hera New therapeutic targets for infertility and cancer revealed By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Center for Genomic Regulation) An analysis of 13,000 tumours highlights two previously overlooked genes as potential new therapeutic targets for cancer treatment. Researchers also identify potential new therapeutic targets for male infertility. Both findings are the result of the most comprehensive evolutionary analysis of RNA modification proteins to date, published today in the journal Genome Biology. Full Article
hera Interleukin-12 electroporation may sensitize 'cold' melanomas to immunotherapies By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (American Association for Cancer Research) Combining intratumoral electroporation of interleukin-12 (IL-12) DNA (tavokinogene telseplasmid, or TAVO) with the immune checkpoint inhibitor pembrolizumab (Keytruda) led to clinical responses in patients with immunologically quiescent advanced melanoma, according to results from a phase II trial. Full Article
hera Killing 'sleeper cells' may enhance breast cancer therapy By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Walter and Eliza Hall Institute) The anti-cancer medicine venetoclax could improve the current therapy for estrogen receptor-positive (ER+) breast cancer - the most common form of breast cancer in Australia - according to preclinical studies led by Walter and Eliza Hall Institute researchers. The promising preclinical results for this 'triple therapy' have underpinned a phase 1 clinical trial in Melbourne, Australia, that is combining venetoclax with hormone therapy and CDK4/6 inhibitors in patients with ER+ breast cancer. Full Article
hera Carbohydrate Content in the GDM Diet: Two Views: View 1: Nutrition Therapy in Gestational Diabetes: The Case for Complex Carbohydrates By spectrum.diabetesjournals.org Published On :: 2016-05-01 Teri L. HernandezMay 1, 2016; 29:82-88From Research to Practice Full Article
hera Pharmacotherapy for Hyperglycemia in Noncritically Ill Hospitalized Patients By spectrum.diabetesjournals.org Published On :: 2014-08-01 Carlos E. MendezAug 1, 2014; 27:180-188From Research to Practice Full Article
hera Complementary and Integrative Medicine: Emerging Therapies for Diabetes, Part 1: Preface By spectrum.diabetesjournals.org Published On :: 2001-08-01 Cynthia PayneAug 1, 2001; 14:Preface Full Article
hera Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis By feedproxy.google.com Published On :: 2020-04-01 Beatriz RochaApr 1, 2020; 19:574-588Research Full Article
hera Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC By feedproxy.google.com Published On :: 2020-03-31 Yan Zhou TranMar 31, 2020; 0:RA120.002036v1-mcp.RA120.002036Research Full Article
hera PARP-1-targeted Auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma By jnm.snmjournals.org Published On :: 2019-11-01T13:36:37-07:00 The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-MIBG, is ineffective at targeting micrometastases due to the low linear energy transfer (LET) properties of high-energy beta particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted in close proximity to DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in pre-clinical models of high-risk neuroblastoma. Methods: Using a radiolabeled poly(ADP-ribose) polymerase (PARP) inhibitor, 125I-KX1, we delivered an Auger emitter iodine-125 to PARP-1: a chromatin-binding enzyme overexpressed in neuroblastoma. In vitro cytotoxicity of 125I-KX1 was assessed in nineteen neuroblastoma cell lines, followed by in-depth pharmacological analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro/in vivo microdosimetry was modeled from experimentally derived pharmacological variables. Results: 125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double strand DNA breaks. Based on subcellular dosimetry, 125I-KX1 was approximately twice as effective compared to 131I-KX1, whereas cytoplasmic 125I-MIBG demonstrated low biological effectiveness. Despite the ability to deliver focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its alpha-emitting analog 211At-MM4, and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells with potential use in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1 targeted Auger emitter, calling for further investigation into targeted Auger therapy. Full Article
hera 18F-DCFPyL PET/CT Imaging in Patients with Biochemical Recurrence Prostate Cancer after Primary Local Therapy By jnm.snmjournals.org Published On :: 2019-11-01T13:36:37-07:00 Objective: To investigate the lesion detection rate of 18F-DCFPyL-PET/CT, a prostate-specific membrane antigen (PSMA) targeted PET agent, in biochemical relapse prostate cancer patients after primary local therapy. Methods: This is a prospective institutional review board-approved study of 90 patients with documented biochemical recurrence (median PSA 2.5 ng/mL, range 0.21-35.5 ng/mL) with negative conventional imaging after primary local therapies, including radical prostatectomy (n = 38), radiation (n = 27) or combination (n = 25). Patients on androgen deprivation therapy were excluded. Patients underwent whole-body 18F-DCFPyL-PET/CT (299.9±15.5 MBq) at 2 h p.i. PSMA-PET lesion detection rate was correlated with PSA, PSA kinetics and original primary tumor grade. Results: Seventy patients (77.8%) showed a positive PSMA-PET scan, identifying a total of 287 lesions: 37 prostate bed foci, 208 lymph nodes, and 42 bone/organ distant sites; 11 patients had a negative scan and 9 patients showed indeterminate lesions, which were considered negative in this study. The detection rates were 47.6% (n = 10/21), 50% (n = 5/10), 88.9% (n = 8/9), and 94% (n = 47/50) for PSA >0.2 to <0.5, 0.5 to <1.0, 1 to <2.0, and ≥2.0 ng/mL, respectively. In post-surgical patients, PSA, PSAdt and PSAvel correlated with PET results but the same was not true for post-radiation patients. These parameters also correlated with the extent of disease on PET (intrapelvic vs. extrapelvic). There was no significant difference between the rate of positive scans in patients with higher grade vs lower grade primary tumors (Gleason score ≥4+3 vs <3+4). Tumor recurrence was histology confirmed in 40% (28/70) of patients. On a per-patient basis, positive predictive value was 93.3% (95% CI, 77.6-99.2%) by histopathologic validation, and 96.2% (95% CI, 86.3-99.7%) by the combination of histology and imaging/clinical follow-up. Conclusion: 18F-DCFPyL-PET/CT imaging offers high detection rates in biochemically recurrent prostate cancer patients; and is positive in about 50% of patients with PSA <0.5 ng/mL, which could substantially impact clinical management. In post-surgical patients, 18F-DCFPyL-PET/CT correlates with PSA, PSAdt and PSAvel suggesting it may have prognostic value. 18F-DCFPyL-PET/CT is highly promising for localizing sites of recurrent prostate cancer. Full Article
