ice

Display device

To provide an active matrix display device in which power consumption of a signal line driver circuit can be suppressed, so that power consumption of the entire memory can be suppressed. A plurality of memory circuits which can write data of a video signal input to a pixel in one line period and can hold the data are provided in a signal line driver circuit of a display device. Then, the data held in each memory circuit is input to a pixel of a corresponding line as a video signal. By providing two or more memory circuits in a driver circuit, pieces of data of video signals corresponding to two or more line periods can be concurrently held in the memory circuits.




ice

Tuning display devices

A technique comprising: determining a correction to a drive voltage for the front plane common electrode of a first display device according to the result of one or more measurements of an optical property for the first display device and the result of one or more measurements of said optical property for one or more other devices including an optical medium having the same optical response as the first display device.




ice

Liquid crystal display device

A liquid crystal display device comprising a backlight and a pixel portion including first to 2n-th scan lines, wherein, in a first case of expressing a color image, first pixels controlled by the first to n-th scan lines are configured to express a first image using at least one of first to third hues supplied in a first rotating order, and second pixels controlled by the (n+1)-th to 2n-th scan lines are configured to express a second image using at least one of the first to third hues supplied in a second rotating order, wherein, in a second case of expressing a monochrome image, the first and second pixels controlled by the first to 2n-th scan lines are configured to express the monochrome image by external light reflected by the reflective pixel electrode, and wherein the first rotating order is different from the second rotating order.




ice

Image processing device, image processing method and program

Embodiments of the technology involve apparatus and methods for control of displaying of images. In an example, an apparatus may include an image display, a sensor to detect posture of the image display and a processor to control sequentially displaying images of a group of images on the image display based on changes in the detected posture. The processor may control a display of a posture indicator on the image display such that the indicator may represent a relation between a change in the detected posture and an image of the group of images. Optionally, the indicator may be represented by a tilt meter. Moreover, in some embodiments, the sensor may be implemented with a gyroscopic sensor.




ice

Circuit board with integrated passive devices

Embodiments of the present disclosure are directed towards a circuit board having integrated passive devices such as inductors, capacitors, resistors and associated techniques and configurations. In one embodiment, an apparatus includes a circuit board having a first surface and a second surface opposite to the first surface and a passive device integral to the circuit board, the passive device having an input terminal configured to couple with electrical power of a die, an output terminal electrically coupled with the input terminal, and electrical routing features disposed between the first surface and the second surface of the circuit board and coupled with the input terminal and the output terminal to route the electrical power between the input terminal and the output terminal, wherein the input terminal includes a surface configured to receive a solder ball connection of a package assembly including the die. Other embodiments may be described and/or claimed.




ice

Duplexer, communication module component, and communication device

A duplexer has an antenna terminal, a first terminal, and second terminals and provided with a first filter arranged between the antenna terminal and first terminal and including a parallel resonator for forming a ladder type filter circuit, a second filter arranged between the antenna terminal and the second terminal and having a passband higher than a passband of the first filter, and an electromagnetic coupling element arranged between the parallel resonator of the first filter and a ground part and electromagnetically coupled with the antenna terminal.




ice

Acoustic wave device

An acoustic wave device includes a piezoelectric substrate, an interdigital transducer (IDT) electrode provided on an upper surface of the piezoelectric substrate, a first dielectric film covering the upper surface of the piezoelectric substrate to cover the IDT electrode, and a second dielectric film covering an upper surface of the first dielectric film. The second dielectric film includes a thin portion positioned in a tip region of electrode fingers of the IDT electrode and a thick portion which is positioned in a middle region of the IDT electrode and is thicker than the thin portion. The acoustic wave device suppresses spurious emission and has superior passband characteristics.




ice

Capacitive device and resonance circuit

To provide a capacitive device capable of accurately securing a capacitance value, a variable capacitive device capable of sufficiently securing a capacity variability rate, and a resonance circuit that uses the capacitive devices. A capacitive device includes a capacitive device body constituted of a dielectric layer and at least a pair of capacitive device electrodes that sandwich the dielectric layer and cause a desired electric field in the dielectric layer; and stress adjustment portions to adjust a stress caused in the dielectric layer of the capacitive device body.




