structure Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa By journals.iucr.org Published On :: The crystal structure of Pseudomonas aeruginosa Fis is composed of an N-terminal flexible loop and a C-terminal helix–turn–helix motif. Full Article text
structure Structure of the Prx6-subfamily 1-Cys peroxiredoxin from Sulfolobus islandicus By scripts.iucr.org Published On :: 2019-05-13 Aerobic thermoacidophilic archaea belonging to the genus Sulfolobus harbor peroxiredoxins, thiol-dependent peroxidases that assist in protecting the cells from oxidative damage. Here, the crystal structure of the 1-Cys peroxiredoxin from Sulfolobus islandicus, named 1-Cys SiPrx, is presented. A 2.75 Å resolution data set was collected from a crystal belonging to space group P212121, with unit-cell parameters a = 86.8, b = 159.1, c = 189.3 Å, α = β = γ = 90°. The structure was solved by molecular replacement using the homologous Aeropyrum pernix peroxiredoxin (ApPrx) structure as a search model. In the crystal structure, 1-Cys SiPrx assembles into a ring-shaped decamer composed of five homodimers. This quaternary structure corresponds to the oligomeric state of the protein in solution, as observed by size-exclusion chromatography. 1-Cys SiPrx harbors only a single cysteine, which is the peroxidatic cysteine, and lacks both of the cysteines that are highly conserved in the C-terminal arm domain in other archaeal Prx6-subfamily proteins such as ApPrx and that are involved in the association of dimers into higher-molecular-weight decamers and dodecamers. It is thus concluded that the Sulfolobus Prx6-subfamily protein undergoes decamerization independently of arm-domain cysteines. Full Article text
structure The crystal structure of haemoglobin from Atlantic cod By scripts.iucr.org Published On :: 2019-07-16 The crystal structure of haemoglobin from Atlantic cod has been solved to 2.54 Å resolution. The structure consists of two tetramers in the crystallographic asymmetric unit. The structure of haemoglobin obtained from one individual cod suggests polymorphism in the tetrameric assembly. Full Article text
structure Crystal structure of the Schizosaccharomyces pombe U7BR E2-binding region in complex with Ubc7 By scripts.iucr.org Published On :: 2019-08-02 Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality-control pathway in eukaryotes in which misfolded ER proteins are polyubiquitylated, extracted and ultimately degraded by the proteasome. This process involves ER membrane-embedded ubiquitin E2 and E3 enzymes, as well as a soluble E2 enzyme (Ubc7 in Saccharomyces cerevisiae and UBE2G2 in mammals). E2-binding regions (E2BRs) that recruit these soluble ERAD E2s to the ER have been identified in humans and S. cerevisiae, and structures of E2–E2BR complexes from both species have been determined. In addition to sequence and structural differences between the human and S. cerevisiae E2BRs, the binding of E2BRs also elicits different biochemical outcomes with respect to E2 charging by E1 and E2 discharge. Here, the Schizosaccharomyces pombe E2BR was identified and purified with Ubc7 to resolve a 1.7 Å resolution co-crystal structure of the E2BR in complex with Ubc7. The S. pombe E2BR binds to the back side of the E2 as an α-helix and, while differences exist, it exhibits greater similarity to the human E2BR. Structure-based sequence alignments reveal differences and conserved elements among these species. Structural comparisons and biochemistry reveal that the S. pombe E2BR presents a steric impediment to E1 binding and inhibits E1-mediated charging, respectively. Full Article text
structure Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target By scripts.iucr.org Published On :: 2019-08-30 A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg−1 min−1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality. Full Article text
structure Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation By scripts.iucr.org Published On :: 2019-08-30 Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection. Full Article text
structure Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant By scripts.iucr.org Published On :: 2019-08-29 The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipoamide succinyltransferase isolated without an expression tag and in this novel crystal form. Full Article text
structure Structure of an RNA helix with pyrimidine mismatches and cross-strand stacking By scripts.iucr.org Published On :: 2019-09-24 The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U–U mismatch sandwiched between Watson–Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U–C/C–U) mismatches flanked by U–G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity. Full Article text
structure Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase By scripts.iucr.org Published On :: 2020-01-01 This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center. Full Article text
structure High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP By scripts.iucr.org Published On :: 2020-02-05 Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli. Full Article text