hera SUV25 and {micro}PERCIST: Precision Imaging of Response to Therapy in Co-Clinical FDG-PET Imaging of Triple Negative Breast Cancer (TNBC) Patient-Derived Tumor Xenografts (PDX) By jnm.snmjournals.org Published On :: 2019-11-22T10:43:33-08:00 Numerous recent works highlight the limited utility of established tumor cell lines in recapitulating the heterogeneity of tumors in patients. More realistic preclinical cancer models are thought to be provided by transplantable, patient-derived tumor xenografts (PDX). Inter- and intra-tumor heterogeneity of PDX, however, present several challenges in developing optimal quantitative pipelines to assess response to therapy. The objective of this work was to develop and optimize image metrics of FDG-PET to assess response to combination docetaxel/carboplatin therapy in a co-clinical trial involving triple negative breast cancer (TNBC) PDX. We characterize the reproducibility of SUV metrics to assess response to therapy and optimize a preclinical PERCIST (µPERCIST) paradigm to complement clinical standards. Considerations in this effort included variability in tumor growth rate and tumor size; solid tumor vs. tumor heterogeneity and necrotic phenotype; and optimal selection of tumor slice versus whole tumor. A test-retest protocol was implemented to optimize the reproducibility of FDG-PET SUV thresholds, SUVpeak metrics, and µPERCIST parameters. In assessing response to therapy, FDG-PET imaging was performed at baseline and +4 days following therapy. The reproducibility, accuracy, variability, and performance of imaging metrics to assess response to therapy were determined. We defined an index—"Quantitative Response Assessment Score (QRAS)"—to integrate parameters of prediction and precision, and thus aid in selecting optimal image metrics of response to therapy. Our data suggests that a threshold value of 25% (SUV25) of SUVmax was highly reproducible (<9% variability). Concordance and reproducibility of µPERCIST were maximized at α=0.7 and β=2.8 and exhibited high correlation to SUV25 measures of tumor uptake. QRAS scores favor SUV25 followed by SUVP14 as optimal metrics of response to therapy. Additional studies are warranted to fully characterize the utility of SUV25 and µPERCIST SUVP14 as image metrics of response to therapy across a wide range of therapeutic regiments and PDX models. Full Article
hera Long term follow-up and outcomes of re-treatment in an expanded 50 patient single-center phase II prospective trial of Lutetium-177 (177Lu) PSMA-617 theranostics in metastatic castrate-resistant prostate cancer By jnm.snmjournals.org Published On :: 2019-11-22T10:43:33-08:00 Objectives: Lutetium-177 (177Lu)-PSMA-617 (LuPSMA) is a radioligand with high affinity for prostate specific membrane antigen (PSMA) enabling targeted beta-irradiation of prostate cancer. We have previously reported favorable activity with low toxicity in a prospective phase II trial involving 30 men with metastatic castrate-resistant prostate cancer (mCRPC). We now report their longer-term outcomes including a 20 patient extension cohort and outcomes of subsequent systemic treatments following completion of trial therapy. Methods: 50 patients with PSMA-avid mCRPC who had progressed after standard therapies received up to 4 cycles of LuPSMA every 6 weeks. Endpoints included PSA response (PCWG2), toxicity (CTCAE v4.03), imaging response, patient-reported health-related quality of life (QoL), progression-free and overall survival. We also describe, as a novel finding, outcomes of men who subsequently progressed and had further systemic therapies, including LuPSMA. Results: 75 men were screened to identify 50 patients eligible for treatment. Adverse prognostic features of the cohort included short median PSA doubling time (2.3 months) and extensive prior treatment including prior docetaxel (84%), cabazitaxel (48%), and abiraterone and/or enzalutamide (90%). The mean administered radioactivity was 7.5 GBq/cycle. PSA decline ≥ 50% was achieved in 32 of 50 patients (64%, 95% CI 50-77%), including 22 patients (44%, 95% CI 30-59%) with ≥ 80% decrease. Of 27 patients with measurable soft tissue disease, 15 (56%) achieved an objective response by RECIST 1.1. The most common toxicities attributed to LuPSMA were self-limiting G1-2 dry mouth (66%), transient G1-2 nausea (48%), G3-4 thrombocytopenia (10%) and G3 anemia (10%). Brief pain inventory severity and interference scores decreased at all time points including at the 3 month follow-up with a decrease of -1.2 (95% CI -0.5 to -1.9, P = 0.001) and 1.0 (95% CI -0.2 to -0.18, P = 0.013), respectively. At a median follow-up of 31.4 months, median OS was 13.3 months (95% CI 10.5-18.7) with a significantly longer survival of 18.4 months (95% CI 13.8-23.8) in patients achieving a PSA decline ≥ 50%. At progression following prior response, further LuPSMA was administered to 15 (30%) patients (median 2 cycles commencing 359 days from enrolment) with PSA decline ≥ 50% in 11 patients (73%). 4 of 21 patients (19%) receiving other systemic therapies upon progression experienced PSA decline ≥ 50%. There were no unexpected adverse events with LuPSMA re-treatment. Conclusion: This expanded 50 patient cohort of men with extensive prior therapy confirms our earlier report of high response rates, low toxicity and improved QoL with LuPSMA radioligand therapy. Upon progression, re-challenge LuPSMA demonstrated higher response rates than other systemic therapies. Full Article
hera Pre-treatment 18F-FDG PET/CT Radiomics predict local recurrence in patients treated with stereotactic radiotherapy for early-stage non-small cell lung cancer: a multicentric study By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Purpose: The aim of this retrospective multicentric study was to develop and evaluate a prognostic FDG PET/CT radiomics signature in early-stage non-small cell lung cancer (NSCLC) patients treated with stereotactic radiotherapy (SBRT). Material and Methods: Patients from 3 different centers (n = 27, 29 and 8) were pooled to constitute the training set, whereas the patients from a fourth center (n = 23) were used as the testing set. The primary endpoint was local control (LC). The primary tumour was semi-automatically delineated in the PET images using the Fuzzy locally adaptive Bayesian algorithm, and manually in the low-dose CT images. A total of 184 IBSI-compliant radiomic features were extracted. Seven clinical and treatment parameters were included. We used ComBat to harmonize radiomic features extracted from the four institutions relying on different PET/CT scanners. In the training set, variables found significant in the univariate analysis were fed into a multivariate regression model and models were built by combining independent prognostic factors. Results: Median follow-up was 21.1 (1.7 – 63.4) and 25.5 (7.7 – 57.8) months in training and testing sets respectively. In univariate analysis, none of the clinical variables, 2 PET and 2 CT features were significantly predictive of LC. The best predictive models in the training set were obtained by combining one feature from PET, namely information correlation 2 (IC2) and one from CT (Flatness), reaching a sensitivity of 100% and a specificity of 96%. Another model combining 2 PET features (IC2 and Strength), reached sensitivity of 100% and specificity of 88%, both with an undefined hazard ratio (HR) (p<0.001). The latter model obtained an accuracy of 0.91 (sensitivity 100%, specificity 81%), with a HR undefined (P = 0.023) in the testing set, however other models relying on CT radiomics features only or the combination of PET and CT features failed to validate in the testing set. Conclusion: We showed that two radiomic features derived from FDG PET were independently associated with LC in patients with NSCLC undergoing SBRT and could be combined in an accurate predictive model. This model could provide local relapse-related information and could be helpful in clinical decision-making. Full Article