ice

Cavity filter with connecting structure connected between slider and driving device

A cavity filter includes a slider, a driving device, and an adapter. The slider is used to slide relative to and couple with a plurality of resonators located in the cavity filter to adjust a resonating frequency of the cavity filter. The driving device is used to drive the slider slide relative to the plurality of resonators and includes a shaft having a free end. The adapter is installed between the slider and the driving device and rotateably connected to the free end of the shaft with a gap configured between the free end and the adapter.




ice

Minimal intrusion very low insertion loss technique to insert a device to a semi-rigid coaxial transmission line

A signal conditioning apparatus can include a coaxial cable having at least one slot formed therein. A conductive film can be applied to the coaxial cable so as to cover each slot. A device mounting surface can be formed within the slot and a protection device can be mounted on the device mounting surface. A housing consisting of one or more interlockable portions can be coupled to the coaxial cable.




ice

Filter, duplexer, communication module and communication device

A filter includes a plurality of primary resonators connected to a serial arm, a plurality of secondary resonators connected to a parallel arm, a primary inductor connected to at least one of the plurality of primary resonators and a secondary inductor connected to at least one of the plurality of secondary resonators. The primary inductor is arranged so as not to be connected to a path between the secondary resonator to which the secondary inductor is connected in parallel and the primary resonator that is connected to the secondary resonator to which the secondary inductor is connected in parallel.




ice

Weaving finishing device

A dynamic finishing device that is able to finish one side of a product independently of a second side of the product while the product is being woven is provided. The sides may be finished in a non-linear fashion by the dynamic finishing device. Additionally, one or more finishing devices can be dynamically positioned in an interior portion of the woven product as it is being woven. Once positioned, the finishing devices may create apertures, pockets, and/or tunnels in the woven product and finish the edges of these creations. Finishing in the interior portions of the woven product occurs in the direction of the warp and in the direction of the weft.




ice

Woven fabric having composite yarns for endoluminal devices

A woven fabric for a low profile implantable medical device includes a plurality of textile strands of a composite yarn aligned in a first direction interlaced with a plurality of textile strands of the composite yarn aligned in a second direction. The composite yarn includes a combination of a first material and a second material. The textile strands have a size between about 10 denier to about 20 denier. The first material has at least one characteristic different from the second material and the second material reacts favorably with blood when placed within an artery.




ice

Implantable graft device having treated yarn and method for making same

An implantable graft device having treated yarn is disclosed. The device comprises a graft body forming a lumen defining a longitudinal axis and comprising proximal and distal ends. The graft body comprises a woven fabric having warp yarns aligned in a first direction and a weft yarns aligned in a second direction. At least one of the weft yarns and the warp yarns has an agent applied thereto defining treated yarns of the graft body.




ice

Device for manufacturing a fabric, and fabric

A device for manufacturing a fabric has a plurality of automatically working apparatus arranged next to one another on at least one carrier for manufacturing a leno weave (a leno weave apparatus). Two leno threads are fed to each leno weave apparatus. The device has at least one weft thread picking device; wherein the weft thread is introduced into the shed of leno threads raised by a plurality of leno weave apparatus. The weft thread is bound using at least two leno threads at a plurality of points behind the weft thread over the width of the fabric. At least one of the leno weave apparatus arranged in the end region of the fabric carries out a higher number of interlacings for achieving a homogenized warp tension distribution over the width of the fabric; and/or the lowering of the shed is carried out by the leno weave apparatus over the width of the fabric at different times for achieving a homogenized warp tension distribution.




ice

Weaving machine having movable shed opening limiter device

A weaving machine for producing a woven fabric has a shedding device to form a loom shed of warp material, a weft insertion device for inserting a preferably tape-shaped or band-shaped weft material into the loom shed, a drawing-off device for drawing off the finished fabric in a drawing-off direction, fabric movement device for moving the fabric back and forth in the warp direction to bring the last inserted weft material into contact with the binding point or fabric edge. A shed limiter device limits the opening of the loom shed from above and below the warp, and is movable back and forth in the warp direction. The shed limiter device only loosely bounds the fabric and essentially without actively clamping or pinching or contacting the fabric and/or the last inserted weft material, at least while moving in the direction opposite the drawing-off direction.




