ice

Organic light emitting display device and method for fabricating the same

An organic light emitting display device includes a light shield layer formed on a substrate and a buffer layer formed on an entire surface of the substrate, an oxide semiconductor layer and first electrode formed on the buffer layer, a gate insulation film and gate electrode formed on the oxide semiconductor layer while being deposited to expose both edges of the oxide semiconductor layer, an interlayer insulation film formed to expose both the exposed edges of the oxide semiconductor layer and the first electrode, source and drain electrodes connected with one edge and the other edge of the oxide semiconductor layer, respectively, and a protective film formed to cover the source and drain electrodes while exposing a region of the first electrode so as to define a luminescent region and a non-luminescent region.




ice

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Display device and electronic device including the same

A display device includes a pixel portion including a plurality of pixels each including a first transistor, a second transistor, and a light-emitting element, in which a gate of the first transistor is electrically connected to a scan line, one of a source and a drain of the first transistor is electrically connected to a signal line, and the other of them is electrically connected to a gate of the second transistor; one of a source and a drain of the second transistor is electrically connected to a power supply line and the other of them is electrically connected to the light-emitting element, and the first transistor includes an oxide semiconductor layer. A period when the display device displays a still image includes a period in which output of a signal to all the scan lines in the pixel portion is stopped.




ice

Semiconductor light-emitting device

A semiconductor light-emitting device includes a lamination of semiconductor layers including a first layer of a first conductivity type, an active layer, and a second layer of a second conductivity type; a transparent conductive film formed on a principal surface of the lamination and having an opening; a pad electrode formed on part the opening; and a wiring electrode connected with the pad electrode, formed on another part of the opening while partially overlapping the transparent conductive film; wherein contact resistance between the transparent conductive film and the lamination is larger than contact resistance between the wiring electrode and the lamination. Field concentration at the wiring electrode upon application of high voltage is mitigated by the overlapping transparent conductive film.




ice

Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device

The present invention relates to a film for flip chip type semiconductor back surface to be formed on a back surface of a semiconductor element flip chip-connected to an adherend, the film for flip chip type semiconductor back surface containing an inorganic filler in an amount within a range of 70% by weight to 95% by weight based on the whole of the film for flip chip type semiconductor back surface.




ice

Substrate for mounting light-emitting element and light-emitting device

There is provided a substrate for light-emitting element, including a mounting surface on which a light-emitting element is to be mounted, the mounting surface being one of two opposed main surfaces of the substrate. The substrate of the present invention is provided with a protection element for the light-emitting element, the protection element comprising a voltage-dependent resistive layer embedded in a body of the substrate, and comprising a first electrode and a second electrode each of which is in connection with the voltage-dependent resistive layer wherein the light-emitting element is to be mounted such that it is positioned in an overlapping relation with the voltage-dependent resistive layer.




ice

Semiconductor device and method for manufacturing the same

An object is to manufacture a semiconductor device with high reliability by providing the semiconductor device including an oxide semiconductor with stable electric characteristics. In a transistor including an oxide semiconductor layer, a gallium oxide film is used for a gate insulating layer and made in contact with an oxide semiconductor layer. Further, gallium oxide films are provided so as to sandwich the oxide semiconductor layer, whereby reliability is increased. Furthermore, the gate insulating layer may have a stacked structure of a gallium oxide film and a hafnium oxide film.




ice

Transistor including an oxide semiconductor and display device using the same

The band tail state and defects in the band gap are reduced as much as possible, whereby optical absorption of energy which is in the vicinity of the band gap or less than or equal to the band gap is reduced. In that case, not by merely optimizing conditions of manufacturing an oxide semiconductor film, but by making an oxide semiconductor to be a substantially intrinsic semiconductor or extremely close to an intrinsic semiconductor, defects on which irradiation light acts are reduced and the effect of light irradiation is reduced essentially. That is, even in the case where light with a wavelength of 350 nm is delivered at 1×1013 photons/cm2·sec, a channel region of a transistor is formed using an oxide semiconductor, in which the absolute value of the amount of the variation in the threshold voltage is less than or equal to 0.65 V.