structure Structure of the Mycobacterium smegmatis α-maltose-1-phosphate synthase GlgM By scripts.iucr.org Published On :: 2020-04-03 Mycobacterium tuberculosis produces glycogen (also known as α-glucan) to help evade human immunity. This pathogen uses the GlgE pathway to generate glycogen rather than the more well known glycogen synthase GlgA pathway, which is absent in this bacterium. Thus, the building block for this glucose polymer is α-maltose-1-phosphate rather than an NDP-glucose donor. One of the routes to α-maltose-1-phosphate is now known to involve the GlgA homologue GlgM, which uses ADP-glucose as a donor and α-glucose-1-phosphate as an acceptor. To help compare GlgA (a GT5 family member) with GlgM enzymes (GT4 family members), the X-ray crystal structure of GlgM from Mycobacterium smegmatis was solved to 1.9 Å resolution. While the enzymes shared a GT-B fold and several residues responsible for binding the donor substrate, they differed in some secondary-structural details, particularly in the N-terminal domain, which would be expected to be largely responsible for their different acceptor-substrate specificities. Full Article text
structure A new monoclinic structure type for ternary gallide MgCoGa2 By scripts.iucr.org Published On :: 2020-05-06 The crystal structure of MgCoGa2 (magnesium cobalt digallide) was solved by direct methods and refined in two space groups as P21/c (standard choice) and P21/n (non-standard choice). The refined lattice parameters for the standard choice are a = 5.1505 (2), b = 7.2571 (2), c = 8.0264 (3) Å and β = 125.571 (3)°, and for the non-standard choice are a = 5.1505 (2), b = 7.2571 (2), c = 6.5464 (2) Å and β = 94.217 (3)°. All parameters for MgCoGa2 refined to R1 = 0.027 and wR2 = 0.042 using 594 reflections. The crystal structure peculiarities of this compound are discussed. Particular attention has been given to relationships with other similar structures, such as YPd2Si and Fe3C. Crystallographic analysis, together with linear muffin-tin orbital electronic structure calculations, reveals the presence of three-dimensional polyatomic nets with partial covalent bonding between the Ga atoms. Full Article text
structure Astronomers find giant, previously unseen structure in our galaxy By insider.si.edu Published On :: Mon, 15 Nov 2010 16:17:53 +0000 NASA's Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way--a finding likened in terms of scale to the discovery of a new continent on Earth. The feature, which spans 50,000 light-years, may be the remnant of an eruption from a supersized black hole at the center of our galaxy. The post Astronomers find giant, previously unseen structure in our galaxy appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Milky Way Smithsonian Astrophysical Observatory
structure Study finds facial structure of men and women has become more similar over time By insider.si.edu Published On :: Mon, 04 Apr 2011 13:33:48 +0000 Looking at more than 200 skulls dating to 20th and 16th century Spain, as well as approximately 50 skulls from 20th century Portugal, the researchers found that craniofacial differences between contemporary men and women are less pronounced than they were in the 16th century. The post Study finds facial structure of men and women has become more similar over time appeared first on Smithsonian Insider. Full Article Anthropology Research News Science & Nature
structure Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and l-proline By scripts.iucr.org Published On :: 2020-04-29 l-Hydroxyproline (l-Hyp) is a nonstandard amino acid that is present in certain proteins, in some antibiotics and in the cell-wall components of plants. l-Hyp is the product of the post-translational modification of protein prolines by prolyl hydroxylase enzymes, and the isomers trans-3-hydroxy-l-proline (T3LHyp) and trans-4-hydroxy-l-proline (T4LHyp) are major components of mammalian collagen. T4LHyp follows two distinct degradation pathways in bacteria and mammals, while T3LHyp is metabolized by a two-step metabolic pathway that is conserved in bacteria and mammals, which involves a T3LHyp dehydratase and a Δ1-pyrroline-2-carboxylate (Pyr2C) reductase. In order to shed light on the structure and catalysis of the enzyme involved in the second step of the T3LHyp degradation pathway, the crystal structure of Pyr2C reductase from the archaeon Thermococcus litoralis DSM 5473 complexed with NADH and l-proline is presented. The model allows the mapping of the residues involved in cofactor and product binding and represents a valid model for rationalizing the catalysis of Pyr2C reductases. Full Article text
structure The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site By scripts.iucr.org Published On :: 2020-04-27 The outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules of larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilize a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of the members of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, the structure and phylogenetic distribution of the TonB-dependent transporter YncD are investigated. It is shown that while YncD is present in some enteropathogens, including Escherichia coli and Salmonella spp., it is also widespread in Gammaproteobacteria and Betaproteobacteria of environmental origin. The structure of YncD was determined, showing that despite a distant evolutionary relationship, it shares structural features with the ferric citrate transporter FecA, including a compact positively charged substrate-binding site. Despite these shared features, it is shown that YncD does not contribute to the growth of E. coli in pure culture under iron-limiting conditions or with ferric citrate as an iron source. Previous studies of transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the ferric uptake regulator (Fur). These observations, combined with the data presented here, suggest that YncD is not responsible for the transport of an iron-containing substrate. Full Article text
