ui 2,3-Diethylbenzo[g]quinoxaline By scripts.iucr.org Published On :: 2020-04-07 The title compound, C16H16N2, was synthesized by dispersing 3,4-hexanedione in a methanol–water solution containing the acid catalyst NH4HF2, then adding 1,2-diaminonaphthalene. The fused-ring system of the title compound is close to planar (r.m.s. deviation = 0.028 Å); one of the pendant methyl C atoms lies close to the ring plane [deviation = 0.071 (2) Å; N—C—C—C = −0.27 (18)°] whereas the other is significantly displaced [–1.7136 (18) Å; 91.64 (16)°]. The molecules pack in space group Ioverline{4} in a distinctive criss-cross motif supported by numerous aromatic π–π stacking interactions [shortest centroid–centroid separation = 3.5805 (6) Å]. Full Article text
ui The crystal structure of (RS)-7-chloro-2-(2,5-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure By scripts.iucr.org Published On :: 2019-05-21 In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-dimethoxyphenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links molecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of molecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds. Full Article text
ui Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-05-31 In the title quinoline derivative, C14H14ClNO3, there is an intramolecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The molecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-ethoxyquinoline mean plane. In the crystal, offset π–π interactions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related molecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface. Full Article text
ui Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenylhydrazinylidene)methyl]quinoline By scripts.iucr.org Published On :: 2019-06-07 A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formylquinoline with phenylhydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The molecule adopts an E configuration with respect to the central C=N bond. In the crystal, molecules are linked by a C—H⋯π-phenyl interaction, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent molecule, so linking the chains via weak N—H⋯π interactions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts. Full Article text
ui Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-06-11 In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intramolecular C—H⋯O contact forming an S(6) ring motif. In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π interactions, forming a supramolecular three-dimensional structure. Full Article text
ui Crystal structures of two CuII compounds: catena-poly[[chloridocopper(II)]-μ-N-[ethoxy(pyridin-2-yl)methylidene]-N'-[oxido(pyridin-3-yl)methylidene]hydrazine-κ4N,N',O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-dichlorido-2κ By scripts.iucr.org Published On :: 2019-06-28 Two CuII complexes [Cu(C14H13N4O2)Cl]n, I, and [Cu4(C8H10NO2)4Cl4]n, II, have been synthesized. In the structure of the mononuclear complex I, each ligand is coordinated to two metal centers. The basal plane around the CuII cation is formed by one chloride anion, one oxygen atom, one imino and one pyridine nitrogen atom. The apical position of the distorted square-pyramidal geometry is occupied by a pyridine nitrogen atom from a neighbouring unit, leading to infinite one-dimensional polymeric chains along the b-axis direction. Each chain is connected to adjacent chains by intermolecular C—H⋯O and C—H⋯Cl interactions, leading to a three-dimensional network structure. The tetranuclear complex II lies about a crystallographic inversion centre and has one core in which two CuII metal centers are mutually interconnected via two enolato oxygen atoms while the other two CuII cations are linked by a chloride anion and an enolato oxygen. An open-cube structure is generated in which the two open-cube units, with seven vertices each, share a side composed of two CuII ions bridged by two enolato oxygen atoms acting in a μ3-mode. The CuII atoms in each of the two CuO3NCl units are connected by one μ2-O and two μ3-O atoms from deprotonated hydroxyl groups and one chloride anion to the three other CuII centres. Each of the pentacoordinated CuII cations has a distorted NO3Cl square-pyramidal environment. The CuII atoms in each of the two CuO2NCl2 units are connected by μ2-O and μ3-O atoms from deprotonated alcohol hydroxy groups and one chloride anion to two other CuII ions. Each of the pentacoordinated CuII cations has a distorted NO2Cl2 square-pyramidal environment. In the crystal, a series of intramolecular C—H⋯O and C—H⋯Cl hydrogen bonds are observed in each tetranuclear monomeric unit, which is connected to four tetranuclear monomeric units by intermolecular C—H⋯O hydrogen bonds, thus forming a planar two-dimensional structure in the (overline{1}01) plane. Full Article text
