es

ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. (arXiv:2005.03191v1 [eess.AS])

Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1\%/4.6\% without external language model (LM), 1.9\%/4.1\% with LM and 2.9\%/7.0\% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0\%/4.6\% with LM and 3.9\%/11.3\% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset.




es

An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC])

We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.




es

Determinantal Point Processes in Randomized Numerical Linear Algebra. (arXiv:2005.03185v1 [cs.DS])

Randomized Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc. Determinantal Point Processes (DPPs), a seemingly unrelated topic in pure and applied mathematics, is a class of stochastic point processes with probability distribution characterized by sub-determinants of a kernel matrix. Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms that are of interest to both areas. We provide an overview of this exciting new line of research, including brief introductions to RandNLA and DPPs, as well as applications of DPPs to classical linear algebra tasks such as least squares regression, low-rank approximation and the Nystr"om method. For example, random sampling with a DPP leads to new kinds of unbiased estimators for least squares, enabling more refined statistical and inferential understanding of these algorithms; a DPP is, in some sense, an optimal randomized algorithm for the Nystr"om method; and a RandNLA technique called leverage score sampling can be derived as the marginal distribution of a DPP. We also discuss recent algorithmic developments, illustrating that, while not quite as efficient as standard RandNLA techniques, DPP-based algorithms are only moderately more expensive.




es

Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR])

Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem.




es

On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY])

This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies.




es

On the Learnability of Possibilistic Theories. (arXiv:2005.03157v1 [cs.LO])

We investigate learnability of possibilistic theories from entailments in light of Angluin's exact learning model. We consider cases in which only membership, only equivalence, and both kinds of queries can be posed by the learner. We then show that, for a large class of problems, polynomial time learnability results for classical logic can be transferred to the respective possibilistic extension. In particular, it follows from our results that the possibilistic extension of propositional Horn theories is exactly learnable in polynomial time. As polynomial time learnability in the exact model is transferable to the classical probably approximately correct model extended with membership queries, our work also establishes such results in this model.




es

NTIRE 2020 Challenge on Image Demoireing: Methods and Results. (arXiv:2005.03155v1 [cs.CV])

This paper reviews the Challenge on Image Demoireing that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2020. Demoireing is a difficult task of removing moire patterns from an image to reveal an underlying clean image. The challenge was divided into two tracks. Track 1 targeted the single image demoireing problem, which seeks to remove moire patterns from a single image. Track 2 focused on the burst demoireing problem, where a set of degraded moire images of the same scene were provided as input, with the goal of producing a single demoired image as output. The methods were ranked in terms of their fidelity, measured using the peak signal-to-noise ratio (PSNR) between the ground truth clean images and the restored images produced by the participants' methods. The tracks had 142 and 99 registered participants, respectively, with a total of 14 and 6 submissions in the final testing stage. The entries span the current state-of-the-art in image and burst image demoireing problems.




es

Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies. (arXiv:2005.03153v1 [cs.RO])

In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in $SE(3)$. The robots have no explicit communication network among them, and they do no know the mass or friction properties of the object, or where they are attached to the object. However, we assume they share data from a common IMU placed arbitrarily on the object. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, and with hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodelled effects, such as discretization errors and complex frictional interactions.




es

An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow. (arXiv:2005.03150v1 [math.NA])

We propose an augmented Lagrangian preconditioner for a three-field stress-velocity-pressure discretization of stationary non-Newtonian incompressible flow with an implicit constitutive relation of power-law type. The discretization employed makes use of the divergence-free Scott-Vogelius pair for the velocity and pressure. The preconditioner builds on the work [P. E. Farrell, L. Mitchell, and F. Wechsung, SIAM J. Sci. Comput., 41 (2019), pp. A3073-A3096], where a Reynolds-robust preconditioner for the three-dimensional Newtonian system was introduced. The preconditioner employs a specialized multigrid method for the stress-velocity block that involves a divergence-capturing space decomposition and a custom prolongation operator. The solver exhibits excellent robustness with respect to the parameters arising in the constitutive relation, allowing for the simulation of a wide range of materials.




es

Optimally Convergent Mixed Finite Element Methods for the Stochastic Stokes Equations. (arXiv:2005.03148v1 [math.NA])

We propose some new mixed finite element methods for the time dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known [16] that the pressure solution has a low regularity, which manifests in sub-optimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations, see [10]. We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods, and that this conceptual idea may be used to retool numerical methods that are well-known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptional usefulness of the proposed numerical approach.




es

A Separation Theorem for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds. (arXiv:2005.03143v1 [eess.SY])

