as

Synthesis and crystal structure of (NH4)[Ni3(HAsO4)(AsO4)(OH)2]

The title compound, ammonium trinickel(II) hydrogen arsenate arsenate di­hydroxide, was synthesized under hydro­thermal conditions. Its crystal structure is isotypic with that of K[Cu3(HAsO4)(AsO4)(OH)2] and is characterized by pseudo-hexa­gonal (001) 2∞[Ni3As2O18/3(OH)6/3O1/1(OH)1/1]− layers formed from vertex- and edge-sharing [NiO4(OH)2] octa­hedra and [AsO3.5(OH)0.5] tetra­hedra as the building units. The hydrogen atom of the OH group shows occupational disorder and was refined with a site occupation factor of 1/2, indicating the equal presence of [HAsO4]2– and [AsO4]3– groups. Strong asymmetric hydrogen bonds between symmetry-related (O,OH) groups of the arsenate units [O⋯O = 2.588 (18) Å] as well as hydrogen bonds accepted by these (O,OH) groups from OH groups bonded to the NiII atoms [O⋯O = 2.848 (12) Å] link adjacent layers. Additional consolidation of the packing is achieved through N—H⋯O hydrogen bonds from the ammonium ion, which is sandwiched between adjacent layers [N⋯O = 2.930 (7) Å] although the H atoms could not be located in the present study. The presence of the pseudo-hexa­gonal 2∞[Ni3As2O18/3(OH)6/3O1/1(OH)1/1]− layers may be the reason for the systematic threefold twinning of (NH4)[Ni3(HAsO4)(AsO4)(OH)2] crystals. Significant overlaps of the reflections of the respective twin domains complicated the structure solution and refinement.




as

Structural characterization of the supra­molecular complex between a tetra­quinoxaline-based cavitand and benzo­nitrile

The structural characterization is reported of the supra­molecular complex between the tetra­quinoxaline-based cavitand 2,8,14,20-tetra­hexyl-6,10:12,16:18,22:24,4-O,O'-tetra­kis­(quinoxaline-2,3-di­yl)calix[4]resorcinarene (QxCav) with benzo­nitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent mol­ecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzo­nitrile mol­ecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly inter­act through weak C—H⋯π, C—H⋯N and dispersion inter­actions. These inter­actions help to consolidate the formation of supra­molecular chains running along the crystallographic b-axis direction.




as

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cycloocta­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.




as

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].