ui Bis(mefloquinium) butanedioate ethanol monosolvate: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-07-12 The asymmetric unit of the centrosymmetric title salt solvate, 2C17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium butanedioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butanedioate dianion with an all-trans conformation and an ethanol solvent molecule. In the crystal, supramolecular chains along the a-axis direction are sustained by charge-assisted hydroxy-O—H⋯O(carboxylate) and ammonium-N—H⋯O(carboxylate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyridyl) contacts and π–π stacking interactions between quinolinyl-C6 and –NC5 rings of the independent cations of the asymmetric unit [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional interactions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts. Full Article text
ui The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue By scripts.iucr.org Published On :: 2019-07-19 Three new isotypic heteropolynuclear complexes, namely pentaaquacarbonatopentakis(glycinehydroxamato)nitratopentacopper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]·xH2O (GlyHA2− is glycinehydroxamate, N-hydroxyglycinamidate or aminoacetohydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 1–3 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 1–3 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 1–3 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycinehydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 1–3 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O. Full Article text
ui Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-2-yl]-1,2-diphenylethanol By scripts.iucr.org Published On :: 2019-09-03 The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral dihydroisoquinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title molecule being found to be the (S,R) diastereoisomer. In the crystal, molecules are packed in a herringbone manner parallel to (103) and (10overline{3}) via weak C—H⋯O and C—H⋯π(ring) interactions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H interactions (ca 75%). The crystal studied was refined as a two-component inversion twin. Full Article text
ui Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-09-06 The title compound, C15H12ClNO3, consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties which are tied together by intermolecular C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ui Crystal structures of 3-chloro-2-nitrobenzoic acid with quinoline derivatives: 3-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), 3-chloro-2-nitrobenzoic acid–6-nitroquinoline (1/1) and 8-hydroxyquinolinium 3-ch By scripts.iucr.org Published On :: 2019-09-27 The structures of three compounds of 3-chloro-2-nitrobenzoic acid with 5-nitroquinoline, (I), 6-nitroquinoline, (II), and 8-hydroxyquinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base molecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4−, an acid–base interaction involving H-atom transfer occurs and the H atom is located at the N site of the base molecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the (overline{1}03) plane. These ribbons are stacked via π–π interactions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the (overline{3}08) plane. The ribbons are linked by weak π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the molecular chains are linked into layers parallel to the ab plane through these interactions. Full Article text
ui The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a By scripts.iucr.org Published On :: 2019-09-27 The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octahydro-2H-spiro[acenaphthylene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thiazole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thiazole ring adopts a boat conformation. An intramolecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intramolecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by intermolecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent molecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π interactions help to consolidate the structure, but no significant π–π interactions with centroid–centroid distances of less than 4 Å are observed. Full Article text
ui Unexpected reactions of NHC*—CuI and —AgI bromides with potassium thio- or selenocyanate By scripts.iucr.org Published On :: 2019-10-22 The reactions of N-heterocyclic carbene CuI and AgI halides with potassium thio- or selenocyanate gave unexpected products. The attempted substitution reaction of bromido(1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene)silver (NHC*—Ag—Br) with KSCN yielded bis[bis(1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene)silver(I)] tris(thiocyanato)argentate(I) diethyl ether disolvate, [Ag(C29H24N2)2][Ag(NCS)3]·2C4H10O or [NHC*2Ag]2[Ag(SCN)3]·2Et2O, (1), while reaction with KSeCN led to bis(μ-1,3-dibenzyl-4,5-diphenyl-2-selenoimidazole-κ2Se:Se)bis[bromido(1,3-dibenzyl-4,5-diphenyl-2-selenoimidazole-κSe)silver(I)] dichloromethane hexasolvate, [Ag2Br2(C29H24N2Se)4]·6CH2Cl2 or (NHC*Se)4Ag2Br2·6CH2Cl2, (2), via oxidation of the NHC* fragment to 2-selenoimidazole. This oxidation was observed again in the reaction of NHC*—Cu—Br with KSeCN, yielding catena-poly[[[(1,3-dibenzyl-4,5-diphenyl-2-selenoimidazole-κSe)copper(I)]-μ-cyanido-κ2C:N] acetonitrile monosolvate], {[Cu(CN)(C29H24N2Se)]·C2H3N}n or NHC*Se—CuCN·CH3CN, (3). Compound (1) represents an organic/inorganic salt with AgI in a linear coordination in each of the two cations and