hera Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Post-treatment SPECT/CT: A Novel Methodology to Generate Time- and Tissue-specific Dose Factors By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Calculation of radiation dosimetry in targeted nuclear medicine therapies is traditionally resource-intensive requiring multiple post-therapy SPECT acquisitions. An alternative approach is to take advantage of existing pharmacokinetic data from these smaller cohorts to enable dose computation from a single post-treatment scan in a manner that may be applied to a much broader patient population. Methods: In this work, a technical description for simplified dose estimation is presented and applied to assessment of 177Lu-PSMA-617 therapy (Prostate-Specific Membrane Antigen) for metastatic prostate cancer. By normalizing existing time-activity curves to a single measurement time, it is possible to calculate a mean and range of time-integrated activity values which relate to radiation absorbed dose. To assist with accurate pharmacokinetic modelling of the training cohort, a method for contour-guided image registration was developed. Results: Tissue-specific dose conversion factors for common post-treatment imaging times are reported along with a characterization of added uncertainty in comparison to a traditional serial imaging protocol. Single time point dose factors for tumor were determined to be 11.0, 12.1, 13.6, and 15.2 Gy per MBq/mL at image times of 24, 48, 72, and 96 hours, respectively. For normal tissues, parotid gland factors were 6.7, 9.4, 13.3, and 19.3 Gy per MBq/mL and kidneys were 7.1, 10.3, 15.0, and 22.0 Gy per MBq/mL at those times. Tumor dose estimates were most accurate using delayed scanning at times beyond 72 hours. Dose to healthy tissues is best characterized by scanning patients in the first two days of treatment owing to the larger degree of tracer clearance in this early phase. Conclusion: The work demonstrates a means for efficient dose estimation in 177Lu-PSMA-617 therapy. By providing methods to simplify and potentially automate radiation dosimetry we hope to accelerate the understanding of radiobiology and development of dose-response models in this unique therapeutic context. Full Article
hera 18F-Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography in Left-Ventricular Assist Device Infection: Initial Results Supporting the Usefulness of Image-Guided Therapy By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Background: Accurate definition of the extent and severity of left-ventricular assist device (LVAD) infection may facilitate therapeutic decision making and targeted surgical intervention. Here, we explore the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for guidance of patient management. Methods: Fifty-seven LVAD-carrying patients received 85 whole-body 18F-FDG PET/CT scans for the work-up of device infection. Clinical follow-up was obtained over a period of up to two years. Results: PET/CT showed various patterns of infectious involvement of the 4 LVAD components: driveline entry point (77% of cases), subcutaneous driveline path (87%), pump pocket (49%) and outflow tract (58%). Driveline smears revealed staphylococcus or pseudomonas strains as the underlying pathogen in a majority of cases (48 and 34%, respectively). At receiver-operating characteristics analysis, an 18F-FDG standardized uptake value (SUV) >2.5 was most accurate to identify smear-positive driveline infection. Infection of 3 or all 4 LVAD components showed a trend towards lower survival vs infection of 2 or less components (P = 0.089), while involvement of thoracic lymph nodes was significantly associated with adverse outcome (P = 0.001 for nodal SUV above vs below median). Finally, patients that underwent early surgical revision within 3 months after PET/CT (n = 21) required significantly less inpatient hospital care during follow-up when compared to those receiving delayed surgical revision (n = 11; p<0.05). Conclusion: Whole-body 18F-FDG PET/CT identifies the extent of LVAD infection and predicts adverse outcome. Initial experience suggests that early image-guided surgical intervention may facilitate a less complicated subsequent course. Full Article
hera What You See Is Not What You Get - On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy By jnm.snmjournals.org Published On :: 2019-12-20T13:25:42-08:00 Due to improvements in quantitative SPECT/CT, voxel-based dosimetry for radionuclide therapies has aroused growing interest as it promises the visualization of absorbed doses at a voxel level. In this work, SPECT/CT-based voxel-based dosimetry of a 3D printed 2-compartment kidney phantom was performed, and the resulting absorbed dose distributions were examined. Additionally, the potential of the PETPVC partial-volume correction tool was investigated. Methods: Both kidney compartments (70% cortex, 30% medulla) were filled with different activity concentrations and SPECT/CT imaging was performed. The images were reconstructed using varying reconstruction settings (iterations, subsets, and post-filtering). Based on these activity concentration maps, absorbed dose distributions were calculated with pre-calculated 177Lu voxel S values and an empirical kidney half-life. An additional set of absorbed doses was calculated after applying PETPVC for partial-volume correction of the SPECT reconstructions. Results: SPECT/CT imaging blurs the two discrete sub-organ absorbed dose values into a continuous distribution. While this effect is slightly improved by applying more iterations, it is enhanced by additional post-filtering. By applying PETPVC, the absorbed dose values are separated into 2 peaks. Although this leads to a better agreement between SPECT/CT-based and nominal values, considerable discrepancies remain. In contrast to the calculated nominal absorbed doses of 7.8/1.6 Gy (cortex/medulla), SPECT/CT-based voxel-level dosimetry resulted in mean absorbed doses ranging from 3.0-6.6 Gy (cortex) and 2.7-5.1 Gy (medulla). PETPVC led to improved ranges of 6.1-8.9 Gy (cortex) and 2.1-5.4 Gy (medulla). Conclusion: Our study shows that 177Lu quantitative SPECT/CT imaging leads to voxel-based dose distributions largely differing from the real organ distribution. SPECT/CT imaging and reconstruction deficiencies might directly translate into unrealistic absorbed dose distributions, thus questioning the reliability of SPECT-based voxel-level dosimetry. Therefore, SPECT/CT reconstructions should be adapted to ensure an accurate quantification of the underlying activity and, therefore, absorbed dose in a volume-of-interest of the expected object size (e.g. organs, organ sub-structures, lesions or voxels). As an example, PETPVC largely improves the match between SPECT/CT-based and nominal dose distributions. In conclusion, the concept of voxel-based dosimetry should be treated with caution. Specifically, it should be kept in mind that the absorbed dose distribution is mainly a convolved version of the underlying SPECT reconstruction. Full Article