structure Structure–function study of AKR4C14, an aldo-keto reductase from Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105) By scripts.iucr.org Published On :: 2020-04-23 Aldo-keto reductases (AKRs) are NADPH/NADP+-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type. The apo structure of indica rice AKR4C14 was also determined in the absence of the cofactor, revealing the stabilized open conformation. This is the first crystal structure in AKR subfamily 4C from rice to be observed in the apo form (without bound NADP+). The refined AKR4C14 structure reveals a stabilized open conformation of loop B, suggesting the initial phase prior to cofactor binding. Based on the X-ray crystal structure, the substrate- and cofactor-binding pockets of AKR4C14 are formed by loops A, B, C and β1α1. Moreover, the residues Ser211 and Asn220 on loop B are proposed as the hinge residues that are responsible for conformational alteration while the cofactor binds. The open conformation of loop B is proposed to involve Phe216 pointing out from the cofactor-binding site and the opening of the safety belt. Structural comparison with other AKRs in subfamily 4C emphasizes the role of the substrate-channel wall, consisting of Trp24, Trp115, Tyr206, Phe216, Leu291 and Phe295, in substrate discrimination. In particular, Leu291 could contribute greatly to substrate selectivity, explaining the preference of AKR4C14 for its straight-chain aldehyde substrate. Full Article text
structure Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions By scripts.iucr.org Published On :: 2020-04-23 The biological processes related to protein homeostasis in Mycobacterium tuberculosis, the etiologic agent of tuberculosis, have recently been established as critical pathways for therapeutic intervention. Proteins of particular interest are ClpC1 and the ClpC1–ClpP1–ClpP2 proteasome complex. The structure of the potent antituberculosis macrocyclic depsipeptide ecumicin complexed with the N-terminal domain of ClpC1 (ClpC1-NTD) is presented here. Crystals of the ClpC1-NTD–ecumicin complex were monoclinic (unit-cell parameters a = 80.0, b = 130.0, c = 112.0 Å, β = 90.07°; space group P21; 12 complexes per asymmetric unit) and diffracted to 2.5 Å resolution. The structure was solved by molecular replacement using the self-rotation function to resolve space-group ambiguities. The new structure of the ecumicin complex showed a unique 1:2 (target:ligand) stoichiometry exploiting the intramolecular dyad in the α-helical fold of the target N-terminal domain. The structure of the ecumicin complex unveiled extensive interactions in the uniquely extended N-terminus, a critical binding site for the known cyclopeptide complexes. This structure, in comparison with the previously reported rufomycin I complex, revealed unique features that could be relevant for understanding the mechanism of action of these potential antituberculosis drug leads. Comparison of the ecumicin complex and the ClpC1-NTD-L92S/L96P double-mutant structure with the available structures of rufomycin I and cyclomarin A complexes revealed a range of conformational changes available to this small N-terminal helical domain and the minor helical alterations involved in the antibiotic-resistance mechanism. The different modes of binding and structural alterations could be related to distinct modes of action. Full Article text
structure Bond-valence analyses of the crystal structures of FeMo/V cofactors in FeMo/V proteins By scripts.iucr.org Published On :: 2020-04-15 The bond-valence method has been used for valence calculations of FeMo/V cofactors in FeMo/V proteins using 51 crystallographic data sets of FeMo/V proteins from the Protein Data Bank. The calculations show molybdenum(III) to be present in MoFe7S9C(Cys)(HHis)[R-(H)homocit] (where H4homocit is homocitric acid, HCys is cysteine and HHis is histidine) in FeMo cofactors, while vanadium(III) with a more reduced iron complement is obtained for FeV cofactors. Using an error analysis of the calculated valences, it was found that in FeMo cofactors Fe1, Fe6 and Fe7 can be unambiguously assigned as iron(III), while Fe2, Fe3, Fe4 and Fe5 show different degrees of mixed valences for the individual Fe atoms. For the FeV cofactors in PDB entry 5n6y, Fe4, Fe5 and Fe6 correspond to iron(II), iron(II) and iron(III), respectively, while Fe1, Fe2, Fe3 and Fe7 exhibit strongly mixed valences. Special situations such as CO-bound and selenium-substituted FeMo cofactors and O(N)H-bridged FeV cofactors are also discussed and suggest rearrangement of the electron configuration on the substitution of the bridging S atoms. Full Article text