in a trigonal coordination in the anion, accompanied by diethyl ether solvent molecules. The tri-blade boomerang-shaped complex anion [Ag(SCN)3]2− present in (1) is characterized by X-ray diffraction for the first time. Compound (2) comprises an isolated centrosymmetric molecule with AgI in a distorted tetrahedral BrSe3 coordination, together with dichloromethane solvent molecules. Compound (3) exhibits a linear polymeric 1∞[Cu—C≡N—Cu—] chain structure with a selenoimidazole moiety additionally coordinating to each CuI atom, and completed by acetonitrile solvent molecules. Electron densities associated with an additional ether solvent molecule in (1) and two additional dichloromethane solvent molecules in (2) were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. Full Article text
ui Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
ui Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-ethoxy-2-oxoethyl)(phenyl)carbamoyl]-2-oxo-1,2-dihydroquinolin-1-yl}acetate By scripts.iucr.org Published On :: 2019-10-29 The title compound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetrahydro-2-oxoquinolin-1-yl)acetate and 4-[(2-ethoxy-2-oxoethyl)(phenyl)carbomoyl] units, where the oxoquinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPhyl⋯OCarbx (Oxqn = oxoquinolin, Ethx = ethoxy, Phyl = phenyl and Carbx = carboxylate) weak hydrogen bonds link the molecules into a three-dimensional network sturucture. A π–π interaction between the constituent rings of the oxoquinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) interactions. Weak intermolecular hydrogen-bond interactions and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO molecular orbital behaviour was elucidated to determine the energy gap. Full Article text
ui Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate By scripts.iucr.org Published On :: 2019-10-29 In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) interactions. Full Article text
ui Crystal structure of benzo[h]quinoline-3-carboxamide By scripts.iucr.org Published On :: 2019-11-05 The title compound, C14H10N2O, crystallizes in the monoclinic space group P21/c with four molecules in the unit cell. All 17 non-H atoms of one molecule lie essentially in one plane. In the unit cell, two pairs of molecules are exactly coplanar, while the angle between these two orientations is close to perfectly perpendicular at 87.64 (6)°. In the crystal, molecules adopt a 50:50 crisscross arrangement, which is held together by two nonclassical and two classical intermolecular hydrogen bonds. The hydrogen-bonding network together with off-centre π–π stacking interactions between the pyridine and outermost benzene rings, stack the molecules along the b-axis direction. Full Article text
ui Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrob By scripts.iucr.org Published On :: 2019-11-08 The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base molecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the intermolecular interactions. Full Article text
ui Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phosphonium based ionic liquids – a redetermination By scripts.iucr.org Published On :: 2019-11-19 After crystallization during ionothermal syntheses in phosphonium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [triammonium dialuminum tris(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms. Full Article text
ui Synthesis and crystal structures of a bis(3-hydroxy-cyclohex-2-en-1-one) and two hexahydroquinoline derivatives By scripts.iucr.org Published On :: 2020-01-03 The title compound I, 2,2'-[(2-nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intramolecular hydrogen bonds. The most prominent intermolecular interactions in compound I are C—H⋯O hydrogen bonds, which link molecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1overline{1}1). Both title compounds II, ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the dihydropyridine group and an orthogonal aryl group attached to the dihydropyridine. Intermolecular N—H⋯O bonding is present in the crystal packing of both compound II and III. Full Article text
ui The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-dimethylanilino)-N-(3,4-dimethylphenyl)quinoline-3-carboxamide By scripts.iucr.org Published On :: 2020-01-17 The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and intermolecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the intermolecular interactions. Full Article text
ui Crystal structure of 2-methyl-1,2,3,4-tetrahydroisoquinoline trihydrate By scripts.iucr.org Published On :: 2020-02-06 The crystal structure of the title compound, C10H13N·3H2O, a heterocyclic amine, was determined in the presence of water. The compound co-crystallizes with three water molecules in the asymmetric unit, which leads to the formation of hydrogen bonding in the crystal. Full Article text