ice

Method and device for the manufacturing of fabrics with at least two different pile heights in a same pile row

A method weaves pile fabrics with at least two different pile heights (a, b) in the same pile row, wherein the fabrics have weft threads, ground warp threads and pile-warp threads (1, 2), wherein these pile-warp threads are interlaced in the fabric, according to a pattern, in a figure-forming manner or are inwoven in a non-figure-forming manner, and which, when they are figure-forming, form pile with a well-defined pile height. The method includes a first set of pile warp threads, under light strain and at least a second set of pile warp threads under a higher strain. A device for manufacturing such fabrics is described.




ice

Golf swing practice apparatus

A golf swing practice apparatus which includes a rotating drum having an optical sensor mounted inside the drum that is capable of swiveling in a direction perpendicular to the rotational direction of the drum and capable of detecting a change in swivel position or swivel angle; an elongated cord including a proximal end secured to the drum and a distal end secured to a golf ball; a base member having an impact area over which a user may swing a golf club; and a frame structure secured to the base member and to the rotating drum whereby the frame structure holds the rotating drum in an elevated position above the impact area.




ice

Device for making woven article

A device for making a woven article from a plurality of strings includes a base, a post, first and second engagement devices and a stabilization device. The base has a plurality of slots formed therein. The first engagement device engages first ends of the strings and is fixedly attached to the base and fixed relative to the slots, thereby fixing the first ends relative to the base. The second engagement device is fixedly attached to the base and includes a plurality of slits each configured to secure a corresponding one of the strings. The slots formed in the base are disposed between and spaced apart from the first and second engagement devices. The stabilization device is removably engageable with a selected one of the slots and is configured to engage a selected portion of the strings between the first and second engagement devices to restrict twisting of the strings.




ice

Battery protecting circuit, battery protecting device, and battery pack

A disclosed battery protecting circuit includes a battery protecting IC powered by a voltage of a secondary battery; another battery protecting IC powered by a voltage of another secondary battery connected to the secondary battery in series; and a constant voltage output unit which receives a maximum voltage obtained by adding voltages of the secondary battery and the other secondary battery in series and outputs a constant voltage upon receipt of a control signal from an output terminal of the battery protecting IC or the other battery protecting IC.




ice

Charging device with battery management system for rechargeable battery

A charging device with a battery management system which remains a rechargeable battery in full capacity during standby after being fully charged is disclosed. The charging device includes a charging module, electrically connected to a power source, for charging the rechargeable battery; a voltage detecting module, for detecting a voltage of the rechargeable battery; and a determination module, for instructing the charging module to charge the rechargeable battery with a supplementary current, when the voltage of the rechargeable battery detected by the voltage detecting module reduces to a first predetermined voltage, until the voltage of the rechargeable battery reaches a second predetermined voltage. A reduction of the voltage of the rechargeable battery is due to self-discharge of the rechargeable battery during standby after being fully charged.




ice

Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same

A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.




ice

Multi-orientation stand for a portable electronic device

A stand for a portable electronic device includes a device receiving side including a coupling component for engaging with the portable electronic device when the portable electronic device is in a first orientation relative to the device receiving side and when the portable electronic device is in a second orientation relative to the device receiving side. The stand also includes a first support side adjacent to the device receiving side to act as a base when the portable electronic device is in the first orientation, and a second support side adjacent to the first support side to act as a base when the portable electronic device is in the second orientation.