structure Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody By scripts.iucr.org Published On :: 2020-04-15 Mycoplasma hyopneumoniae is a prokaryotic pathogen that colonizes the respiratory ciliated epithelial cells in swine. Infected animals suffer respiratory lesions, causing major economic losses in the porcine industry. Characterization of the immunodominant membrane-associated proteins from M. hyopneumoniae may be instrumental in the development of new therapeutic approaches. Here, the crystal structure of P46, one of the main surface-antigen proteins, from M. hyopneumoniae is presented and shows N- and C-terminal α/β domains connected by a hinge. The structures solved in this work include a ligand-free open form of P46 (3.1 Å resolution) and two ligand-bound structures of P46 with maltose (2.5 Å resolution) and xylose (3.5 Å resolution) in open and closed conformations, respectively. The ligand-binding site is buried in the cleft between the domains at the hinge region. The two domains of P46 can rotate with respect to each other, giving open or closed alternative conformations. In agreement with this structural information, sequence analyses show similarities to substrate-binding members of the ABC transporter superfamily, with P46 facing the extracellular side as a functional subunit. In the structure with xylose, P46 was also bound to a high-affinity (Kd = 29 nM) Fab fragment from a monoclonal antibody, allowing the characterization of a structural epitope in P46 that exclusively involves residues from the C-terminal domain. The Fab structure in the complex with P46 shows only small conformational rearrangements in the six complementarity-determining regions (CDRs) with respect to the unbound Fab (the structure of which is also determined in this work at 1.95 Å resolution). The structural information that is now available should contribute to a better understanding of sugar nutrient intake by M. hyopneumoniae. This information will also allow the design of protocols and strategies for the generation of new vaccines against this important swine pathogen. Full Article text
structure Crystal and solution structures of fragments of the human leucocyte common antigen-related protein By scripts.iucr.org Published On :: 2020-04-15 Leucocyte common antigen-related protein (LAR) is a post-synaptic type I transmembrane receptor protein that is important for neuronal functionality and is genetically coupled to neuronal disorders such as attention deficit hyperactivity disorder (ADHD). To understand the molecular function of LAR, structural and biochemical studies of protein fragments derived from the ectodomain of human LAR have been performed. The crystal structure of a fragment encompassing the first four FNIII domains (LARFN1–4) showed a characteristic L shape. SAXS data suggested limited flexibility within LARFN1–4, while rigid-body refinement of the SAXS data using the X-ray-derived atomic model showed a smaller angle between the domains defining the L shape compared with the crystal structure. The capabilities of the individual LAR fragments to interact with heparin was examined using microscale thermophoresis and heparin-affinity chromatography. The results showed that the three N-terminal immunoglobulin domains (LARIg1–3) and the four C-terminal FNIII domains (LARFN5–8) both bound heparin, while LARFN1–4 did not. The low-molecular-weight heparin drug Innohep induced a shift in hydrodynamic volume as assessed by size-exclusion chromatography of LARIg1–3 and LARFN5–8, while the chemically defined pentameric heparin drug Arixtra did not. Together, the presented results suggest the presence of an additional heparin-binding site in human LAR. Full Article text
structure Micro-stepping Extended Focus reduces photobleaching and preserves structured illumination super-resolution features [TOOLS AND RESOURCES] By jcs.biologists.org Published On :: 2020-04-07T06:16:39-07:00 Xian Hu, Salma Jalal, Michael Sheetz, Oddmund Bakke, and Felix MargadantDespite progress made in confocal microscopy, even fast systems still have insufficient temporal resolution for detailed live cell volume imaging, such as tracking rapid movement of membrane vesicles in three-dimensional space. Depending on the shortfall, this may result in undersampling and/or motion artifacts that ultimately limit the quality of the imaging data. By sacrificing detailed information in the Z-direction, we propose a new imaging modality that involves capturing fast "projections" from the field of depth which shortens imaging time by approximately an order of magnitude as compared to standard volumetric confocal imaging. With faster imaging, radiation exposure to the sample is reduced, resulting in less fluorophore photobleaching and potential photodamage. The implementation minimally requires two synchronized control signals that drive a piezo stage and trigger the camera exposure. The device generating the signals has been tested on spinning disk confocals and instant structured-illumination-microscopy (iSIM) microscopes. Our calibration images show that the approach provides highly repeatable and stable imaging conditions that enable photometric measurements of the acquired data, in both standard live imaging and super-resolution modes. Full Article
