structure Synthesis and crystal structure of [Cs([2.2.2]crypt)]2[Mo(CO)5] By scripts.iucr.org Published On :: 2019-09-12 Reduction of the heteroleptic metal carbonyl complex Mo(CO)3(η5-Cp)H with the metallic salt Cs5Bi4 in the presence of [2.2.2]crypt (= 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) in liquid ammonia led to single crystals of bis[(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)caesium] pentacarbonylmolybdate, [Cs(C18H36N2O6)]2[Mo(CO)5] or [Cs([2.2.2]crypt)]2[Mo(CO)5]. The twofold negatively charged anionic complex corresponds to the 18 valence electron rule. It consists of an Mo atom coordinated by five carbonyl ligands in a shape intermediate between trigonal–bipyramidal and square-pyramidal. The Mo—C distances range from 1.961 (3) to 2.017 (3) Å, and the C≡O distances from 1.164 (3) to 1.180 (4) Å. Full Article text
structure Rubidium tetrafluoridobromate(III): redetermination of the crystal structure from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2019-11-29 Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598]. Full Article text
structure Redetermination of the crystal structure of caesium tetrafluoridobromate(III) from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2020-01-31 Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4. Full Article text
structure Crystal structure of the Al8Cr5-type intermetallic Al7.85Cr5.16 By scripts.iucr.org Published On :: 2020-04-09 An aluminium-deficient Al8Cr5-type intermetallic with formula Al7.85Cr5.16 (octaaluminium pentachromium) was uncovered when high-pressure sintering of a mixture with composition Al11Cr4 was carried out. Structure analysis reveals that there are three co-occupied positions with refined occupancy factors for Al atoms being 0.958, 0.772 and 1/2. The present phase is confirmed to be isotypic with the previously reported rhombohedral Al8Cr5 ordered phase [Bradley & Lu (1937). Z. Kristallogr. 96, 20–37] and structurally closely related to the disordered phases of rhombohedral Al16Cr9.5 and cubic Al8Cr5. Full Article text
structure Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API) By scripts.iucr.org Published On :: 2019-06-11 The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenylpyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, molecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane. Full Article text
structure Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-dinitrophenyl)hydrazin-1-ylidene]methyl}phenol acetonitrile hemisolvate By scripts.iucr.org Published On :: 2019-05-10 The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an acetonitrile hemisolvate; the solvent molecule being located on a twofold rotation axis. The molecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intramolecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supramolecular framework. Within the framework there are offset π–π stacking interactions [intercentroid distance = 3.833 (2) Å] present involving inversion-related molecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-dinitrobenzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u. Full Article text
structure Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2019-05-10 This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile, a phthalonitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent molecules are connected by pairs of weak intermolecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic molecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state. Full Article text
structure Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hydroxy-4-methoxybenzylidene)nicotinohydrazide monohydrate By scripts.iucr.org Published On :: 2019-05-14 The molecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features intermolecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding interactions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) interactions. The title compound has also been characterized by frontier molecular orbital analysis. Full Article text
structure Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bischalcone: (1E,4E)-1,5-bis(4-bromophenyl)penta-1,4-dien-3-one By scripts.iucr.org Published On :: 2019-05-10 In the title bischalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromophenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromophenyl rings is 51.56 (2)°. In the crystal, molecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π interactions. The conformations of related bischalcones are surveyed and a Hirshfeld surface analysis is used to investigate and quantify the intermolecular contacts. Full Article text
structure N-[2-(Trifluoromethyl)phenyl]maleamic acid: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-05-10 The title molecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O interactions into (100) sheets, which are cross-linked by another C—H⋯O interaction to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%). Full Article text
structure Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hydroxy-4-methylanilino)methylidene]-4-methylcyclohexa-2,4-dien-1-one By scripts.iucr.org Published On :: 2019-05-14 The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The molecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intramolecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent molecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π interactions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the molecular electrostatic potential surfaces were used to analyse the intermolecular interactions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) interactions. Full Article text
structure Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenylenebis(methylene)]bis(oxy)}bis(3-methoxybenzaldehyde) and 4,4'-{[(1,4-phenylenebis(methylene)]bis(oxy)}bis( By scripts.iucr.org Published On :: 2019-05-24 The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a molecule in the asymmetric unit. The whole molecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bisecting the central benzene ring. The whole molecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π interactions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), molecules are linked by C—H⋯O hydrogen bonds, forming a supramolecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts. Full Article text