hera 177Lu-NM600 targeted radionuclide therapy extends survival in syngeneic murine models of triple-negative breast cancer By jnm.snmjournals.org Published On :: 2019-12-20T13:25:42-08:00 Triple negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer leading to the worst prognosis. Because current therapeutic approaches lack efficacy, there is a clinically unmet need for effective treatment alternatives. Herein, we demonstrate a promising strategy utilizing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 177Lu for targeted radionuclide therapy (TRT) of TNBC. In two murine syngeneic models of TNBC, we confirmed excellent tumor targeting and rapid normal tissue clearance of the PET imaging analog 86Y-NM600. Based on longitudinal PET/CT data acquired with 86Y-NM600, we estimated the dosimetry of therapeutic 177Lu-NM600, which showed larger absorbed doses in the tumor compared to normal tissues. Administration of 177Lu-NM600 resulted in significant tumor growth inhibition and prolonged overall survival in mice bearing syngeneic 4T07 and 4T1 tumors. Complete response was attained in 60% of 4T07 bearing mice, but animals carrying aggressive 4T1 tumor grafts succumbed to metastatic progression. The injected activities used for treatment (9.25 and 18.5 MBq) were well tolerated, and only mild transient cytopenia was noted. Overall, our results suggest that 177Lu-NM600 TRT has potential for treatment of TNBC and merits further exploration in a clinical setting. Full Article
hera 212Pb Alpha-Radioimmunotherapy targeting CD38 in Multiple Myeloma: a preclinical study. By jnm.snmjournals.org Published On :: 2019-12-20T13:25:42-08:00 Multiple myeloma (MM) is a plasma cell cancer and represents the second most frequent hematological malignancy. Despite new treatments and protocols including high doses chemotherapy associated with autologous stem cell transplantation, the prognosis of MM patients is still poor. Alpha-radioimmunotherapy (alpha-RIT) represents an attractive treatment strategy due to the high linear energy transfer and short path length of alpha-radiation in tissues, resulting in high tumor cell killing and low toxicity to surrounding tissues. In this study, we investigated the potential of alpha-RIT with 212Pb-Daratumumab (anti-CD38), in both in vitro and in vivo models, as well as an anti-mouse CD38 antibody using in vivo models. Methods: Inhibition of cell proliferation after incubation of RPMI8226 cell line with increasing activities (0.185-3.7 kBq/ml) of 212Pb-isotypic control or 212Pb-Daratumumab was evaluated. Biodistribution was performed in vivo by SPECT-CT imaging and post-mortem. Dose range finding (DRF) and acute toxicity studies were conducted. As Daratumumab does not bind the murine CD38, biodistribution and DRF were also determined using an anti-murine CD38 antibody. To evaluate in vivo efficacy of 212Pb-Daratumumab, mice were engrafted subcutaneously with 5.106 RPMI8226 cells. Mice were treated 13 days post-engraftment with an intravenous injection of 212Pb-Daratumumab or control solutions. Therapeutic efficacy was monitored by tumor volume measurements and overall survival. Results: Significant inhibition of proliferation of the human myeloma RPMI8226 cell line was observed after three days of incubation with 212Pb-Daratumumab compared to 212Pb-Isotypic Control or cold antibodies. Biodistribution studies showed a specific tumoral accumulation of Daratumumab. No toxicity was observed with 212Pb-Daratumumab up to 370 kBq due to the lack of cross-reactivity. Nevertheless, acute toxicity experiments with 212Pb-anti-mCD38 established a toxic activity of 277.5 kBq. To remain within realistically safe treatment activities for efficacy studies, mice were treated with 185 kBq or 277.5 kBq of 212Pb-Daratumumab. Marked tumor growth inhibition compared to controls was observed, with a median survival of 55 days for 277.5 kBq of 212Pb-Daratumumab instead of 11 for PBS control groups. Conclusion: These results showed 212Pb-Daratumumab efficacy on xenografted mice with significant tumor regression and increased survival. This study highlights alpha-RIT potency in MM treatment. Full Article
hera Management of patients with renal failure undergoing dialysis during 131I therapy for thyroid cancer By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Objectives: Radioactive iodine (131I) therapy may be used to treat thyroid cancer in end-stage renal disease patients who undergo hemodialysis. Because iodine predominantly utilizes renal clearance, treatment management in hemodialysis patients may be problematic, and no formal recommendations on hemodialysis currently exist. This work details our experience with treating thyroid cancer with iodine in chronic renal failure patients who require hemodialysis and details the therapeutic dosimetry results obtained during treatment to ensure that the dose to the bone marrow (BM) was acceptable. Methods: We treated 6 patients in the metabolic radiotherapy unit after thyroid stimulation. Two hemodialysis sessions in the metabolic radiotherapy unit were performed at 42 and 90 hours after radiopharmaceutical administration. BM toxicity was estimated with activity measurements from blood samples and with whole-body measurements that were regularly repeated during hospitalization and measured with a gamma counter. The patients underwent thyroid and hematologic monitoring to assess treatment efficacy and therapeutic toxicity in the short, medium and long term. Results: Whole-body activity was reduced on average by 66.7% [60.1-71.5] after the first dialysis session and by 53.3% [30.4-67.8] after the second. The mean estimated total absorbed dose to the BM was 0.992 Gy for all patients [0.431 – 2.323]. We did not observe any significant hematologic toxicity, and the clinical, biological and ultrasound test results confirmed the success of ablative treatment for the majority of patients. Conclusion: An approximately 30% reduction from the nominal dose in the amount of 131I activity for hemodialysis patients with thyroid cancer appears to strike an appropriate balance between the absence of BM toxicity and therapeutic efficacy. To avoid overirradiation, we recommend pretherapeutic dosimetry studies for metastatic patients to calculate the amount of activity to be administered as well as dosimetry monitoring during the hemodialysis sessions performed after therapeutic dose administration and under the same conditions. Full Article
hera Immune checkpoint imaging in oncology - a game changer towards personalized immunotherapy? By jnm.snmjournals.org Published On :: 2020-01-10T04:59:10-08:00 Immune checkpoint blockade represents a promising approach in oncology, showing anti-tumor activities in various cancers. However, although being generally far more well-tolerated than classical cytotoxic chemotherapy, this treatment, too, may be accompanied by considerable side effects and not all patients benefit equally. Therefore, careful patient selection and monitoring of the treatment response is mandatory. At present, checkpoint-specific molecular imaging is increasingly investigated as a tool for patient selection and response evaluation. Here, an overview of the current developments in immune checkpoint imaging is provided. Full Article