structure Control of assembly of extra-axonemal structures: the paraflagellar rod of trypanosomes [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-15T01:46:56-07:00 Aline A. Alves, Heloisa B. Gabriel, Maria J. R. Bezerra, Wanderley de Souza, Sue Vaughan, Narcisa L. Cunha-e-Silva, and Jack D. SunterEukaryotic flagella are complex microtubule based organelles and in many organisms there are extra-axonemal structures present, including the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition fibre-transition zone, and the flagellum. It begins with translation of protein components, followed by their sorting and trafficking into the flagellum, transport to the assembly site and then incorporation. Flagella are formed from over 500 proteins; the principles governing axonemal component assembly are relatively clear. However, the coordination and sites of extra-axonemal structure assembly processes are less clear.We have discovered two cytoplasmic proteins in T. brucei that are required for PFR formation, PFR assembly factors 1 and 2. Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The presence of cytoplasmic factors required for PFR formation aligns with the concept of processes occurring across multiple compartments to facilitate axoneme assembly and this is likely a common theme for extra-axonemal structure assembly. Full Article
structure Wetlands sinking with human-built structures By insider.si.edu Published On :: Thu, 05 Dec 2013 11:57:21 +0000 Left to themselves, coastal wetlands can adapt to sea-level rise. But humans could be sabotaging some of their best defenses, according to a review paper […] The post Wetlands sinking with human-built structures appeared first on Smithsonian Insider. Full Article Earth Science Marine Science Research News Science & Nature carbon dioxide Chesapeake Bay climate change conservation conservation biology Smithsonian Environmental Research Center
structure Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data By scripts.iucr.org Published On :: 2020-01-01 A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles. Full Article text
structure The atomic structure of the Bergman-type icosahedral quasicrystal based on the Ammann–Kramer–Neri tiling By scripts.iucr.org Published On :: 2020-02-11 In this study, the atomic structure of the ternary icosahedral ZnMgTm quasicrystal (QC) is investigated by means of single-crystal X-ray diffraction. The structure is found to be a member of the Bergman QC family, frequently found in Zn–Mg–rare-earth systems. The ab initio structure solution was obtained by the use of the Superflip software. The infinite structure model was founded on the atomic decoration of two golden rhombohedra, with an edge length of 21.7 Å, constituting the Ammann–Kramer–Neri tiling. The refined structure converged well with the experimental diffraction diagram, with the crystallographic R factor equal to 9.8%. The Bergman clusters were found to be bonded by four possible linkages. Only two linkages, b and c, are detected in approximant crystals and are employed to model the icosahedral QCs in the cluster approach known for the CdYb Tsai-type QC. Additional short b and a linkages are found in this study. Short interatomic distances are not generated by those linkages due to the systematic absence of atoms and the formation of split atomic positions. The presence of four linkages allows the structure to be pictured as a complete covering by rhombic triacontahedral clusters and consequently there is no need to define the interstitial part of the structure (i.e. that outside the cluster). The 6D embedding of the solved structure is discussed for the final verification of the model. Full Article text
structure Structure-mining: screening structure models by automated fitting to the atomic pair distribution function over large numbers of models By scripts.iucr.org Published On :: 2020-04-28 A new approach is presented to obtain candidate structures from atomic pair distribution function (PDF) data in a highly automated way. It fetches, from web-based structural databases, all the structures meeting the experimenter's search criteria and performs structure refinements on them without human intervention. It supports both X-ray and neutron PDFs. Tests on various material systems show the effectiveness and robustness of the algorithm in finding the correct atomic crystal structure. It works on crystalline and nanocrystalline materials including complex oxide nanoparticles and nanowires, low-symmetry and locally distorted structures, and complicated doped and magnetic materials. This approach could greatly reduce the traditional structure searching work and enable the possibility of high-throughput real-time auto-analysis PDF experiments in the future. Full Article text
structure Obtaining the best results: aspects of data collection, model finalization and interpretation of results in small-molecule crystal-structure determination By journals.iucr.org Published On :: This article aims to encourage practitioners, young and seasoned, by enhancing their structure-determination toolboxes with a selection of tips and tricks on recognizing and handling aspects of data collection, structure modelling and refinement, and the interpretation of results. Full Article text