ice

Semiconductor device for battery control and battery pack

A semiconductor device for battery control includes a CPU, a first bus coupled to the CPU, a second bus not coupled to the CPU, and a protective function circuit for protecting a battery from stress applied thereto. The semiconductor device also includes a non-volatile memory storing trimming data, a trimming circuit to perform trimming required to allow the protective function circuit to exert a protective function, and a bus control circuit capable of selectively coupling the first bus and the second bus to the non-volatile memory. The semiconductor device further includes a transfer logic circuit which causes, by making the bus control circuit select the second bus, a trimming data transfer path leading from the non-volatile memory to the trimming circuit to be formed and the trimming data stored in the non-volatile memory to be transferred to the trimming circuit without involving the CPU.




ice

Battery pack with integral non-contact discharging means and electronic device including the same

A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.




ice

Discharge device and discharge method for the active discharge of a capacitor for use in the electric-power system of an electric-drive vehicle

A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.




ice

Available charging/discharging current calculation method and power supply device

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.




ice

Charging device, image forming apparatus, and computer program product

An charging device includes: capacitors connected in series; a charging unit that charges the capacitors; bypass units, each respectively connects in parallel to each capacitors, wherein each bypass unit causes, when a charged voltage of any capacitor has reached a set voltage, a charging current to bypass the capacitor whose charged voltage has reached the set voltage; and a control unit that controls the charging unit to charge the capacitors in such a manner that, when a charging voltage of the any capacitor has reached the set voltage, the control unit causes the charging unit to reduce the charging current, and if a predetermined period has elapsed since the charging voltage has reached the set voltage, and if a charging voltage of any of the other capacitors has not reached the set voltage after the predetermined period, the control unit causes the charging unit to increase the charging current.




ice

Electricity generation device and permanent-magnet electric generator

An electricity generation device includes a permanent-magnet electric generator with three or more phase windings each having an output terminal and connected to a neutral point, and bidirectional semiconductor switching circuits capable of interrupting connections between the respective phase windings and the neutral point. Each switching circuit allows current to flow in both directions. A gate signal generation circuit outputs to one of the switching circuits during a period including the time at which the AC voltage excited in the corresponding phase winding turns from positive to negative and during a period including the time at which the AC voltage excited in the corresponding phase winding turns from negative to positive. A startup gate signal output circuit outputs a startup gate signal to all of the bidirectional semiconductor switching circuits when the permanent-magnet electric generator is to be started.




ice

Automatic start/stop device for engine-driven power generator

Starting and stopping an engine is automatically controlled based on a load without using a relay. An inverter engine-driven power generator has an alternator, a rectifying circuit, a DC/DC converter, and an inverter circuit. A load detection circuit is connected to an output of the inverter circuit in parallel. A load detection line of the load detection circuit is connected to an output line of the inverter circuit in parallel via resistors. A power supply formed of a battery is connected to the load detection line. A decision circuit outputs a load detection signal when a current having a preset value or more flows through the load detection line. A drive/stop CPU starts the engine in response to the load detection. The resistors are set at a resistance value which does not influence a load to which a generator output is supplied.




ice

Method and device for primary frequency regulation based on bang-bang control

The present invention provides a method and a device for primary frequency regulation based on bang-bang control, the method comprises: obtaining in real-time a power grid frequency of a steam turbine generator set; performing a subtraction operation on a rated power grid frequency and said power grid frequency to generate a power grid frequency difference; performing a dead zone process on the power grid frequency difference according to a dead zone fixed value to generate a frequency difference; performing a frequency difference compensation operation on the frequency difference to generate a frequency difference compensation instruction; and combining an original primary frequency regulation output instruction with the frequency difference compensation instruction and outputting the result to a steam turbine speed regulation system when a selecting switch is 1.




ice

Method and device to compensate for a dip in the output voltage of a motor-vehicle alternator

A dip in the output voltage of a motor-vehicle alternator, owing to a connecting of a load or a change in speed, is compensated with the aid of an alternator regulator which provides a control signal that has a duty factor and increases the excitation current of the motor-vehicle alternator. After the occurrence of the voltage dip, in a first step, the duty factor of the control signal is increased by a differential amount, and in a subsequent second step, the rate of correction is limited. After the occurrence of the voltage dip, parameters describing the instantaneous working point of the motor-vehicle alternator are determined, and in the first step, the differential amount is set as a function of the working point.