ui Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex By scripts.iucr.org Published On :: 2020-02-14 The title pyrazine dicarboxamide ligand, N2,N3-bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10overline{1}) plane, which are in turn linked by offset π–π interactions [intercentroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supramolecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in acetonitrile leads to the formation of the binuclear complex, [μ-(3-{hydroxy[(quinolin-8-yl)imino]methyl}pyrazin-2-yl)[(quinolin-8-yl)imino]methanolato]bis[diacetonitrilecopper(II)] tris(perchlorate) acetonitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1−)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two acetonitrile molecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supramolecular three-dimensional structure. Full Article text
ui Synthesis and crystal structure of NaCuIn(PO4)2 By scripts.iucr.org Published On :: 2020-02-14 Single crystals of sodium copper(II) indium bis[phosphate(V)], NaCuIn(PO4)2, were grown from the melt under atmospheric conditions. The title phosphate crystallizes in the space group P21/n and is isotypic with KCuFe(PO4)2. In the crystal, two [CuO5] trigonal bipyramids share an edge to form a dimer [Cu2O8] that is connected to two PO4 tetrahedra. The obtained [Cu2P2O12] units are interconnected through vertices to form sheets that are sandwiched between undulating layers resulting from the junction of PO4 tetrahedra and [InO6] octahedra. The two types of layers are alternately stacked along [101] and are joined into a three-dimensional framework through vertex- and edge-sharing, leaving channels parallel to the stacking direction. The channels host the sodium cations that are surrounded by four oxygen atoms in form of a distorted disphenoid. Full Article text
ui A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia By scripts.iucr.org Published On :: 2020-02-21 The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton. Full Article text
ui Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2020-04-09 The asymmetric unit of the title compound, C22H31NO3, comprises of one molecule. The molecule is not planar, with the carboxylate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual molecules are linked by aromaticC—H⋯Ocarbonyl hydrogen bonds into chains running parallel to [001]. Slipped π–π stacking interactions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and molecular electrostatic potential surfaces were used to quantify the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) interactions. Full Article text
ui Synthesis and structure of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate By scripts.iucr.org Published On :: 2020-04-17 The title compound, C18H16N2O3S, was synthesized by reaction of 2-mercapto-3-phenylquinazolin-4(3H)-one with ethyl chloroacetate. The quinazoline ring forms a dihedral angle of 86.83 (5)° with the phenyl ring. The terminal methyl group is disordered by a rotation of about 60° in a 0.531 (13): 0.469 (13) ratio. In the crystal, C—H⋯O hydrogen-bonding interactions result in the formation of columns running in the [010] direction. Two parallel columns further interact by C—H⋯O hydrogen bonds. The most important contributions to the surface contacts are from H⋯H (48.4%), C⋯H/H⋯C (21.5%) and O⋯H/H⋯O (18.7%) interactions, as concluded from a Hirshfeld analysis. Full Article text
ui Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements By scripts.iucr.org Published On :: 2019-07-15 In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions. Full Article text
ui Symmetry-mode analysis for intuitive observation of structure–property relationships in the lead-free antiferroelectric (1−x)AgNbO3–xLiTaO3 By scripts.iucr.org Published On :: 2019-06-21 Functional materials are of critical importance to electronic and smart devices. A deep understanding of the structure–property relationship is essential for designing new materials. In this work, instead of utilizing conventional atomic coordinates, a symmetry-mode approach is successfully used to conduct structure refinement of the neutron powder diffraction data of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics. This provides rich structural information that not only clarifies the controversial symmetry assigned to pure AgNbO3 but also explains well the detailed structural evolution of (1−x)AgNbO3–xLiTaO3 (0 ≤ x ≤ 0.09) ceramics, and builds a comprehensive and straightforward relationship between structural distortion and electrical properties. It is concluded that there are four relatively large-amplitude major modes that dominate the distorted Pmc21 structure of pure AgNbO3, namely a Λ3 antiferroelectric mode, a T4+ a−a−c0 octahedral tilting mode, an H2 a0a0c+/a0a0c− octahedral tilting mode and a Γ4− ferroelectric mode. The H2 and Λ3 modes become progressively inactive with increasing x and their destabilization is the driving force behind the composition-driven phase transition between the Pmc21 and R3c phases. This structural variation is consistent with the trend observed in the measured temperature-dependent dielectric properties and polarization–electric field (P-E) hysteresis loops. The mode crystallography applied in this study provides a strategy for optimizing related properties by tuning the amplitudes of the corresponding modes in these novel AgNbO3-based (anti)ferroelectric materials. Full Article text