structure The missing crystal structure in the series of N,N',N''-tris(pyridin-2-yl)benzene-1,3,5-tricarboxamides: the 2-pyridinyl derivative By journals.iucr.org Published On :: In the first reported crystal structure involving the potential ligand N,N',N''-tris(2-pyridinyl)-1,3,5-benzenetricarboxamide, intermolecular N—H⋯O hydrogen bonds link the molecules via their amide groups into slanted ladder-like chains. Only two of the three amide groups in the molecule are involved in hydrogen bonding, which influences the degree of out-of-plane twisting at each amide group. Full Article text
structure Crystal structure and Hirshfeld surface analysis of 4,4'-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) pentafluoridooxidovanadate(V) By journals.iucr.org Published On :: In the structure of the title salt, second-order Jahn–Teller distortion of the coordination octahedra around V ions is reflected by coexistence of short V—O bonds and trans-positioned long V—F bonds, with four equatorial V—F distances being intermediate in magnitude. Hydrogen bonding of the anions is restricted to F-atom acceptors only, with particularly strong N–H⋯F interactions [N⋯F = 2.5072 (15) Å] established by axial and cis-positioned equatorial F atoms. Full Article text
structure Redetermination and new description of the crystal structure of vanthoffite, Na6Mg(SO4)4 By journals.iucr.org Published On :: The crystal structure of vanthoffite, Na6Mg(SO4)4, was redetermined and refined with anisotropic displacement parameters for all atoms. Here, for the first time, we give its detailed description. Full Article text
structure Synthesis and crystal structure of (1,10-phenanthroline-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate with an unknown number of solvent molecules By journals.iucr.org Published On :: The cationic cyclometallated iridium(III) complex [Ir(C9H7N2)2(C12H8N2)](PF6) has been synthesized and crystallized by the inter-diffusion method. It contains an unknown number of solvent molecules and has a different space-group symmetry (C2/c) structure than its solvatomorph (P21/c). Full Article text
structure Crystal structure and characterization of a new copper(II) chloride dimer with methyl(pyridin-2-ylmethylidene)amine By journals.iucr.org Published On :: The new copper(II) complex [CuLCl2]2, where L is a product of Schiff base condensation between methylamine and 2-pyridinecarbaldehyde, is built of discrete centrosymmetric dimers. Full Article text
structure Crystal structure, Hirshfeld surface analysis and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)phenol By journals.iucr.org Published On :: The asymmetric unit of the title compound contains two independent molecules, consisting of perimidine and phenol units, which are linked through an N—H⋯O hydrogen bond. Intramolecular O—H⋯N hydrogen bonds are observed in both independent molecules. Full Article text
structure The crystal structure and Hirshfeld surface analysis of 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine By journals.iucr.org Published On :: The title compound, 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine, was synthesized as a side-product during the synthesis of the intermediate, methyl 3,6-dimethoxy-2-(2-methoxy-2-oxoethyl)benzoate, necessary for the total synthesis of the isocoumarin 5,8-dimethoxy-3-methyl-1H-isochromen-1-one. Full Article text
structure Crystal structure and Hirshfeld surface analysis of 1,3-diethynyladamantane By journals.iucr.org Published On :: The title compound exhibits exceptionally weak intermolecular C—H⋯π hydrogen bonding of the ethynyl groups, with the corresponding H⋯π separations [2.91 (2) and 3.12 (2) Å] exceeding normal vdW distances. This bonding compliments distal contacts of the CH (aliphatic)⋯π type [H⋯π = 3.12 (2)–3.14 (2) Å] to sustain supramolecular layers. Full Article text
structure Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline By journals.iucr.org Published On :: The dihedral angle between the two aromatic rings of the title compound is 64.12 (14)°. The crystal structure is stabilized by a short Cl⋯H contact, C—Cl⋯π and van der Waals interactions. Full Article text
structure Co-crystal structure, Hirshfeld surface analysis and DFT studies of 3,4-ethylenedioxythiophene solvated bis[1,3-bis(pentafluorophenyl)propane-1,3-dionato]copper(II) By journals.iucr.org Published On :: The title complex, Cu(L)2 or [Cu(C15HF10O2)2], comprising one copper ion and two fully fluorinated ligands (L−), was crystallized with 3,4-ethylenedioxythiophene (EDOT, C6H6O2S) as a guest molecule to give in a dichloromethane solution a unique co-crystal, Cu(L)2·3C6H6O2S. Full Article text