structure Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hydroxy-5-nitroanilino)methylidene]-4-methylcyclohexa-2,4-dien-1-one By scripts.iucr.org Published On :: 2019-05-17 The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The molecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The molecular structure is stabilized by an intramolecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related molecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the molecular electrostatic potential surfaces were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) interactions. Full Article text
structure 2-[(4-Bromophenyl)sulfanyl]-2-methoxy-1-phenylethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry By scripts.iucr.org Published On :: 2019-05-17 The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromophenyl)sulfanyl, benzaldehyde and methoxy residues: crystal symmetry generates a racemic mixture. A twist in the molecule is evident about the methine-C—C(carbonyl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromobenzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supramolecular chains as a result of methyl- and methine-C—H⋯O(carbonyl) interactions. The chains assemble into a three-dimensional architecture without directional interactions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent interaction plots and interaction energy calculations. These point to the importance of weaker H⋯H and C—H⋯C interactions in the consolidation of the structure. Full Article text
structure Crystal structure of tetrakis[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetrafluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetrahydrate By scripts.iucr.org Published On :: 2019-05-17 The crystal structure of the title molecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carboxyadamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carboxylic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water molecules and VO2F2− ions of adjacent molecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure. Full Article text
structure Crystal structure of di-μ-chlorido-bis[dichlorido(l-histidinium-κO)cadmium(II)] By scripts.iucr.org Published On :: 2019-05-17 In the title compound, [Cd2(C6H9N3O2)2Cl6], the coordination polyhedra around the CdII cations are distorted trigonal bipyramids. Two of the chloride ions (one axial and one equatorial) are bridging to the other metal atom, leading to a Cd⋯Cd separation of 3.9162 (4) Å. The O atom of the l-histidinium cation lies in an axial site. In the crystal, numerous N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the molecules into a three-dimensional network. Theoretical calculations and spectroscopic data are available as supporting information. Full Article text
structure The crystal structure of (RS)-7-chloro-2-(2,5-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure By scripts.iucr.org Published On :: 2019-05-21 In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-dimethoxyphenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links molecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of molecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds. Full Article text
structure Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenylbutyramide By scripts.iucr.org Published On :: 2019-05-21 A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenylbutyramide were grown from water–acetonitrile solution in 1:1 volume ratio [Khrustalev et al. (2014). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enantiopure forms of the title compound adopt very similar supramolecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links molecules into chains along the c-axis direction with an antiparallel (centrosymmetric) packing in the crystal. Hirshfeld molecular surface analysis was employed to compare the intermolecular interactions in the polymorphs of the title compound. Full Article text
structure Hirshfeld surface analysis and crystal structure of N-(2-methoxyphenyl)acetamide By scripts.iucr.org Published On :: 2019-05-21 The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benzyloxy-5-[(E)-(3-chloro-4-methylphenyl)diazenyl]benzylidene}-2-phenyloxazol-5(4H)-one) with 2-methoxyaniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) interactions. Full Article text
structure Crystal structure and Hirshfeld surface analysis of tris(2,2'-bipyridine)nickel(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) dihydrate By scripts.iucr.org Published On :: 2019-05-24 The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) interactions involving the CH3 group. The intermolecular interactions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots. Full Article text
structure Crystal structure of methyl α-l-rhamnopyranosyl-(1→2)-α-l-rhamnopyranoside monohydrate By scripts.iucr.org Published On :: 2019-05-24 The title compound, C13H24O9·H2O, a structural model for part of bacterial O-antigen polysaccharides from Shigella flexneri and Escherichia coli, crystallizes with four independent disaccharide molecules and four water molecules in the asymmetric unit. The conformation at the glycosidic linkage joining the two rhamnosyl residues is described by the torsion angles φH of 39, 30, 37 and 37°, and ψH of −32, −35, −31 and −32°, which are the major conformation region known to be populated in an aqueous solution. The hexopyranose rings have the 1C4 chair conformation. In the crystal, the disaccharide and water molecules are associated through O—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. The layers stack along the a axis via hydrophobic interactions between the methyl groups. Full Article text
structure Crystal structures of a series of 6-aryl-1,3-diphenylfulvenes By scripts.iucr.org Published On :: 2019-05-21 The synthesis and crystal structures of a series of 6-arylfuvlenes (fulvene is 5-methylidenecyclopenta-1,3-diene) with varying methylation patterns on the 6-phenyl substituent are reported, namely 6-(3-methylphenyl)-1,3-diphenylfulvene (C25H20), 6-(4-methylphenyl)-1,3-diphenylfulvene (C25H20), 6-mesityl-3-diphenylfulvene (C27H24) and 6-(2,3,4,5,6-pentamethylphenyl)-1,3-diphenylfulvene (C29H28). The bond lengths are typical of those observed in related fulvenes. A network of C—H⋯π ring interactions consolidates the packing in each structure. Full Article text