ice

Temperature detection device that detects temperature of rotor of motor

A temperature detection device that detects a temperature of a rotor of a motor. The temperature detection device has a current detection unit configured to detect a current value of a current flowing through a winding with which any one of a stator and the rotor of the motor is provided, an iron loss estimation unit configured to estimate an iron loss of the rotor using the current value, and a rotor temperature estimation unit configured to estimate the temperature of the rotor using the iron loss.




ice

Power supply system for motor vehicle provided with control device of voltage applied to field coil of generator

A power supply system for a motor vehicle includes a generator that includes a rotor having a field coil and a stator having an armature coil; a rectifier that rectifies AC power generated in the armature coil; an excitation control circuit that takes control of a voltage applied to the field coil; a capacitor that is connected to the DC side of the rectifier, and receives and transfers the rectified power; a battery connected to an electric load of the motor vehicle; a DC-DC converter that is connected between the capacitor and the battery and capable of converting unidirectionally or bidirectionally an input DC voltage into any DC voltage; and a selection switch which connects the capacitor or the battery to the excitation control circuit as a power supply source.




ice

Power control method and device

The present invention discloses a method and an apparatus for power control. An apparatus for power control in accordance with an embodiment of the present invention can include: a voltage comparing part configured to compute an error voltage by using a measured voltage measured at the generator and a reference voltage that is designated; a control module configured to compute a first reactive power value for power control of the generator by being inputted with the error voltage; and a driving module configured to compute a reference reactive power value by using the first reactive power value and a second reactive power value computed using an active power value of the power converter and configured to control the power converter in correspondence with the computed reference reactive power value.




ice

Electromagnetic device for generating electrical current and methods thereof

An AC current generator for generating an CA current and method therefor and includes a stator and a rotor. The stator includes an outer shell of non-magnetic material enclosing an evacuated chamber and having a distribution of a plurality of ferromagnets attached thereto. The rotor includes an inner core of non-magnetic material located at a stability location within said evacuated chamber and having a distribution of a plurality of diamagnets attached thereto. In addition, the AC current generator includes at least one magnetic flux detection unit located within at least one magnetic field generated by at least one group of ferromagnets of the plurality of ferromagnets. Displacing the rotor from the stability location towards the at least one group of ferromagnets generates a change in magnetic flux in the magnetic field thereby generating an AC current in the at least one magnetic flux detection unit.




ice

Rotary electrical machine with excitation provided with a digital regulator device

The rotary electrical machine is capable of functioning as a generator and outputs a continuous output voltage (Ub+) that is adjustable by an excitation current. The digital regulator (2) of the machine comprises an excitation current control means (7) and a control loop (6) that includes a device (10) for measurement, by sampling, of the output voltage (Ub+), the measurement device generating a signal sampled at a predetermined first sampling frequency (F1 e). The machine has a bandwidth that is limited by a predetermined first cutoff frequency (F1 c). The measurement device includes an apparatus for oversampling such that the first sampling frequency (F1 e) is greater than twice the first cutoff frequency (F1 c), and the control loop also includes an apparatus (12) for decimating the sampled signal.




ice

Mobile device case with retractor reel assembly for user-provided headphones

A mobile device case includes a reel assembly, including a reel, a supporting plate, and a hub between the reel and the supporting plate. The hub includes a first cavity between the hub and the supporting plate for housing a spring, and a second cavity between the hub and the reel for housing a flat flexible cable (FFC). The spring is wound in a first direction, while the FFC is wound in a second direction. The FFC includes a first end for electrically coupling to a female jack connector of a device. A female connector is electrically coupled to a second end of the FFC for engaging a male jack connector of user-provided headphones. When the reel rotates in the first direction, the spring tightens and the FFC loosens. When the reel rotates in the second direction, the spring loosens and the FFC tightens.




ice

Power supply device, power acquisition device and safety system for electromagnetic induction-powered electric vehicle

It is provided a power supply device and a power acquisition device for an electromagnetic induction-powered electric vehicle that increase a power transfer efficiency by maximizing a lateral deviation tolerance and by minimizing a gap between the power acquisition device and the power supply device while preventing the power acquisition device from colliding with an obstacle present on a road and being damaged by the collision.