ice

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a stacked structure body, a first electrode, a second electrode, and a dielectric body part. The stacked structure body includes a first semiconductor layer, having a first portion and a second portion juxtaposed with the first portion, a light emitting layer provided on the second portion, a second semiconductor layer provided on the light emitting layer. The first electrode includes a contact part provided on the first portion and contacting the first layer. The second electrode includes a first part provided on the second semiconductor layer and contacting the second layer, and a second part electrically connected with the first part and including a portion overlapping with the contact part when viewed from the first layer toward the second layer. The dielectric body part is provided between the contact part and the second part.




ice

Semiconductor device, semiconductor wafer and manufacturing method of semiconductor device

A semiconductor device includes wiring layers formed over a semiconductor wafer, a via-layer between the wiring layers, conductive films in the wiring layers, and a via-plug in the via-layer connecting the conductive films of the wiring layers above and below, a scribe region at an outer periphery of a chip region along an edge of the semiconductor substrate and including a pad region in the vicinity of the edge, the pad region overlapping the conductive films of the plurality of wiring layers in the plan view, the plurality of wiring layers including first second wiring layers, the conductive film of the first wiring layer includes a first conductive pattern formed over an entire surface of said pad region in a plan view, and the conductive film of the second wiring layer includes a second conductive pattern formed in a part of the pad region in a plan view.




ice

Light emitting device and lighting system with the same

A light emitting device including a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a transparent conductive layer disposed on the light emitting structure, a metal filter having an irregular pattern disposed between the light emitting structure and the transparent conductive layer, and openings disposed between the irregular patterns in the metal filter.




ice

Compact device package

Various embodiments related to a compact device package are disclosed herein. In some arrangements, a flexible substrate can be coupled to a carrier having walls angled relative to one another. The substrate can be shaped to include two bends. First and second integrated device dies can be mounted on opposite sides of the substrate between the two bends in various arrangements.




ice

Semiconductor device

It is an object to provide a transistor having a new multigate structure in which operating characteristics and reliability are improved. In a transistor having a multigate structure, which includes two gate electrodes electrically connected to each other and a semiconductor layer including two channel regions connected in series formed between a source region and a drain region, and a high concentration impurity region is formed between the two channel regions; the channel length of the channel region adjacent to the source region is longer than the channel length of the channel region adjacent to the drain region.




ice

Defect mitigation structures for semiconductor devices

A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer. The substrate intermediate layer and the device intermediate layer comprise a distribution in their compositions along a thickness coordinate.




ice

Display device having light emitting elements with red color filters

A display device comprising TFT elements having satisfactory characteristics and being easy to assemble. In the display device, a pixel emitting red light comprises a red color filter. The red color filter forms a light shielding film for the TFT elements in a driver circuit portion or in a pixel portion.




ice

Three-dimensional nonvolatile memory devices including interposed floating gates

Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.




ice

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting unit, a second semiconductor layer, a reflecting electrode, an oxide layer and a nitrogen-containing layer. The first semiconductor layer is of a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The second semiconductor layer is provided on the light emitting unit and is of a second conductivity type. The reflecting electrode is provided on the second semiconductor layer and includes Ag. The oxide layer is provided on the reflecting electrode. The oxide layer is insulative and has a first opening. The nitrogen-containing layer is provided on the oxide layer. The nitrogen-containing layer is insulative and has a second opening communicating with the first opening.




ice

Semiconductor devices with heterojunction barrier regions and methods of fabricating same

An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.




ice

Semiconductor device and method for manufacturing the same

An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.




ice

Semiconductor device and method of manufacturing semiconductor device

A semiconductor device, includes a semiconductor substrate, a first interconnect layer formed over the semiconductor substrate, a gate electrode formed in the first interconnect layer, a gate insulating film formed over the gate electrode, a second interconnect layer formed over the gate insulating film, an oxide semiconductor layer formed in the second interconnect layer, and a via formed in the second interconnect layer and connected to the oxide semiconductor layer. The gate electrode, the gate insulating film and the oxide semiconductor layer overlap in a plan view.