structure Crystal structure of zymonic acid and a redetermination of its precursor, pyruvic acid By scripts.iucr.org Published On :: 2019-05-24 The structure of zymonic acid (systematic name: 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-2-carboxylic acid), C6H6O5, which had previously eluded crystallographic determination, is presented here for the first time. It forms by intramolecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxopropanoic acid), C3H4O3, at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B33, 210–212]. In zymonic acid, the hydroxylactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carboxylic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carboxylic acid group relative to the ring is 12.04 (16)°. The pyruvic acid molecule is almost planar, having a dihedral angle between the carboxylic acid and methyl-ketone groups of 3.95 (6)°. Intermolecular interactions in both crystal structures are dominated by hydrogen bonding. The common R22(8) hydrogen-bonding motif links carboxylic acid groups on adjacent molecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C2/c, which forces the carboxylic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H⋯O and weak C—H⋯O), link molecules across a 21-screw axis, and generate an R22(9) motif. These hydrogen-bonding interactions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related molecules are linked into R22(8) dimers, with van der Waals interactions between dimers as the only other intermolecular contacts. Full Article text
structure Crystal structure of 7,8,15,16,17-pentathiadispiro[5.2.59.36]heptadecane By scripts.iucr.org Published On :: 2019-05-24 The title compound, C12H20S5, crystallizes in the monoclinic space group P21/c with four molecules in the unit cell. In the crystal, the asymmetric unit comprises the entire molecule with the three cyclic moieties arranged in a line. The molecules in the unit cell pack in a parallel fashion, with their longitudinal axes arranged along a uniform direction. The packing is stabilized by the one-dimensional propagation of non-classical hydrogen-bonding contacts between the central sulfur atom of the S3 fragment and the C—H of a cyclohexyl group from a glide-related molecule [C⋯S = 3.787 (2) Å]. Full Article text
structure Crystal structure of butane-1,4-diyl bis(furan-2-carboxylate) By scripts.iucr.org Published On :: 2019-05-24 The asymmetric unit of the title compound, C14H14O6, a monomeric compound of poly(butylene 2,5-furandicarboxylate), consists of one half-molecule, the whole all-trans molecule being generated by an inversion centre. In the crystal, the molecules are interconnected via C—H⋯O interactions, forming a molecular sheet parallel to (10overline{2}). The molecular sheets are further linked by C—H⋯π interactions. Full Article text
structure Crystal structure of bis(μ-{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanido-κ3N,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N',O By scripts.iucr.org Published On :: 2019-05-24 The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cysteamine (2-aminoethanethiol) and 5-bromosalicylaldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') molecule and one DMF solvent molecule. Each CoIII ion has a slightly distorted octahedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin. Full Article text
structure Crystal structures of butyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate By scripts.iucr.org Published On :: 2019-05-24 The title benzofuran derivatives 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF1), C19H18N2O6, and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF2), C18H16N2O7, recently attracted attention because of their promising antitumoral activity. BF1 crystallizes in the space group Poverline{1}. BF2 in the space group P21/c. The nitrophenyl group is inclined to benzofuran moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the molecular structures of BF1 and BF2 is the intramolecular N—H⋯Ocarbonyl hydrogen bond. In the crystal of BF1, the molecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of molecules along the b-axis direction are linked by O—H⋯Omethoxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13). Full Article text
structure Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chlorobenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetate By scripts.iucr.org Published On :: 2019-05-24 The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O interactions, forming chains extending parallel to the c-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts. Full Article text
structure Crystal structure of 5-(4-tert-butoxyphenyl)-3-(4-n-octyloxyphenyl)-4,5-dihydroisoxazole By scripts.iucr.org Published On :: 2019-05-24 The molecule of the title compound, C27H37NO3, was prepared by [3 + 2] 1,3-dipolar cycloaddition of 4-n-octylphenylnitrile oxide and 4-tert-butoxystyrene, the latter compound being a very useful intermediate to the synthesis of liquid-crystalline materials. In the molecule, the benzene rings of the n-octyloxyphenyl and tert-butoxyphenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, molecules are linked by weak C—H⋯O hydrogen interactions into chains running parallel to the b axis. Full Article text
structure Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-05-31 In the title quinoline derivative, C14H14ClNO3, there is an intramolecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The molecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-ethoxyquinoline mean plane. In the crystal, offset π–π interactions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related molecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface. Full Article text