hera Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH-Low Insertion Cyclic (pHLIC) Peptide By jnm.snmjournals.org Published On :: 2020-01-31T13:36:41-08:00 Acidosis is a key driver for many diseases, including cancer, sepsis, and stroke. The spatiotemporal dynamics of dysregulated pH across disease remains elusive and current diagnostic strategies do not provide localization of pH alterations. We sought to explore if PET imaging using hydrophobic cyclic peptides that partition into the cellular membrane at low extracellular pH (denoted as "pHLIC") can permit accurate in vivo visualization of acidosis. Methods: Acid-sensitive cyclic peptide c[E4W5C] pHLIC was conjugated to bifunctional maleimide-NO2A and radiolabeled with copper-64 (t1/2 = 12.7 h). C57BL/6J mice were administered LPS (15 mg/kg) or saline (vehicle) and serially imaged with [64Cu]Cu-c[E4W5C] over 24 h. Ex vivo autoradiography was performed on resected brain slices and subsequently stained with cresyl violet to enable high-resolution spatial analysis of tracer accumulation. A non- pH-sensitive cell-penetrating control peptide (c[R4W5C]) was used to confirm specificity of [64Cu]Cu-c[E4W5C]. CD11b (macrophage/microglia) and TMEM119 (microglia) immunostaining was performed to correlate extent of neuroinflammation with [64Cu]Cu-c[E4W5C] PET signal. Results: [64Cu]Cu-c[E4W5C] radiochemical yield and purity was >95% and >99% respectively, with molar activity >0.925 MBq/nmol. Significantly increased [64Cu]Cu-c[E4W5C] uptake was observed in LPS-treated mice (vs. vehicle) within peripheral tissues including blood, lungs, liver, and small intestines (P < 0.001-0.05). Additionally, there was significantly increased [64Cu]Cu-c[E4W5C] uptake in the brains of LPS-treated animals. Autoradiography confirmed increased uptake in the cerebellum, cortex, hippocampus, striatum, and hypothalamus of LPS-treated mice (vs. vehicle). Immunohistochemical (IHC) analysis revealed microglial/macrophage infiltrate, suggesting activation in brain regions containing increased tracer uptake. [64Cu]Cu-c[R4W5C] demonstrated significantly reduced uptake in the brain and periphery of LPS mice compared to the acid-mediated [64Cu]Cu-c[E4W5C] tracer. Conclusion: Here, we demonstrate that a pH-sensitive PET tracer specifically detects acidosis in regions associated with sepsis-driven pro-inflammatory responses. This study suggests that [64Cu]Cu-pHLIC is a valuable tool to noninvasively assess acidosis associated with both central and peripheral innate immune activation. Full Article
hera In vivo instability of 177Lu-DOTATATE during peptide receptor radionuclide therapy By jnm.snmjournals.org Published On :: 2020-01-31T13:36:41-08:00 Peptide receptor radiotherapy using 177Lu-labeled somatostatin ligand analogs is a well-established treatment for neuroendocrine tumors (NET), with 177Lu-DOTATATE having acquired marketing authorization in Europe and the USA. The investigation of the pharmacokinetics of those radiopharmaceuticals in vivo in humans is crucial for personalized treatment management and understanding of treatment effects. It requires input data on the in vivo stability of the radiopharmaceuticals in blood and plasma. The work presented here is devoted to the investigation of in vivo stability of 177Lu-DOTATATE in humans affected by NET. Unexpectedly, fast metabolism of the radiopharmaceutical was observed, with fraction of intact 177Lu-DOTATATE in plasma decreasing rapidly to 23±5% (mean ± SD) at 24 h and 1.7±0.9% at 96 h after injection. Full Article
hera Efficacy of Peptide Receptor Radionuclide Therapy for Esthesioneuroblastoma By jnm.snmjournals.org Published On :: 2020-01-31T13:36:41-08:00 Objectives: Esthesioneuroblastoma (ENB) is rare with limited therapeutic options when unresectable or metastatic; however, expression of somatostatin receptors qualifies it for peptide receptor radionuclide therapy (PRRT). We report outcomes of PRRT in ENB from two referral centers. Methods: Using PRRT databases at two European Neuroendocrine Tumour Society Centers of Excellence, case finding was undertaken between 2004-2018 for patients who had PRRT with recurrent/metastatic ENB deemed unsuitable for further conventional therapies. Evaluations of response using a composite reference standard and for survival were performed. Results: Of seven patients, four had partial response, two had disease stabilization and one had early progression. Possible side effects include worsening CSF-leaks. Median progression-free survival was 17 months (range, 0-30), and median overall survival was 32 months (range, 4–53). Conclusion: PRRT shows promising efficacy and moderate survival duration in unresectable locally advanced or metastatic ENB warranting larger cohort studies incorporating measures of quality of life. Full Article
hera Initial Clinical Results of a Novel Immuno-PET Theranostic Probe in HER2-negative Breast Cancer By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 Purpose: This prospective study evaluated the imaging performance of a novel immunological pretargeting positron-emission tomorgraphy (immuno-PET) method in patients with HER2-negative, carcinoembryonic antigen (CEA)-positive, metastatic breast cancer (BC), compared to computed tomography (CT), bone magnetic resonance imaging (MRI), and 18Fluorodeoxyglucose PET (FDG-PET). Patients and Methods: Twenty-three patients underwent whole-body immuno-PET after injection of 150 MBq 68Ga-IMP288, a histamine-succinyl-glycine peptide given following initial targeting of a trivalent anti-CEA, bispecific, anti-peptide antibody. The gold standards were histology and imaging follow-up. Tumor standard uptake values (SUVmax and SUVmean) were measured, and tumor burden analyzed using Total Tumor Volume (TTV) and Total Lesion Activity (TLA). Results: Total lesion sensitivity of immuno-PET and FDG-PET was 94.7% (1116/1178) and 89.6% (1056/1178), respectively. Immuno-PET had a somewhat higher sensitivity than CT and FDG-PET in lymph nodes (92.4% vs 69.7% and 89.4%, respectively) and liver metastases (97.3% vs 92.1% and 94.8%, respectively), whereas sensitivity was lower for lung metastases (48.3% vs 100% and 75.9%, respectively). Immuno-PET showed higher sensitivity than MRI and FDG-PET for bone lesions (95.8% vs 90.7% and 89.3%, respectively). In contrast to FDG-PET, immuno-PET disclosed brain metastases. Despite equivalent tumor SUVmax, SUVmean, and TTV, TLA was significantly higher with immuno-PET compared to FDG PET (P = 0.009). Conclusion: Immuno-PET using anti-CEA/anti-IMP288 bispecific antibody, followed by 68Ga-IMP288, is a potentially sensitive theranostic imaging method for HER2-negative, CEA-positive, metastatic BC patients, and warrants further research. Full Article
hera Design and development of 99mTc labeled FAPI-tracers for SPECT-imaging and 188Re therapy. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The majority of epithelial tumors recruits fibroblasts and other non-malignant cells and activates them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high contrast images with PET/CT scans. Since SPECT is a lower cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applicable in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product. This enabled a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) and/or on mouse FAP expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-man application was done in two patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion and no tumor uptake were observed in the planar scintigraphy of a HT-1080-FAP xenotranplanted mouse. To improve the pharmacokinetic properties hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (up to 45 % binding; above 95 % internalization), high affinity (IC50 = 6.4 nM to 12.7 nM), and significant tumor uptake (up to 5.4 %ID/g) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions also shown in PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially in cases where PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re which is planned for the near future. Full Article