ice

Semiconductor devices including a stressor in a recess and methods of forming the same

Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.




ice

Semiconductor device and method for manufacturing the same

It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.




ice

Semiconductor device and manufacturing method thereof

A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.




ice

Light-emitting element, light-emitting device, and electronic device

A light-emitting element includes a first electrode, a first light-emitting layer formed over the first electrode, a second light-emitting layer formed on and in contact with the first light-emitting layer to be in contact therewith, and a second electrode formed over the second light-emitting layer. The first light-emitting layer includes a first light-emitting substance and a hole-transporting organic compound, and the second light-emitting layer includes a second light-emitting substance and an electron-transporting organic compound. Substances are selected such that a difference in LUMO levels between the first light-emitting substance, the second light-emitting substance, and the electron-transporting organic compound is 0.2 eV or less, a difference in HOMO levels between the hole-transporting organic compound, the first light-emitting substance, and the second light-emitting substance is 0.2 eV or less, and a difference in LUMO levels between the hole-transporting organic compound and the first light-emitting substance is greater than 0.3 eV.




ice

Semiconductor device and manufacturing method thereof

A semiconductor film having an impurity region to which at least an n-type or p-type impurity is added and a wiring are provided. The wiring includes a diffusion prevention film containing a conductive metal oxide, and a low resistance conductive film over the diffusion prevention film. In a contact portion between the wiring and the semiconductor film, the diffusion prevention film and the impurity region are in contact with each other. The diffusion prevention film is framed in such a manner that a conductive film is exposed to plasma generated from a mixed gas of an oxidizing gas and a halogen-based gas to form an oxide of a metal material contained in the conductive film, the conductive film in which the oxide of the metal material is formed is exposed to an atmosphere containing water to be fluidized, and the fluidized conductive film is solidified.




ice

Semiconductor device

When a semiconductor substrate of a semiconductor device is viewed from above, an isolation region, an IGBT region, and a diode region are all formed adjacent to each other. A deep region that is connected to a body region and an anode region is formed in the isolation region. A drift region is formed extending across the isolation region, the IGBT region, and the diode region, inside the semiconductor substrate. A collector region that extends across the isolation region, the IGBT region and the diode region, and a cathode region positioned in the diode region, are formed in a region exposed on a lower surface of the semiconductor substrate. A boundary between the collector region and the cathode region is in the diode region, in a cross-section that cuts across a boundary between the isolation region and the diode region, and divides the isolation region and the diode region. The collector region formed in the isolation region has a higher dopant impurity concentration than the collector region in the IGBT region.




ice

Light emitting device having an organic light emitting diode that emits white light

The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.




ice

Display device

A protective circuit includes a non-linear element which includes a gate electrode, a gate insulating layer covering the gate electrode, a first oxide semiconductor layer overlapping with the gate electrode over the gate insulating layer, and a first wiring layer and a second wiring layer whose end portions overlap with the gate electrode over the first oxide semiconductor layer and in which a conductive layer and a second oxide semiconductor layer are stacked. Over the gate insulating layer, oxide semiconductor layers with different properties are bonded to each other, whereby stable operation can be performed as compared with Schottky junction. Thus, the junction leakage can be reduced and the characteristics of the non-linear element can be improved.




ice

Select devices including a semiconductive stack having a semiconductive material

Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (Å) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack.




ice

Driver circuit and semiconductor device

The silicon nitride layer 910 formed by plasma CVD using a gas containing a hydrogen compound such as silane (SiH4) and ammonia (NH3) is provided on and in direct contact with the oxide semiconductor layer 905 used for the resistor 354, and the silicon nitride layer 910 is provided over the oxide semiconductor layer 906 used for the thin film transistor 355 with the silicon oxide layer 909 serving as a barrier layer interposed therebetween. Therefore, a higher concentration of hydrogen is introduced into the oxide semiconductor layer 905 than into the oxide semiconductor layer 906. As a result, the resistance of the oxide semiconductor layer 905 used for the resistor 354 is made lower than that of the oxide semiconductor layer 906 used for the thin film transistor 355.