ice

Device and method for inductively transmitting electric energy to displaceable consumers

The invention relates to a device for inductively transmitting electrical energy to displaceable consumers (F1-F13) that can be moved along a track, having a primary conductor arrangement (2) divided into route segments (3-7) that are electrically separated from each other, and extending along the track, wherein individual route segments (3-7) are each associated with at least one current source (3'-7') for imprinting a continuous current into each of the route segments (3-7), and to a corresponding method. The aim of the invention is to supply the displaceable consumers in an energy-saving manner with electric energy matched to demand, and to allow short reaction times when operating the device. This aim is achieved by providing the device with a means (11) for determining the total power of the displaceable consumers (F1-F13) present in each of the individual route segments (3-7) and with a means (11) for actuating the current sources (3'-7') for applying the electrical continuous current corresponding to the total power required for each route segment (3-7), or by determining, according to the method, the required total power of the displaceable consumers (F1-F13) present in each route segment and applying an electrical continuous current to each route segment (3-7) by means of the associated current source (3'-7'), said current corresponding to the total power required therein.




ice

Ultra slim power supply device and power acquisition device for electric vehicle

An ultra slim power supply device for supplying power to an electric vehicle in a contactless manner includes at least one power supply track buried in a road. Each power supply track includes a plate-shaped magnetic core extending along the road, a plate or strip shaped magnetic field generator arranged above the magnetic core through which an alternating current is supplied to generate a magnetic field, a plate or strip shaped insulating body positioned between the magnetic core and the magnetic field generator to isolate them from each other, and a housing for enclosing the magnetic core, the magnetic field generator and the insulating body.




ice

360-degree freedom electric cord device and system

A 360-degree freedom electric cord device system contains and manages automatic extension and retraction of an electric cord/cable supplying power to a push/pull-type electric machine, either self-propelled or not, for intended displacement or steering on a surface by a user. The 360-degree freedom electric cord device system, partly mounted on the electric machine, allows the power cord to clear obstacles on the surface and includes a self-retracting spool to automatically extend and rewind the power cord and continuously keeps physical tension therein, in a straight line and a natural position, during the displacement in any direction of the electric machine. With a ratchet mechanism, the device can also suitably be used independently of the machine as an electric retractable extension cord reel.




ice

Device for the coupling of elastic and rigid contact line systems

For the coupling of two parallel contact wires of an elastic contact line system with a rigid contact line system, which has a power track (3) and a contact wire (4) affixed thereon, an elongated cantilever (5) is provided in a transition area, whose rigidity increases in the longitudinal direction from the elastic contact line system to the rigid contact line system. The two contact wires (1, 2) of the elastic contact line system are located along the cantilever parallel to the first contact wire (4), which is, in turn, clamped over the entire length of the cantilever. All three contact wires (1, 2, 4) are affixed on several multiple clamps (9) in the area of the cantilever (5), which clamps are located in a distributed manner along the cantilever. The multiple clamps (9) are located in recesses (12) of the cantilever.




ice

Analysis device of catenary-based transportation system, analysis method and program therefor

In a catenary-based transportation system which is provided with integrated power supply equipment having an electricity storage unit which stores electricity regenerated by vehicles traveling by electricity received from a catenary and supplies electricity to the catenary and the other power supply system which is a power supply system different from the electricity storage unit concerned, the performance of a rectifier of the other power supply system is determined based on a power-supplying contribution ratio γ of the other power supply system so that the cost value of the integrated power supply equipment becomes lower than a target cost value.




ice

Method for optimizing the operation of a reversible traction substation and associated devices

The method according to the invention aims to optimize the operation of a reversible traction substation (Sk) of a power supply system (4) for railway vehicles, said reversible substation being able to be commanded in a traction operating mode or a braking mode. This method includes: determining a current value (Mc) of a favored operating mode;maximizing at least one optimization function (F) that depends on the current value of the favored operating mode, based on instantaneous values (G(t)) of multiple operating properties of the substation (Sk);computing optimized values (Popt(t)) for multiple configuration parameters of the substation (Sk) from maximized values (Gmax(t)) of the operating properties.