structure Some chalcones derived from thiophene-3-carbaldehyde: synthesis and crystal structures By scripts.iucr.org Published On :: 2019-06-04 The synthesis, spectroscopic data and crystal and molecular structures of four 3-(3-phenylprop-1-ene-3-one-1-yl)thiophene derivatives, namely 1-(4-hydroxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-ethoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-bromophenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thiophene-3-carbaldehyde with an acetophenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thiophene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thiophene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The molecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O interactions. In addition, C—H⋯π(thiophene) interactions in 2 and C—H⋯S(thiophene) interactions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thiophene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved. Full Article text
structure Crystal structure of 210,220-bis(2,6-dichlorophenyl)-4,7,12,15-tetraoxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cycloheptadecaphane-9-yne dichloromethane monosolvate By scripts.iucr.org Published On :: 2019-05-31 The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitrogen atoms of a porphyrin molecule within a square-planar coordination environment. Weak intramolecular C—H⋯Cl and C—H⋯O interactions stabilize the molecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding interactions. In addition, the two unique dichloromethane solvate molecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chlorophenyl groups of the porphyrin molecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-orthorhombic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry. Full Article text
structure Crystal structure of a polymorph of μ-oxido-bis[(5,10,15,20-tetraphenylporphyrinato)iron(III)] By scripts.iucr.org Published On :: 2019-05-31 The title compound, [Fe2(C44H28N4O)2O], was obtained as a by-product during the synthesis of FeIII tetraphenylporphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the orthorhombic form previously reported [Hoffman et al. (1972). J. Am. Chem. Soc. 94, 3620–3626; Swepston & Ibers (1985) Acta Cryst. C41, 671–673; Kooijmann et al. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent FeIII cations are coordinated in a square-planar environment by the four N atoms of a tetraphenylporphyrin ligand. The FeIII-tetraphenylporphyrine units are linked by a μ2-oxido ligand into a dimer with an Fe—O—Fe angle close to linearity. The final coordination sphere for each FeIII atom is square-pyramidal with the μ2-oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3). Full Article text
structure Crystal structure of N-(diphenylphosphoryl)-2-methoxybenzamide By scripts.iucr.org Published On :: 2019-06-04 In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacylamidophosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intramolecular hydrogen bond. In the crystal, molecules do not form strong intermolecular interactions but the molecules are linked via weak C—H⋯π interactions, forming chains along [001]. Full Article text
structure Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenylhydrazinylidene)methyl]quinoline By scripts.iucr.org Published On :: 2019-06-07 A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formylquinoline with phenylhydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The molecule adopts an E configuration with respect to the central C=N bond. In the crystal, molecules are linked by a C—H⋯π-phenyl interaction, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent molecule, so linking the chains via weak N—H⋯π interactions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts. Full Article text
structure Crystal structure of 3,14-diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data By scripts.iucr.org Published On :: 2019-05-31 The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water molecule. The molecular dication, C22H46N42+, together with the nitrate anion and hydrate water molecule are involved in an extensive range of hydrogen bonds. The molecule is stabilized, as is the conformation of the dication, by forming intermolecular N—H⋯O, O—H⋯O, together with intramolecular N—H⋯N hydrogen bonds. Full Article text
structure Crystal structure, synthesis and thermal properties of tetrakis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)iron(II) By scripts.iucr.org Published On :: 2019-05-31 The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoylpyridine ligands and one thiocyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thiocyanate anions and four 4-benzoylpyridine ligands into discrete complexes with a slightly distorted octahedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoylpyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown. Full Article text
structure Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate By scripts.iucr.org Published On :: 2019-06-04 In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported. Full Article text
structure Crystal structure and Hirshfeld surface analysis of (2E)-3-(4-chloro-3-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one By scripts.iucr.org Published On :: 2019-06-04 The molecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluorophenyl ring and a 3,4-dimethoxyphenyl ring linked via a prop-2-en-1-one spacer. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluorophenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, molecules are linked via pairs of C—H⋯O interactions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10overline{1}] by a C—H⋯π interaction. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%). Full Article text
structure Crystal structure of N,N'-bis[3-(methylsulfanyl)propyl]-1,8:4,5-naphthalenetetracarboxylic diimide By scripts.iucr.org Published On :: 2019-05-31 The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with 3-(methylsulfanyl)propylamine. The whole molecule is generated by an inversion operation of the asymmetric unit. This molecule has an anti form with the terminal methylthiopropyl groups above and below the aromatic diimide plane, where four intramolecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the molecules into chains along the [2overline20] direction. adjacent chains are interconnected by π–π interactions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals interactions make important contributions to the intermolecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%). Full Article text