ui Charge densities in actinide compounds: strategies for data reduction and model building By scripts.iucr.org Published On :: 2019-08-07 The data quality requirements for charge density studies on actinide compounds are extreme. Important steps in data collection and reduction required to obtain such data are summarized and evaluated. The steps involved in building an augmented Hansen–Coppens multipole model for an actinide pseudo-atom are provided. The number and choice of radial functions, in particular the definition of the core, valence and pseudo-valence terms are discussed. The conclusions in this paper are based on a re-examination and improvement of a previously reported study on [PPh4][UF6]. Topological analysis of the total electron density shows remarkable agreement between experiment and theory; however, there are significant differences in the Laplacian distribution close to the uranium atoms which may be due to the effective core potential employed for the theoretical calculations. Full Article text
ui A comparative study of single-particle cryo-EM with liquid-nitrogen and liquid-helium cooling By scripts.iucr.org Published On :: 2019-10-22 Radiation damage is the most fundamental limitation for achieving high resolution in electron cryo-microscopy (cryo-EM) of biological samples. The effects of radiation damage are reduced by liquid-helium cooling, although the use of liquid helium is more challenging than that of liquid nitrogen. To date, the benefits of liquid-nitrogen and liquid-helium cooling for single-particle cryo-EM have not been compared quantitatively. With recent technical and computational advances in cryo-EM image recording and processing, such a comparison now seems timely. This study aims to evaluate the relative merits of liquid-helium cooling in present-day single-particle analysis, taking advantage of direct electron detectors. Two data sets for recombinant mouse heavy-chain apoferritin cooled with liquid-nitrogen or liquid-helium to 85 or 17 K were collected, processed and compared. No improvement in terms of resolution or Coulomb potential map quality was found for liquid-helium cooling. Interestingly, beam-induced motion was found to be significantly higher with liquid-helium cooling, especially within the most valuable first few frames of an exposure, thus counteracting any potential benefit of better cryoprotection that liquid-helium cooling may offer for single-particle cryo-EM. Full Article text
ui Distinguishing contributions of ceramic matrix and binder metal to the plasticity of nanocrystalline cermets By scripts.iucr.org Published On :: 2020-01-01 Using the typical WC–Co cemented carbide as an example, the interactions of dislocations within the ceramic matrix and the binder metal, as well as the possible cooperation and competition between the matrix and binder during deformation of the nanocrystalline cermets, were studied by molecular dynamics simulations. It was found that at the same level of strain, the dislocations in Co have more complex configurations in the cermet with higher Co content. With loading, the ratio between mobile and sessile dislocations in Co becomes stable earlier in the high-Co cermet. The strain threshold for the nucleation of dislocations in WC increases with Co content. At the later stage of deformation, the growth rate of WC dislocation density increases more rapidly in the cermet with lower Co content, which exhibits an opposite tendency compared with Co dislocation density. The relative contribution of Co and WC to the plasticity of the cermet varies in the deformation process. With a low Co content, the density of WC dislocations becomes higher than that of Co dislocations at larger strains, indicating that WC may contribute more than Co to the plasticity of the nanocrystalline cermet at the final deformation stage. The findings in the present work will be applicable to a large variety of ceramic–metal composite materials. Full Article text
ui Magnetic Guinier law By scripts.iucr.org Published On :: 2020-01-01 Small-angle scattering of X-rays and neutrons is a routine method for the determination of nanoparticle sizes. The so-called Guinier law represents the low-q approximation for the small-angle scattering curve from an assembly of particles. The Guinier law has originally been derived for nonmagnetic particle-matrix-type systems and it is successfully employed for the estimation of particle sizes in various scientific domains (e.g. soft-matter physics, biology, colloidal chemistry, materials science). An important prerequisite for it to apply is the presence of a discontinuous interface separating particles and matrix. Here, the Guinier law is introduced for the case of magnetic small-angle neutron scattering and its applicability is experimentally demonstrated for the example of nanocrystalline cobalt. It is well known that the magnetic microstructure of nanocrystalline ferromagnets is highly nonuniform on the nanometre length scale and characterized by a spectrum of continuously varying long-wavelength magnetization fluctuations, i.e. these systems do not manifest sharp interfaces in their magnetization profile. The magnetic Guinier radius depends on the applied magnetic field, on the magnetic interactions (exchange, magnetostatics) and on the magnetic anisotropy-field radius, which characterizes the size over which the magnetic anisotropy field is coherently aligned into the same direction. In contrast to the nonmagnetic conventional Guinier law, the magnetic version can be applied to fully dense random-anisotropy-type ferromagnets. Full Article text