ice

Semiconductor device and method for manufacturing the same

To provide a semiconductor device which has transistor characteristics with little variation and includes an oxide semiconductor. The semiconductor device includes an insulating film over a conductive film and an oxide semiconductor film over the insulating film. The oxide semiconductor film includes a first oxide semiconductor layer, a second oxide semiconductor layer over the first oxide semiconductor layer, and a third oxide semiconductor layer over the second oxide semiconductor layer. The energy level of a bottom of a conduction band of the second oxide semiconductor layer is lower than those of the first and third oxide semiconductor layers. An end portion of the second oxide semiconductor layer is positioned on an inner side than an end portion of the first oxide semiconductor layer.




ice

Oxide semiconductor film and semiconductor device

It is an object to provide a highly reliable semiconductor device with good electrical characteristics and a display device including the semiconductor device as a switching element. In a transistor including an oxide semiconductor layer, a needle crystal group provided on at least one surface side of the oxide semiconductor layer grows in a c-axis direction perpendicular to the surface and includes an a-b plane parallel to the surface, and a portion except for the needle crystal group is an amorphous region or a region in which amorphousness and microcrystals are mixed. Accordingly, a highly reliable semiconductor device with good electrical characteristics can be formed.




ice

Semiconductor device and display device

A semiconductor device including a circuit which does not easily deteriorate is provided. The semiconductor device includes a first transistor, a second transistor, a first switch, a second switch, and a third switch. A first terminal of the first transistor is connected to a first wiring. A second terminal of the first transistor is connected to a second wiring. A gate and a first terminal of the second transistor are connected to the first wiring. A second terminal of the second transistor is connected to a gate of the first transistor. The first switch is connected between the second wiring and a third wiring. The second switch is connected between the second wiring and the third wiring. The third switch is connected between the gate of the first transistor and the third wiring.




ice

Display device including at least six transistors

By applying an AC pulse to a gate of a transistor which easily deteriorates, a shift in threshold voltage of the transistor is suppressed. However, in a case where amorphous silicon is used for a semiconductor layer of a transistor, the occurrence of a shift in threshold voltage naturally becomes a problem for a transistor which constitutes a part of circuit that generates an AC pulse. A shift in threshold voltage of a transistor which easily deteriorates and a shift in threshold voltage of a turned-on transistor are suppressed by signal input to a gate electrode of the transistor which easily deteriorates through the turned-on transistor. In other words, a structure for applying an AC pulse to a gate electrode of a transistor which easily deteriorates through a transistor to a gate electrode of which a high potential (VDD) is applied, is included.




ice

Semiconductor device and manufacturing method the same

An object is to manufacture and provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which a semiconductor layer including a channel formation region serves as an oxide semiconductor film, heat treatment for reducing impurities such as moisture (heat treatment for dehydration or dehydrogenation) is performed after an oxide insulating film serving as a protective film is formed in contact with an oxide semiconductor layer. Then, the impurities such as moisture, which exist not only in a source electrode layer, in a drain electrode layer, in a gate insulating layer, and in the oxide semiconductor layer but also at interfaces between the oxide semiconductor film and upper and lower films which are in contact with the oxide semiconductor layer, are reduced.




ice

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Vehicle side airbag device

A deployment guiding cloth is wound from an outside in the vehicle width direction, on an outer peripheral portion of a folded side airbag. This deployment guiding cloth extends toward a vehicle front side and is interposed between the side airbag that is partially deployed and a vehicle cabin side portion (a center pillar garnish and a door trim) before the side airbag is fully deployed.