structure Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 5,5-diphenyl-1,3-bis(prop-2-yn-1-yl)imidazolidine-2,4-dione By scripts.iucr.org Published On :: 2019-06-04 The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, intermolecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π interactions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
structure Crystal structure and electrical resistance property of Rb0.21(H2O)yWS2 By scripts.iucr.org Published On :: 2019-06-11 Rb0.21(H2O)yWS2, rubidium hydrate dithiotungstate, is a new quasi two-dimensional sulfide. Its crystal structure consists of ordered WS2 layers, separated by disordered Rb+ ions and water molecules. All atomic sites are located on mirror planes. The WS2 layers are composed of edge-sharing [WS6] octahedra and extend parallel to (001). The presence of structural water was revealed by thermogravimetry, but the position and exact amount could not be determined in the present study. The temperature dependence of the electrical resistance indicates that Rb0.21(H2O)yWS2 is semiconducting between 80–300 K. Full Article text
structure Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-06-11 In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intramolecular C—H⋯O contact forming an S(6) ring motif. In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π interactions, forming a supramolecular three-dimensional structure. Full Article text
structure Synthesis, characterization, and crystal structure of aquabis(4,4'-dimethoxy-2,2'-bipyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octahydrate By scripts.iucr.org Published On :: 2019-06-11 Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bipyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis(4,4'-dimethoxy-2,2'-bipyridine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octahydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight molecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex molecules exhibit an ansa-like structure with two planar, nearly parallel bipyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water molecules give rise to a layered supramolecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs. Full Article text
structure Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] By scripts.iucr.org Published On :: 2019-06-21 The coordination of the ligands with respect to the central atom in the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octahedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-diphenylpyridylphosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H interactions contribute 26%, the distance of these interactions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in dichloromethane leads to the partial decoordination of the pyridylphosphine ligand, whose pyridyl group is replaced by a piperidine molecule, and the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The molecule has an intramolecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloroform molecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridylphosphine. The contribution to the scattering from highly disordered solvent molecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account. Full Article text
structure Crystal structure, DFT and MEP study of (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile By scripts.iucr.org Published On :: 2019-06-14 The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent molecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intramolecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking interactions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network. Full Article text
structure Crystal structures of two bis-carbamoylmethylphosphine oxide (CMPO) compounds By scripts.iucr.org Published On :: 2019-06-14 Two bis-carbamoylmethylphosphine oxide compounds, namely {[(3-{[2-(diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding interactions are present in both crystals, but these interactions are intramolecular in the case of compound (I) and intermolecular in compound (II). Intramolecular π–π stacking interactions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Intermolecular C—H⋯π interactions [C⋯centroid distance of 3.622 (2) Å, C—H⋯centroid angle of 146°] give rise to supramolecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phosphorus atom and the amide nitrogen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are intermolecular, with a D⋯A distance of 2.883 (2) Å and a D—H⋯A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent interactions create ribbons that run along the b-axis direction. Full Article text
structure Synthesis and crystal structure of calcium hydrogen phosphite, CaHPO3 By scripts.iucr.org Published On :: 2019-06-14 The hydrothermal synthesis and crystal structure of the simple inorganic compound CaHPO3, which crystallizes in the chiral space group P43212, are reported. The structure is built up from distorted CaO7 capped trigonal prisms and HPO3 pseudo pyramids, which share corners and edges to generate a three-dimensional network. Full Article text
structure Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl) By scripts.iucr.org Published On :: 2019-06-21 The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively. Full Article text
structure Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2 By scripts.iucr.org Published On :: 2019-06-21 Six different rare-earth oxyapatites, including Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2, were synthesized using solution-based processes followed by cold pressing and sintering. The crystal structures of the synthesized oxyapatites were determined from powder X-ray diffraction (P-XRD) and their chemistries verified with electron probe microanalysis (EPMA). All the oxyapatites were isostructural within the hexagonal space group P63/m and showed similar unit-cell parameters. The isolated [SiO4]4− tetrahedra in each crystal are linked by the cations at the 4f and 6h sites occupied by RE3+ and Ca2+ in Ca2RE8(SiO4)6O2 or La3+ and Na+ in NaLa9(SiO4)6O2. The lattice parameters, cell volumes, and densities of the synthesized oxyapatites fit well to the trendlines calculated from literature values. Full Article text