hera Prognostic Value of 18F-FDG PET/CT in a Large Cohort of 495 Patients with Advanced Metastatic Neuroendocrine Neoplasms (NEN) Treated with Peptide Receptor Radionuclide Therapy (PRRT) By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The objective of this retrospective study was to determine the role of 18F-FDG PET/CT in a large cohort of 495 patients with metastatic neuroendocrine neoplasms (NENs) who were treated with peptide receptor radionuclide therapy (PRRT) with a long-term follow-up. Methods: The 495 patients were treated with 177Lu- and/or 90Y- DOTATOC/DOTATATE PRRT between 2/2002 and 7/2018. All subjects received both 68Ga-DOTATOC/TATE/NOC and 18F-FDG PET/CT prior to treatment and were followed 3-189 months. Kaplan-Meier analysis, log-rank test (Mantel-Cox), and Cox regression analysis were performed for overall survival (OS) and progression-free survival (PFS). Results: 199 patients (40.2%) presented with pancreatic NEN, 49 with CUP (cancer of unknown primary), 139 with midgut NEN, whereas the primary tumor was present in the rectum in 20, in the lung in 38, in the stomach in 8 and other locations in 42 patients. FDG-PET/CT was positive in 382 (77.2%) patients and 113 (22.8%) were FDG-negative before PRRT, while 100% were 68Ga-DOTATOC/TATE/NOC positive. For all patients, the median PFS and OS, defined from start of PRRT, were 19.6 mo and 58.7 mo, respectively. Positive FDG predicted shorter PFS (18.5 mo vs 24.1 mo; P = 0.0015) and OS (53.2 mo vs 83.1 mo; P < 0.001) than negative FDG. Amongst the pancreatic NEN, the median OS was 52.8 mo in FDG positive and 114.3 mo in FDG negative subjects (P = 0.0006). For all patients with positive 18F-FDG uptake, and a ratio of the highest SUVmax on 68Ga-SSTR PET to the most 18F-FDG-avid tumor lesions >2, the median OS was 53.0 mo, compared to 43.4 mo in those patients with a ratio <2 (P = 0.030). For patients with no 18F-FDG uptake (complete "mismatch" imaging pattern), the median OS was 108.3 mo vs 76.9 mo for SUVmax >15.0 and ≤15.0 on 68Ga-SSTR PET/CT, respectively. Conclusion: The presence of positive lesions on 18F-FDG PET is an independent prognostic factor in patients with NEN treated with PRRT. Metabolic imaging with 18F-FDG PET/CT compliments the molecular imaging aspect of 68Ga-SSTR PET/CT for the prognosis of survival after PRRT. High SSTR expression combined with negative 18F-FDG PET/CT imaging is associated with the most favorable long-term prognosis. Full Article
hera Neuroendocrine Differentiation and Response toPSMA-Targeted Radioligand Therapy in Advanced Metastatic Castration-Resistant Prostate Cancer: a Single-Center Retrospective Study By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 Introduction: Neuroendocrine differentiation is associated with treatment failure and poor outcome in metastatic castration-resistant prostate cancer (mCRPC). We investigated the effect of circulating neuroendocrine biomarkers on the efficacy of PSMA-targeted radioligand therapy (RLT). Methods: Neuroendocrine biomarker profiles (progastrin-releasing peptide, neuron-specific enolase, and chromogranin-A) were analyzed in 50 patients commencing 177Lu-PSMA-617 RLT. The primary endpoint was PSA response in relation to baseline neuroendocrine marker profiles. Additional endpoints included progression-free survival. Tumor uptake on post-therapeutic scans, a known predictive marker for response, was used as control-variable. Results: Neuroendocrine biomarker profiles were abnormal in the majority of patients. Neuroendocrine biomarker levels did not predict treatment failure or early progression (P ≥ 0.13). By contrast, intense PSMA-ligand uptake in metastases predicted both treatment response (P = 0.0030) and reduced risk of early progression (P = 0.0111). Conclusion: Neuroendocrine marker profiles do not predict adverse outcome of RLT. By contrast, high ligand uptake was confirmed to be crucial for achieving tumor-response. Full Article
hera Molecular imaging of bone metastases and their response to therapy By jnm.snmjournals.org Published On :: 2020-04-03T15:14:37-07:00 Bone metastases are common, especially in more prevalent malignancies such as breast and prostate cancer. They cause significant morbidity and draw on healthcare resources. Molecular and hybrid imaging techniques, including single photon emission computed tomography with computed tomography (SPECT/CT), positron emission tomography / CT and whole-body MRI with diffusion-weighted imaging (WB-MRI), have improved diagnostic accuracy in staging the skeleton compared to previous standard imaging methods, allowing earlier tailored treatment. With the introduction of several effective treatment options, it is now even more important to detect and monitor response in bone metastases accurately. Conventional imaging, including radiographs, CT, MRI and bone scintigraphy, are recognized as being insensitive and non-specific for response monitoring in a clinically relevant time frame. Early reports of molecular and hybrid imaging techniques, as well as WB-MRI, promise earlier and more accurate prediction of response vs non-response but have yet to be adopted routinely in clinical practice. We summarize the role of new molecular and hybrid imaging methods including SPECT/CT, PET/CT and WB-MRI. These modalities are associated with improvements in diagnostic accuracy for staging and response assessment of skeletal metastases over standard imaging methods, being able to quantify biological processes related to the bone microenvironment as well as tumor cells. The described improvements in the imaging of bone metastases and their response to therapy have led to some being adopted into routine clinical practice in some centers and at the same time provide better methods to assess treatment response of bone metastases in clinical trials. Full Article
hera Moving towards multicenter therapeutic trials in ALS: feasibility of data pooling using different TSPO positron emission tomography (PET) radioligands. By jnm.snmjournals.org Published On :: 2020-04-03T15:14:37-07:00 Rationale: Neuroinflammation has been implicated in Amyotrophic Lateral Sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, some challenges have to be overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudoreference analysis technique for 18F-DPA714. Methods: 7 ALS-Belgium (58.9±6.7 years,5M) and 8 HV-Belgium (52.1±15.2 years,3M); and 7 ALS-US (53.4±9.8 years,5M) and 7 HV-US (54.6±9.6 years,4M) from a previously published study (1) underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, US) PET-MR scans. For 18F-DPA714, volume of distribution (VT) maps were compared to standardized uptake value ratios (SUVR)40-60 calculated using the pseudoreference regions (1)cerebellum, (2)occipital cortex, and (3)whole brain without ventricles (WB-ventricles). Also for 11C-PBR28, SUVR60-90 using WB-ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0±5.6%) in primary motor cortices was observed in ALS, as measured by both VT and SUVR40-60 approaches. Highest sensitivity was found for SUVRWB-ventricles (average cluster 21.6±0.1%). 18F-DPA714 VT ratio and SUVR40-60 results were highly correlated (r>0.8, p<0.001). A similar pattern of increased uptake (average cluster 20.5±0.5%) in primary motor cortices was observed in ALS with 11C-PBR28 using the SUVRWB-ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together, resulted in a more extensive pattern of significant increased glial activation in the bilateral primary motor cortices. Conclusion: The same pseudoreference region analysis technique for 11C-PBR28 PET imaging can be extended towards 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these two tracers enables pooling of TSPO PET data across multiple centers and increase power of TSPO as biomarker for future therapeutic trials. Full Article