structure Determination of stacking ordering in disordered close-packed structures from pairwise correlation functions By scripts.iucr.org Published On :: 2019-01-01 It is shown how to reconstruct the stacking sequence from the pairwise correlation functions between layers in close-packed structures. First, of theoretical interest, the analytical formulation and solution of the problem are presented when the exact pairwise correlation counts are known. In the second part, the practical problem is approached. A simulated annealing procedure is developed to solve the problem using as initial guess approximate solutions from previous treatments. The robustness of the procedure is tested with synthetic data, followed by an experimental example. The developed approach performs robustly over different synthetic and experimental data, comparing favorably with the reported methods. Full Article text
structure Simulink - Update diagram fails for referenced model when anonymous structure type matches multiple bus types By in.mathworks.com Published On :: Fri, 08 May 2020 10:56:54 +0000 In a Model block, if the instance-specific value of a model argument has an anonymous structure type, an update diagram reports an error when there are multiple bus types that match that anonymous structure type.This bug exists in the following release(s): R2020aThis bug has a workaround Interested in Upgrading? Full Article
structure Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline By scripts.iucr.org Published On :: 2020-05-06 In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing. Full Article text
structure Crystal structure and Hirshfeld surface analysis of 1,3-diethynyladamantane By scripts.iucr.org Published On :: 2020-05-05 The title compound, C14H16, exhibits exceptionally weak intermolecular C—H...π hydrogen bonding of the ethynyl groups, with the corresponding H...π separations [2.91 (2) and 3.12 (2) Å] exceeding normal vdW distances. This bonding complements distal contacts of the CH (aliphatic)...π type [H...π = 3.12 (2)–3.14 (2) Å] to sustain supramolecular layers. Hirshfeld surface analysis of the title compound suggests a relatively limited significance of the C...H/H...C contacts to the crystal packing (24.6%) and a major contribution from H...H contacts accounting 74.9% to the entire surface. Full Article text
structure Synthesis and crystal structure of (1,10-phenanthroline-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate with an unknown number of solvent molecules By scripts.iucr.org Published On :: 2020-05-05 The cationic complex in the title compound, [Ir(C9H7N2)2(C12H8N2)]PF6, comprises two phenylpyrazole (ppz) cyclometallating ligands and one 1,10-phenanthroline (phen) ancillary ligand. The asymmetric unit consists of one [Ir(ppz)2(phen)]+ cation and one [PF6]− counter-ion. The central IrIII ion is six-coordinated by two N atoms and two C atoms from the two ppz ligands as well as by two N atoms from the phen ligand within a distorted octahedral C2N4 coordination set. In the crystal structure, the [Ir(ppz)2(phen)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H...F hydrogen bonds. Additional C—H...π interactions between the rings of neighbouring cations consolidate the three-dimensional network. Electron density associated with additional disordered solvent molecules inside cavities of the structure was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The title compound has a different space-group symmetry (C2/c) from its solvatomorph (P21/c) comprising 1.5CH2Cl2 solvent molecules per ion pair. Full Article text
structure Crystal structure, Hirshfeld surface analysis and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)phenol By scripts.iucr.org Published On :: 2020-05-05 The asymmetric unit of the title compound, C17H14N2O, contains two independent molecules each consisting of perimidine and phenol units. The tricyclic perimidine units contain naphthalene ring systems and non-planar C4N2 rings adopting envelope conformations with the C atoms of the NCN groups hinged by 44.11 (7) and 48.50 (6)° with respect to the best planes of the other five atoms. Intramolecular O—H...N hydrogen bonds may help to consolidate the molecular conformations. The two independent molecules are linked through an N—H...O hydrogen bond. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (52.9%) and H...C/C...H (39.5%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
structure The crystal structure and Hirshfeld surface analysis of 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine By scripts.iucr.org Published On :: 2020-05-05 In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains propagating along the c-axis direction. Full Article text
structure Crystal structure and characterization of a new copper(II) chloride dimer with methyl(pyridin-2-ylmethylidene)amine By scripts.iucr.org Published On :: 2020-05-05 The new copper(II) complex, namely, di-μ-chlorido-bis{chlorido[methyl(pyridin-2-ylmethylidene)amine-κ2N,N']copper(II)}, [Cu2Cl4(C7H8N2)2], (I), with the ligand 2-pyridylmethyl-N-methylimine (L, a product of Schiff base condensation between methylamine and 2-pyridinecarbaldehyde) is built of discrete centrosymmetric dimers. The coordination about the CuII ion can be described as distorted square pyramidal. The base of the pyramid consists of two nitrogen atoms from the bidentate chelate L [Cu—N = 2.0241 (9), 2.0374 (8) Å] and two chlorine atoms [Cu—Cl = 2.2500 (3), 2.2835 (3) Å]. The apical position is occupied by another Cl atom with the apical bond being significantly elongated at 2.6112 (3) Å. The trans angles of the base are 155.16 (3) and 173.79 (2)°. The Cu...Cu separation in the dimer is 3.4346 (3) Å. In the crystal structure, the loosely packed dimers are arranged in stacks propagating along the a axis. The X-band polycrystalline 77 K EPR spectrum of (I) demonstrates a typical axial pattern characteristic of mononuclear CuII complexes. Compound (I) is redox active and shows a cyclic voltammetric response with E1/2 = −0.037 V versus silver–silver chloride electrode (SSCE) assignable to the reduction peak of CuII/CuI in methanol as solvent. Full Article text