ice

Front retaining devices for a gliding board

A gliding apparatus includes a gliding board, a first front boot-retaining device for ascending a slope and a second front boot-retaining device for the descent. The first front retaining device comprises a first boot-fastening mechanism, defining a boot pivot axis during the ascent. The second front retaining device comprises a second boot-fastening mechanism, including a movable element incorporating an interface surface capable of contacting a front portion of the boot, the movable element being separate from the first fastening mechanism. The second front retaining device is configurable in a first “inactive” configuration for which the interface surface is away from the boot front portion, and a second “active” configuration for which the interface surface contacts the boot front portion. The first boot-fastening mechanism is capable of cooperating with the movable element of the second front retaining device so as to maintain the second front retaining device in its active configuration.




ice

Side airbag device for vehicle

In an inflated and expanded state of a side airbag, a forwardly extending portion, provided at an upper portion of a rear side bag portion, extends from a side of a shoulder portion of a seated passenger toward a vehicle front side and is disposed above a front side bag portion. A dimension in a vehicle transverse direction of this forwardly extending portion is set to be smaller than that of the front side bag portion, and a vehicle transverse direction inner side surface at an upper end side of the front side bag portion is inclined or curved so as to rise-up while heading toward a vehicle transverse direction outer side. An upper arm portion is pushed-up due to sliding contact with this surface. Even when the seated passenger inertially toward an oblique front of a vehicle, the shoulder portion can be restrained by the forwardly extending portion.




ice

Ice skate blade guard with safety feature

An ice skate blade guard comprises a device for limiting/preventing falls and injury on the ice when skate blade guards are inadvertently left on when the skater enters the ice. At least one longitudinally-extending bar, blade, or other member provided on the bottom of the guard is sufficiently narrow, sharp, and/or with sharp or biting side edge(s) to bite-into the ice, upon incipient sideways movement, due to the member(s) being biased against the ice and/or due to weight of the wearer. The member(s) prevent sideways slipping, but allow forward movement. The slip-prevention member(s) may be movable in/on the guard and biased downward relative to the main body. In some versions, the slip-prevention blade(s) are fixed to the guard, rigidly and non-movably protruding from the bottom of the guard.




ice

Behavior control device for a combination vehicle

There is provided a behavior control device for the prevention of a jackknife phenomenon of a combination vehicle including a tractor and a trailer pivotably coupled with the tractor, taking into account that the relative pivoting action of the trailer and tractor varies according to the magnitudes of a vehicle speed or a deceleration. The inventive behavior control device comprises a braking-driving force control portion which controls a braking-driving force of the tractor or the trailer to reduce a difference between a yaw rate of the tractor and a yaw rate of the trailer and a judgment portion which judges whether or not a braking-driving force control of the tractor or the trailer by the braking-driving force control portion is necessary; wherein the judgment portion changes based on a vehicle speed or a deceleration of the vehicle the judgment of whether or not the braking-driving force control is necessary.




ice

Vehicle side airbag device

A deployment guiding cloth is wound from an outside in the vehicle width direction, on an outer peripheral portion of a folded side airbag. This deployment guiding cloth extends toward a vehicle front side and is interposed between the side airbag that is partially deployed and a vehicle cabin side portion (a center pillar garnish and a door trim) before the side airbag is fully deployed.




ice

Ruggedized tool and detector device

A tool comprising a tool body having an opening defined by interior walls extending into the tool body and a casing disposed within the opening. The tool further includes a scintillator material disposed within the casing and a first compressive member disposed within the tool body at a first axial location. The first axial location extends for a fraction of a total axial length of the casing and exerts a first radially compressive force at the first axial location.




ice

Structure for gunpowder charge in combined fracturing perforation device

This invention provides a structure for gunpowder charge for charging gunpowders of different rates in combined fracturing perforation devices. The structure for gunpowder charge is convenient to mount and transport. In one embodiment, said structure for gunpowder charge comprises an inner gunpowder box located between adjacent perforating charges in the charge frame of a perforation device, and an outer gunpowder box attached to the outer wall of the charge frame, wherein said outer gunpowder box comprises one or two box units (2 or 4) with at least one claw at the inner side of said box unit, said claw can be locked into a groove or installation hole of the charge frame, and wherein said inner gunpowder box and said outer gunpowder box are charged with gunpowders of different burning rates.