hera 177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 Purpose: This study is designed to assess the safety and therapeutic response to 177Lu-EB-PSMA treatment with escalating doses in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: With institutional review board approval and informed consent, patients were randomly divided into three groups: Group A (n = 10) were treated with 1.18 ± 0.09 GBq/dose of 177Lu-EB-PSMA. Group B (n = 10) were treated with 2.12 ± 0.19 GBq/dose of 177Lu-EB-PSMA. Group C (n = 8) were treated with 3.52 ± 0.58 GBq/dose of 177Lu-EB-PSMA. Eligible patients received up to three cycles of 177Lu-EB-PSMA therapy, at eight-week intervals. Results: Due to disease progression or bone marrow suppression, 4 out of 10, 5 out of 10, and 5 out of 10 patients completed three cycles therapy as planned in Groups A, B, and C, respectively. The prostate-specific antigen (PSA) response was correlated with treatment dose, with PSA disease control rates in Group B (70%) and C (75%) being higher than that in Group A (10%) (P = 0.007), but no correlation between Group B and Group C was found. 68Ga-PSMA PET/CT showed response in all the treatment groups, however, there was no significant difference between the three groups. Hematologic toxicity study found that platelets in Group B and Group C decreased more than those in Group A, and that Grade 4 thrombocytopenia occurred in 2 (25.0%) patients in Group C. No serious nephritic or hepatic side effects were observed. Conclusion: This study demonstrates that 2.12 GBq/dose of 177Lu-EB-PSMA seems to be safe and adequate in tumor treatment. Further investigations with increased number of patients are warranted. Full Article
hera NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma By jnm.snmjournals.org Published On :: 2020-05-01T11:16:57-07:00 In randomized clinical trials (RCTs), no survival benefit has been observed for selective internal radiotherapy (SIRT) over sorafenib in patients with advanced hepatocellular carcinoma (aHCC). This study aimed to assess by means of a meta-analysis whether overall survival (OS) with SIRT, as monotherapy or followed by sorafenib, is non-inferior to sorafenib, and compare safety profiles for patients with aHCC. Methods: We searched MEDLINE, EMBASE, and the Cochrane Library up to February 2019 to identify RCTs comparing SIRT as monotherapy, or followed by sorafenib, to sorafenib monotherapy among patients with aHCC. The main outcomes were OS and frequency of treatment-related severe adverse events (AEs grade ≥3). The per-protocol population was the primary analysis population. A non-inferiority margin of 1.08 in terms of hazard ratio (HR) was pre-specified for the upper boundary of 95% confidence interval (CI) for OS. Pre-specified subgroup analyses were performed. Results: Three RCTs, involving 1,243 patients, comparing sorafenib with SIRT (SIRveNIB and SARAH) or SIRT followed by sorafenib (SORAMIC), were included. After randomization, 411/635 (64.7%) patients allocated to SIRT and 522/608 (85.8%) allocated to sorafenib completed the studies without major protocol deviations. Median OS with SIRT, whether or not followed by sorafenib, was non-inferior to sorafenib (10.2 and 9.2 months, [HR 0.91, 95% CI 0.78–1.05]). Treatment-related severe adverse events were reported in 149/515 patients (28.9%) who received SIRT and 249/575 (43.3%) who received sorafenib only (p<0.01). Conclusion: SIRT as initial therapy for aHCC is non-inferior to sorafenib in terms of OS, and offers a better safety profile. Full Article
hera Unexplained Hyperthyroglobulinemia in Differentiated Thyroid Cancer Patients Indicates Radioiodine Adjuvant Therapy: A Prospective Multicenter Study By jnm.snmjournals.org Published On :: 2020-05-01T11:16:58-07:00 Background: The management for totally thyroidectomized differentiated thyroid cancer (TT-DTC) patients with unexplained hyperthyroglobulinemia remains indeterminate due to evidence scarcity. This multicenter study aimed at prospectively evaluating the response to radioiodine (131I) adjuvant therapy (RAT) and its potential role in risk stratification and causal clarification. Methods: TT-DTC patients with stimulated serum thyroglobulin (Tgoff) levels > 10 ng/mL but no structurally evident disease were consecutively enrolled in five tertiary care institutions. After the administration of 5.55 GBq of 131I, the risk of presence of persistent/recurrent/metastatic DTC (prmDTC) was compared to that before RAT. The causes of hyperthyroglobulinemia were explored and the response to RAT was assessed 6-12 months post RAT. The change in suppressed thyroglobulin (Tgon) level was reported. Results: A cohort of 254 subjects with a median Tgoff of 27.1 ng/mL was enrolled for the analyses. Immediately after RAT, low-, intermediate-, and high-risk were identified in 5.9%, 88.6%, and 5.5% patients, respectively, with no significant difference in risk stratification compared with that before RAT (P = 0.952). During the follow-up (median, 10.6 months), hyperthyroglobulinemia was ultimately attributed to thyroid remnant, biochemical disease, and structural/functional disease in 17.3%, 54.3%, and 28.3% of subjects, respectively. In addition, excellent, indeterminate, biochemical incomplete, and structural/functional incomplete responses were achieved in 18.1%, 27.2%, 36.2%, and 18.5% of patients, respectively. Notably, distribution for either cause of hyperthyroglobulinemia or response to RAT was comparable among the three postoperative risk groups. Tgon levels in patients who merely received RAT declined significantly over time. Conclusion: Our study demonstrated that over 90% of TT-DTC patients with unexplained hyperthyroglobulinemia are stratified as intermediate-high risk, and RAT using 5.55 GBq of 131I reveals biochemical/functional/structural disease and yields non-structural/functional incomplete response in more than 80% patients, suggesting TT-DTC patients with unexplained hyperthyroglobulinemia as explicit candidates for RAT. Full Article