We study the problem of jointly designing a sparse sensor and actuator schedule for linear dynamical systems while guaranteeing a control/estimation performance that approximates the fully sensed/actuated setting. We further prove a separation principle, showing that the problem can be decomposed into finding sensor and actuator schedules separately. However, it is shown that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor schedule that on average selects only a constant number of sensors and actuators at each time step, irrespective of the dimension of the system. The key idea is to sparsify the controllability and observability Gramians while providing approximation guarantees for Hankel singular values. This idea is inspired by recent results in theoretical computer science literature on sparsification.




es

Rigid Matrices From Rectangular PCPs. (arXiv:2005.03123v1 [cs.CC])

We introduce a variant of PCPs, that we refer to as rectangular PCPs, wherein proofs are thought of as square matrices, and the random coins used by the verifier can be partitioned into two disjoint sets, one determining the row of each query and the other determining the *column*.

We construct PCPs that are efficient, short, smooth and (almost-)rectangular. As a key application, we show that proofs for hard languages in NTIME$(2^n)$, when viewed as matrices, are rigid infinitely often. This strengthens and considerably simplifies a recent result of Alman and Chen [FOCS, 2019] constructing explicit rigid matrices in FNP. Namely, we prove the following theorem: - There is a constant $delta in (0,1)$ such that there is an FNP-machine that, for infinitely many $N$, on input $1^N$ outputs $N imes N$ matrices with entries in $mathbb{F}_2$ that are $delta N^2$-far (in Hamming distance) from matrices of rank at most $2^{log N/Omega(log log N)}$.

Our construction of rectangular PCPs starts with an analysis of how randomness yields queries in the Reed--Muller-based outer PCP of Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [SICOMP, 2006; CCC, 2005]. We then show how to preserve rectangularity under PCP composition and a smoothness-inducing transformation. This warrants refined and stronger notions of rectangularity, which we prove for the outer PCP and its transforms.




es

Electricity-Aware Heat Unit Commitment: A Bid-Validity Approach. (arXiv:2005.03120v1 [eess.SY])

Coordinating the operation of combined heat and power plants (CHPs) and heat pumps (HPs) at the interface between heat and power systems is essential to achieve a cost-effective and efficient operation of the overall energy system. Indeed, in the current sequential market practice, the heat market has no insight into the impacts of heat dispatch on the electricity market. While preserving this sequential practice, this paper introduces an electricity-aware heat unit commitment model. Coordination is achieved through bid validity constraints, which embed the techno-economic linkage between heat and electricity outputs and costs of CHPs and HPs. This approach constitutes a novel market mechanism for the coordination of heat and power systems, defining heat bids conditionally on electricity market prices. The resulting model is a trilevel optimization problem, which we recast as a mixed-integer linear program using a lexicographic function. We use a realistic case study based on the Danish power and heat system, and show that the proposed model yields a 4.5% reduction in total operating cost of heat and power systems compared to a traditional decoupled unit commitment model, while reducing the financial losses of each CHP and HP due to invalid bids by up-to 20.3 million euros.




es

Strong replica symmetry in high-dimensional optimal Bayesian inference. (arXiv:2005.03115v1 [math.PR])

We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation of the prior distribution of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the derivation of replica symmetric formulas for the free energy and mutual information in this context.




es

Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV])

Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101).




es

Constrained de Bruijn Codes: Properties, Enumeration, Constructions, and Applications. (arXiv:2005.03102v1 [cs.IT])

The de Bruijn graph, its sequences, and their various generalizations, have found many applications in information theory, including many new ones in the last decade. In this paper, motivated by a coding problem for emerging memory technologies, a set of sequences which generalize sequences in the de Bruijn graph are defined. These sequences can be also defined and viewed as constrained sequences. Hence, they will be called constrained de Bruijn sequences and a set of such sequences will be called a constrained de Bruijn code. Several properties and alternative definitions for such codes are examined and they are analyzed as generalized sequences in the de Bruijn graph (and its generalization) and as constrained sequences. Various enumeration techniques are used to compute the total number of sequences for any given set of parameters. A construction method of such codes from the theory of shift-register sequences is proposed. Finally, we show how these constrained de Bruijn sequences and codes can be applied in constructions of codes for correcting synchronization errors in the $ell$-symbol read channel and in the racetrack memory channel. For this purpose, these codes are superior in their size on previously known codes.




es

Heterogeneous Facility Location Games. (arXiv:2005.03095v1 [cs.GT])