ice

Method and device for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas

A method for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas. The sensible heat of a synthesis gas produced from hydrocarbons and steam can be used so that two types of vapor are produced during the heating and evaporation of boiler feed water and process condensate. The method also includes a conversion of the carbon monoxide contained in the synthesis gas. The method includes an optional heating of the boiler feed water using the flue gas from the heating of the reforming reactor. The sensible heat of the synthesis gas and of the flue gas originating from the heating can be used more efficiently. The disadvantages from the flue gas heating, which are caused by the fluctuating heat supply in the flue gas duct, are avoided. A system for practicing the method is also disclosed.




ice

Electrical shocking device with audible and visible spark display

A battery powered, hand-held, lightweight electrical shocking device provides a visible and audible display of sparks continuously upon the operation of a switch. The device is capable of delivering a jolting shock. The display of sparks makes clear the nature of the device and serves as a deterrent to unruly persons. The device is comprised of a non-conductive housing in a generally annular shape, permitting it to be gripped in one hand. On one surface away from the hand are first and second conductive plates separated from each other by an insulator. The electrical circuit comprises a free-running multi-vibrator, a small transformer, a rectifier, a voltage doubler and an internal spark gap. The circuit can deliver a series of short duration, high voltage, low current electrical shocks from two penlight batteries.




ice

DC voltage converter and shock-type high voltage utilization devices

A DC voltage converter includes an oscillator that converts a DC battery voltage to an oscillating voltage, a low voltage transformer that increases the oscillating voltage to a higher oscillating voltage, and a voltage rectifying-capacitor charging network or multiplier that increases the higher oscillating voltage to yet a higher DC voltage at an output terminal for DC high voltage utilization devices and the like. An electric control switch is selectively actuated by the user to apply the battery voltage to the oscillator, resulting in the generation of the stepped-up DC voltage at an output terminal. Another DC voltage converter has an electronic switching circuit that automatically turns the oscillator on and off and a load capacitor across the electrodes that is charged and discharged to provide a shocking voltage. Utilization devices for the voltage developed by the converter shown are a miniature animal training device and a cattle prod device. The miniature animal training device has a pair of outwardly projecting electrodes mounted on a side at one end of the housing that is sized and shaped to fit within and conform to the palm of a hand. The cattle prod device has a pair of electrodes fixedly mounted on the end of a housing assembly made up of telescoping tubular housing sections arranged for relative axial movement whereby the pressing of the electrodes against an object to be shocked actuates the electric control switch and causes a shock of the object. The housing assembly is releasably supported by a rigid handle or an extensible handle assembly.




ice

Animal deterrent device for joggers

An animal deterrent device consists essentially of a palm-sized handle of six to eight inches in length for hand gripping and defining a housing within the central portion thereof to house a plurality of generally rigid tubular sections telescoping one within the other within the housing and being adhered thereto by a fusible adhesive adhering an outer sleeve of the telescoping sections. A pocket clip is attached to the handle and the plurality of sections when fully protracted extending to a length of about three feet with the overall apparatus weighing less than six ounces. The apparatus may additionally have a loop attached for hand transporting of the apparatus. The apparatus is utilized by a jogger upon an attacking animal by extending the telescoping sections to form a rigid whip-like structure so as to engage the attacking animal with the extended telescoping sections.




ice

Controlled shock animal training device

A controlled shock animal training device is shown which includes a mounting collar for mounting the device about a portion of the animal's body. The strap has a pair of electrical contacts which are spaced apart on the mounting strap. An electrical circuit, carried on the mounting strap, connects the pair of spaced electrical contacts and provides a controlled voltage output through the contacts upon triggering of an electrical switch within the circuit. A foldable flap formed in the collar interrupts the electrical circuit during installation of the collar. The shock provided is of limited duration and controlled intensity and requires that the electrical switch be opened and then reclosed to repeat the shocking operation.