ice

Device for checking pharmaceutical products, in particular hard gelatin capsules

The invention relates to a device (10; 10a;10b; 10c; 50) for checking pharmaceutical products (1), in particular hard gelatin capsules, by means of at least one radiation source (30; 60) preferably embodied as an X-ray source, and a conveying device which conveys the products (1) in a clocked manner in a radiation area (31) of the radiation source (30; 60). The radiation emitted by the radiation source (30; 60) penetrating the products (1) preferably perpendicular to the longitudinal axes thereof (2), and the radiation is captured on the side of the products (1) opposite the radiation source (30) by means of at least one sensor element (35) which is coupled to an evaluation device (36). The invention is characterized in that the conveyor device is embodied as a conveyor wheel (15; 15a; 51) which can rotate in a stepped manner about an axis (12; 52), and the products (1) are arranged, while being conveyed in the radiation area (31), in receiving areas (28; 37; 56) of the conveyor wheel (15; 5a; 51).




ice

Photoelectric conversion device comprising photoelectric conversion element

It is an object to provide a photoelectric conversion device whose power consumption and a mounting area are reduced and yield is improved and further to provide a photoelectric conversion device whose number of manufacturing processes and manufacturing cost are reduced. A photoelectric conversion device includes a photoelectric conversion element for outputting photocurrent corresponding to illuminance, and a resistor changing resistance corresponding to illuminance. In the photoelectric conversion device, one terminal of the photoelectric conversion element and one terminal of the resistor are electrically connected in series; the other terminal of the photoelectric conversion element is connected to a high power supply potential; the other terminal of the resistor is connected to a low power supply potential; and a light intensity adjusting unit is provided on a light reception surface side of the photoelectric conversion element or the resistor to adjust illuminance.




ice

Solid state imaging device, portable information terminal device and method for manufacturing solid state imaging device

According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.




ice

Bladed coal diffuser and coal line balancing device

A coal nozzle assembly for a pulverized coal burner includes a diffuser. A flow conditioner also may be used with the assembly. The assembly conditions the coal/air flow before the coal/air flow is introduced to the furnace. The flow conditioner directs the coal into the diffuser where it is swirled to form a fuel rich outer ring disposed about an air rich inner portion before the fuel is delivered to the coal nozzle.




ice

Strain-enhanced silicon photon-to-electron conversion devices

Improved silicon solar cells, silicon image sensors and like photosensitive devices are made to include strained silicon at or sufficiently near the junctions or other active regions of the devices to provide increased sensitivity to longer wavelength light. Strained silicon has a lower band gap than conventional silicon. One method of making a solar cell that contains tensile strained silicon etches a set of parallel trenches into a silicon wafer and induces tensile strain in the silicon fins between the trenches. The method may induce tensile strain in the silicon fins by filling the trenches with compressively strained silicon nitride or silicon oxide. A deposited layer of compressively strained silicon nitride adheres to the walls of the trenches and generates biaxial tensile strain in the plane of adjacent silicon fins.




ice

Photovoltaic device with back side contacts

Methods and apparatus for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells are provided. A photovoltaic (PV) device generally includes a window layer; an absorber layer disposed below the window layer such that electrons are generated when photons travel through the window layer and are absorbed by the absorber layer; and a plurality of contacts for external connection coupled to the absorber layer, such that all of the contacts for external connection are disposed below the absorber layer and do not block any of the photons from reaching the absorber layer through the window layer. Locating all the contacts on the back side of the PV device avoids solar shadows caused by front side contacts, typically found in conventional solar cells. Therefore, PV devices described herein with back side contacts may allow for increased efficiency when compared to conventional solar cells.




ice

Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same

Disclosed is a photovoltaic device. The photovoltaic device includes: a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.




ice

Semiconductor device, in particular solar cell

A semiconductor device, in particular a solar cell, comprises a semiconductor substrate having a semiconductor substrate surface and a passivation composed of at least one passivation layer which surface-passivates the semiconductor substrate surface, wherein the passivation layer comprises a compound composed of aluminum oxide, aluminum nitride or aluminum oxynitride and at least one further element.