structure Redetermination and new description of the crystal structure of vanthoffite, Na6Mg(SO4)4 By scripts.iucr.org Published On :: 2020-05-01 The crystal structure of vanthoffite {hexasodium magnesium tetrakis[sulfate(VI)]}, Na6Mg(SO4)4, was solved in the year 1964 on a synthetic sample [Fischer & Hellner (1964). Acta Cryst. 17, 1613]. Here we report a redetermination of its crystal structure on a mineral sample with improved precision. It was refined in the space group P21/c from a crystal originating from Surtsey, Iceland. The unique Mg (site symmetry overline{1}) and the two S atoms are in usual, only slightly distorted octahedral and tetrahedral coordinations, respectively. The three independent Na atoms are in a distorted octahedral coordination (1×) and distorted 7-coordinations intermediate between a `split octahedron' and a pentagonal bipyramid (2×). [MgO6] coordination polyhedra interchange with one half of the sulfate tetrahedra in <011> chains forming a (100) meshed layer, with dimers formed by edge-sharing [NaO7] polyhedra filling the interchain spaces. The other [NaO7] polyhedra are organized in a parallel layer formed by [010] and [001] chains united through edge sharing and bonds to the remaining half of sulfate groups and to [NaO6] octahedra. The two types of layers interconnect through tight bonding, which explains the lack of morphological characteristics typical of layered structures. Full Article text
structure Crystal structure and Hirshfeld surface analysis of 4,4'-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) pentafluoridooxidovanadate(V) By scripts.iucr.org Published On :: 2020-05-01 In the structure of the title salt, (C7H12N6)[VOF5], second-order Jahn–Teller distortion of the coordination octahedra around V ions is reflected by coexistence of short V—O bonds [1.5767 (12) Å] and trans-positioned long V—F bonds [2.0981 (9) Å], with four equatorial V—F distances being intermediate in magnitude [1.7977 (9)–1.8913 (9) Å]. Hydrogen bonding of the anions is restricted to F-atom acceptors only, with particularly strong N–H...F interactions [N...F = 2.5072 (15) Å] established by axial and cis-positioned equatorial F atoms. Hirshfeld surface analysis indicates that the most important interactions are overwhelmingly H...F/F...H, accounting for 74.4 and 36.8% of the contacts for the individual anions and cations, respectively. Weak CH...F and CH...N bonds are essential for generation of three-dimensional structure. Full Article text
structure The missing crystal structure in the series of N,N',N''-tris(pyridin-2-yl)benzene-1,3,5-tricarboxamides: the 2-pyridinyl derivative By scripts.iucr.org Published On :: 2020-05-01 In the first reported crystal structure involving the potential ligand N,N',N''-tris(pyridin-2-yl)benzene-1,3,5-tricarboxamide, C24H18N6O3, intermolecular N—H...O hydrogen bonds link the molecules via their amide groups into slanted ladder-like chains, in which the uprights of the ladder are formed by the hydrogen-bonding interactions and the benzene ring cores of the molecules act as the rungs of the ladder. Only two of the three amide groups in the molecule are involved in hydrogen bonding and this influences the degree of out-of-plane twisting at each amide group, with the twist being more significant for those amide groups participating in hydrogen bonds. Full Article text
structure Obtaining the best results: aspects of data collection, model finalization and interpretation of results in small-molecule crystal-structure determination By scripts.iucr.org Published On :: 2020-05-01 In small-molecule single-crystal structure determination, we now have at our disposal an inspiring range of fantastic diffractometers with better, brighter sources, and faster, more sensitive detectors. Faster and more powerful computers provide integrated tools and software with impressive graphical user interfaces. Yet these tools can lead to the temptation not to check the work thoroughly and one can too easily overlook tell-tale signs that something might be amiss in a structure determination; validation with checkCIF is not always revealing. This article aims to encourage practitioners, young and seasoned, by enhancing their structure-determination toolboxes with a selection tips and tricks on recognizing and handling aspects that one should constantly be aware of. Topics include a pitfall when setting up data collections, the usefulness of reciprocal lattice layer images, processing twinned data, tips for disorder modelling and the use of restraints, ensuring hydrogen atoms are added to a model correctly, validation beyond checkCIF, and the derivation and interpretation of the final results. Full Article text