ui 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow By scripts.iucr.org Published On :: 2020-01-16 Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX. Full Article text
ui The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase By scripts.iucr.org Published On :: 2020-01-25 Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built. Full Article text
ui The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer By scripts.iucr.org Published On :: 2020-03-21 Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme. Full Article text
ui The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution By scripts.iucr.org Published On :: 2020-02-28 The performance of automated protein model building usually decreases with resolution, mainly owing to the lower information content of the experimental data. This calls for a more elaborate use of the available structural information about macromolecules. Here, a new method is presented that uses structural homologues to improve the quality of protein models automatically constructed using ARP/wARP. The method uses local structural similarity between deposited models and the model being built, and results in longer main-chain fragments that in turn can be more reliably docked to the protein sequence. The application of the homology-based model extension method to the example of a CFA synthase at 2.7 Å resolution resulted in a more complete model with almost all of the residues correctly built and docked to the sequence. The method was also evaluated on 1493 molecular-replacement solutions at a resolution of 4.0 Å and better that were submitted to the ARP/wARP web service for model building. A significant improvement in the completeness and sequence coverage of the built models has been observed. Full Article text
ui Development of basic building blocks for cryo-EM: the emcore and emvis software libraries By scripts.iucr.org Published On :: 2020-03-31 Image-processing software has always been an integral part of structure determination by cryogenic electron microscopy (cryo-EM). Recent advances in hardware and software are recognized as one of the key factors in the so-called cryo-EM resolution revolution. Increasing computational power has opened many possibilities to consider more demanding algorithms, which in turn allow more complex biological problems to be tackled. Moreover, data processing has become more accessible to many experimental groups, with computations that used to last for many days at supercomputing facilities now being performed in hours on personal workstations. All of these advances, together with the rapid expansion of the community, continue to pose challenges and new demands on the software-development side. In this article, the development of emcore and emvis, two basic software libraries for image manipulation and data visualization in cryo-EM, is presented. The main goal is to provide basic functionality organized in modular components that other developers can reuse to implement new algorithms or build graphical applications. An additional aim is to showcase the importance of following established practices in software engineering, with the hope that this could be a first step towards a more standardized way of developing and distributing software in the field. Full Article text
ui Fluorescence-detected quick-scanning X-ray absorption spectroscopy By scripts.iucr.org Published On :: 2020-04-06 Time-resolved X-ray absorption spectroscopy (XAS) offers the possibility to monitor the state of materials during chemical reactions. While this technique has been established for transmission measurements for a number of years, XAS measurements in fluorescence mode are challenging because of limitations in signal collection as well as detectors. Nevertheless, measurements in fluorescence mode are often the only option to study complex materials containing heavy matrices or in samples where the element of interest is in low concentration. Here, it has been demonstrated that high-quality quick-scanning full extended X-ray absorption fine-structure data can be readily obtained with sub-second time resolution in fluorescence mode, even for highly diluted samples. It has also been demonstrated that in challenging samples, where transmission measurements are not feasible, quick fluorescence can yield significant insight in reaction kinetics. By studying the fast high-temperature oxidation of a reduced LaFe0.8Ni0.8O3 perovskite type, an example where the perovskite matrix elements prevent measurements in fluorescence, it is shown that it is now possible to follow the state of Ni in situ at a 3 s time resolution. Full Article text
ui Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction By journals.iucr.org Published On :: Full Article text