hera Receptor-targeted photodynamic therapy of glucagon-like peptide 1 receptor positive lesions By jnm.snmjournals.org Published On :: 2020-05-08T13:18:58-07:00 Treatment of hyperinsulinemic hypoglycemia is challenging. Surgical treatment of insulinomas and focal lesions in congenital hyperinsulinism (CHI) is invasive and carries major risks of morbidity. Medication to treat nesidioblastosis and diffuse CHI has varying efficacy and causes significant side effects. Here, we describe a novel method for therapy of hyperinsulinemic hyperglycemia, highly selectively killing beta cells by targeted photodynamic therapy (tPDT) with exendin-4-IRDye700DX, targeting the glucagon-like peptide 1 receptor (GLP-1R). A competitive binding assay was performed using Chinese hamster lung (CHL) cells transfected with the GLP-1R. The efficacy and specificity of tPDT with exendin-4-IRDye700DX was examined in vitro in cells with different levels of GLP-1R expression. Tracer biodistribution was determined in BALB/c nude mice bearing subcutaneous CHL-GLP-1R xenografts. Induction of cellular damage and the effect on tumor growth were analyzed to determine treatment efficacy. Exendin-4-IRDye700DX has a high affinity for the GLP-1R with an IC50 value of 6.3 nM. TPDT caused significant specific phototoxicity in GLP-1R positive cells (2.3 ± 0.8 % and 2.7 ± 0.3 % remaining cell viability in CHL-GLP-1R and INS-1 cells resp.). The tracer accumulates dose-dependently in GLP-1R positive tumors. In vivo tPDT induces cellular damage in tumors, shown by strong expression of cleaved-caspase-3 and leads to a prolonged median survival of the mice (36.5 vs. 22.5 days resp. p<0.05). These data show in vitro as well as in vivo evidence for the potency of tPDT using exendin-4-IRDye700DX. This could in the future provide a new, minimally invasive and highly specific treatment method for hyperinsulinemic hypoglycemia. Full Article
hera Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Aberrantly high mTORC1 signaling is a known driver of many cancers and human disorders, yet pharmacological inhibition of mTORC1 rarely confers durable clinical responses. To explore alternative therapeutic strategies, herein we conducted a proteomics survey to identify cell surface proteins upregulated by mTORC1. A comparison of the surfaceome from Tsc1–/– versus Tsc1+/+ mouse embryonic fibroblasts revealed 59 proteins predicted to be significantly overexpressed in Tsc1–/– cells. Further validation of the data in multiple mouse and human cell lines showed that mTORC1 signaling most dramatically induced the expression of the proteases neprilysin (NEP/CD10) and aminopeptidase N (APN/CD13). Functional studies showed that constitutive mTORC1 signaling sensitized cells to genetic ablation of NEP and APN, as well as the biochemical inhibition of APN. In summary, these data show that mTORC1 signaling plays a significant role in the constitution of the surfaceome, which in turn may present novel therapeutic strategies. Full Article
hera Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies [Commentary] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have been characterized and evaluated as potential active substances. Treatments based on HLA-presented peptides have shown promising results in clinical application as personalized T cell-based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal products under GMP conditions. To support clinical trials based on HLA-presented tumor-associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification pipeline was fully validated for our technical equipment according to the current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines. The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters include accuracy, precision, specificity, limit of detection and robustness. Full Article
hera Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis. Full Article
hera Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
hera LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL By feedproxy.google.com Published On :: 2020-04-15 M John ChapmanApr 15, 2020; 0:jlr.P119000543v1-jlr.P119000543Patient-Oriented and Epidemiological Research Full Article
hera Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. By feedproxy.google.com Published On :: 2020-04-14 Inês Magro dos ReisApr 14, 2020; 0:jlr.RA120000632v1-jlr.RA120000632Research Articles Full Article
hera Lipid rafts as a therapeutic target By feedproxy.google.com Published On :: 2020-05-01 Dmitri SviridovMay 1, 2020; 61:687-695Thematic Reviews Full Article
hera Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. [Research Articles] By feedproxy.google.com Published On :: 2020-04-14T06:30:26-07:00 Niemann–Pick type C1 (NPC1) disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key-factor in the development of atherosclerosis and non-alcoholic steatohepatitis (NASH). In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring an Npc1 null allele (Npc1nih), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a two or six percent plant stanol esters–enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol–enriched diet exhibited lower hepatic cholesterol accumulation, damage and inflammation than regular chow–fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular towards an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease. Full Article
hera LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-04-15T11:30:30-07:00 Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese, hypertriglyceridemic, hypercholesterolemic males (n=12; Lp(a) <10 mg/dL) received pitavastatin calcium (4mg/day) for 180 days in a single-phase, unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids (lysophosphatidylcholine (LPC); lysophosphatidylinositol (LPI); lyso-platelet activating factor (LPC(O)); 9,0.2 and 0.14 mol/mol apoB respectively; all p<0.001 versus LDL1-4), suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5 - 3 mol/mol apoB; 3 - 7 mmol/mol phosphatidylcholine) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy. Full Article
hera WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research] By feedproxy.google.com Published On :: 2017-05-26T10:39:04-07:00 This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review. Full Article
hera Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC [Research] By feedproxy.google.com Published On :: 2020-03-31T09:35:18-07:00 Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13 486 genes and mass spectrometry data covering 10 138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 hours, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3 and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy. Full Article
hera Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis. Full Article
hera ANGPTL3, PCSK9, and statin therapy drive remarkable reductions in hyperlipidemia and atherosclerosis in a mouse model [Commentary] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Full Article
hera Lipid rafts as a therapeutic target [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy. Full Article
hera Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
hera Autoimmune complications of immunotherapy: pathophysiology and management By feeds.bmj.com Published On :: Monday, April 6, 2020 - 10:45 Full Article
hera A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease By diabetes.diabetesjournals.org Published On :: 2019-04-01T13:15:12-07:00 Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10–6) with replication at Bonferroni-corrected P < 8.6 x 10–4. Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10–4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood–derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat–associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups. Full Article