ui POWGEN: rebuild of a third-generation powder diffractometer at the Spallation Neutron Source By scripts.iucr.org Published On :: 2019-10-01 The neutron powder diffractometer POWGEN at the Spallation Neutron Source has recently (2017–2018) undergone an upgrade which resulted in an increased detector complement along with a full overhaul of the structural design of the instrument. The current instrument has a solid angular coverage of 1.2 steradians and maintains the original third-generation concept, providing a single-histogram data set over a wide d-spacing range and high resolution to access large unit cells, detailed structural refinements and in situ/operando measurements. Full Article text
ui FXD-CSD-GUI: a graphical user interface for the X-ray-diffraction-based determination of crystallite size distributions By scripts.iucr.org Published On :: 2019-10-22 Bragg intensities can be used to analyse crystal size distributions in a method called FXD-CSD, which is based on the fast measurement of many Bragg spots using two-dimensional detectors. This work presents the Python-based software and its graphical user interface FXD-CSD-GUI. The GUI enables user-friendly data handling and processing and provides both graphical and numerical crystal size distribution results. Full Article text
ui Bias in Science and Communication. A Field Guide. By Matthew Welsh. IOP Publishing, 2018. Pp. 177. ISBN 978-0-7503-1312-4. By journals.iucr.org Published On :: Book review Full Article text
ui Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair distribution function and lattice-energy minimizations By scripts.iucr.org Published On :: 2020-05-08 The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group Poverline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0ar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering. Full Article text
ui Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair-distribution function and lattice-energy minimizations By journals.iucr.org Published On :: The crystal structure of the nanocrystalline pigment monomethyl-quinacridone was solved from X-ray powder data. The orientational disorder was investigated using Rietveld refinements, structure refinement to the pair-distribution function, and lattice-energy minimizations of various ordered structural models. Full Article text
ui A new ZnII metallocryptand with unprecedented diflexure helix induced by V-shaped diimidazole building blocks By journals.iucr.org Published On :: A new ZnII metallocryptand is presented, with an unprecedented diflexure helix. Full Article text
ui AMi: a GUI-based, open-source system for imaging samples in multi-well plates By scripts.iucr.org Published On :: 2019-08-06 Described here are instructions for building and using an inexpensive automated microscope (AMi) that has been specifically designed for viewing and imaging the contents of multi-well plates. The X, Y, Z translation stage is controlled through dedicated software (AMiGUI) that is being made freely available. Movements are controlled by an Arduino-based board running grbl, and the graphical user interface and image acquisition are controlled via a Raspberry Pi microcomputer running Python. Images can be written to the Raspberry Pi or to a remote disk. Plates with multiple sample wells at each row/column position are supported, and a script file for automated z-stack depth-of-field enhancement is written along with the images. The graphical user interface and real-time imaging also make it easy to manually inspect and capture images of individual samples. Full Article text
ui New species of giant rat discovered in crater of volcano in Papua New Guinea By insider.si.edu Published On :: Wed, 09 Sep 2009 13:14:45 +0000 A Smithsonian Institution biologist, working with the Natural History Unit of the British Broadcasting Corp., has discovered a new species of giant rat on a film-making expedition to a remote rainforest in New Guinea. The post New species of giant rat discovered in crater of volcano in Papua New Guinea appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature conservation mammals National Museum of Natural History new species spiders volcanoes
ui Smithsonian receives giant squid caught in the Gulf of Mexico By insider.si.edu Published On :: Thu, 24 Sep 2009 14:47:11 +0000 The giant squid was collected during a 60-day scientific study in which NOAA scientists were studying the availability and diversity of sperm whale prey. The squid was caught in a trawl net pulled behind a research vessel at a depth of more than 1,500 feet. The post Smithsonian receives giant squid caught in the Gulf of Mexico appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature Caribbean conservation biology National Museum of Natural History new acquisitions squid
ui New Acquisition: Corrective instruments from the Hubble Space Telescope By insider.si.edu Published On :: Mon, 07 Dec 2009 16:01:34 +0000 The Smithsonian’s National Air and Space Museum recently obtained two monumental instruments on loan from NASA’s Goddard Space Flight Center. The post New Acquisition: Corrective instruments from the Hubble Space Telescope appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics National Air and Space Museum new acquisitions technology