We study heterogeneous $k$-facility location games. In this model there are $k$ facilities where each facility serves a different purpose. Thus, the preferences of the agents over the facilities can vary arbitrarily. Our goal is to design strategy proof mechanisms that place the facilities in a way to maximize the minimum utility among the agents. For $k=1$, if the agents' locations are known, we prove that the mechanism that places the facility on an optimal location is strategy proof. For $k geq 2$, we prove that there is no optimal strategy proof mechanism, deterministic or randomized, even when $k=2$ there are only two agents with known locations, and the facilities have to be placed on a line segment. We derive inapproximability bounds for deterministic and randomized strategy proof mechanisms. Finally, we focus on the line segment and provide strategy proof mechanisms that achieve constant approximation. All of our mechanisms are simple and communication efficient. As a byproduct we show that some of our mechanisms can be used to achieve constant factor approximations for other objectives as the social welfare and the happiness.




es

Experiences from Exporting Major Proof Assistant Libraries. (arXiv:2005.03089v1 [cs.SE])

The interoperability of proof assistants and the integration of their libraries is a highly valued but elusive goal in the field of theorem proving. As a preparatory step, in previous work, we translated the libraries of multiple proof assistants, specifically the ones of Coq, HOL Light, IMPS, Isabelle, Mizar, and PVS into a universal format: OMDoc/MMT.

Each translation presented tremendous theoretical, technical, and social challenges, some universal and some system-specific, some solvable and some still open. In this paper, we survey these challenges and compare and evaluate the solutions we chose.

We believe similar library translations will be an essential part of any future system interoperability solution and our experiences will prove valuable to others undertaking such efforts.




es

Line Artefact Quantification in Lung Ultrasound Images of COVID-19 Patients via Non-Convex Regularisation. (arXiv:2005.03080v1 [eess.IV])

In this paper, we present a novel method for line artefacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a non-convex regularisation problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artefacts. Despite being non-convex, the proposed method has guaranteed convergence via a proximal splitting algorithm and accurately identifies both horizontal and vertical line artefacts in LUS images. In order to reduce the number of false and missed detection, our method includes a two-stage validation mechanism, which is performed in both Radon and image domains. We evaluate the performance of the proposed method in comparison to the current state-of-the-art B-line identification method and show a considerable performance gain with 87% correctly detected B-lines in LUS images of nine COVID-19 patients. In addition, owing to its fast convergence, which takes around 12 seconds for a given frame, our proposed method is readily applicable for processing LUS image sequences.




es

AVAC: A Machine Learning based Adaptive RRAM Variability-Aware Controller for Edge Devices. (arXiv:2005.03077v1 [eess.SY])

Recently, the Edge Computing paradigm has gained significant popularity both in industry and academia. Researchers now increasingly target to improve performance and reduce energy consumption of such devices. Some recent efforts focus on using emerging RRAM technologies for improving energy efficiency, thanks to their no leakage property and high integration density. As the complexity and dynamism of applications supported by such devices escalate, it has become difficult to maintain ideal performance by static RRAM controllers. Machine Learning provides a promising solution for this, and hence, this work focuses on extending such controllers to allow dynamic parameter updates. In this work we propose an Adaptive RRAM Variability-Aware Controller, AVAC, which periodically updates Wait Buffer and batch sizes using on-the-fly learning models and gradient ascent. AVAC allows Edge devices to adapt to different applications and their stages, to improve computation performance and reduce energy consumption. Simulations demonstrate that the proposed model can provide up to 29% increase in performance and 19% decrease in energy, compared to static controllers, using traces of real-life healthcare applications on a Raspberry-Pi based Edge deployment.




es

I Always Feel Like Somebody's Sensing Me! A Framework to Detect, Identify, and Localize Clandestine Wireless Sensors. (arXiv:2005.03068v1 [cs.CR])

The increasing ubiquity of low-cost wireless sensors in smart homes and buildings has enabled users to easily deploy systems to remotely monitor and control their environments. However, this raises privacy concerns for third-party occupants, such as a hotel room guest who may be unaware of deployed clandestine sensors. Previous methods focused on specific modalities such as detecting cameras but do not provide a generalizable and comprehensive method to capture arbitrary sensors which may be "spying" on a user. In this work, we seek to determine whether one can walk in a room and detect any wireless sensor monitoring an individual. As such, we propose SnoopDog, a framework to not only detect wireless sensors that are actively monitoring a user, but also classify and localize each device. SnoopDog works by establishing causality between patterns in observable wireless traffic and a trusted sensor in the same space, e.g., an inertial measurement unit (IMU) that captures a user's movement. Once causality is established, SnoopDog performs packet inspection to inform the user about the monitoring device. Finally, SnoopDog localizes the clandestine device in a 2D plane using a novel trial-based localization technique. We evaluated SnoopDog across several devices and various modalities and were able to detect causality 96.6% percent of the time, classify suspicious devices with 100% accuracy, and localize devices to a sufficiently reduced sub-space.




es

Weakly-Supervised Neural Response Selection from an Ensemble of Task-Specialised Dialogue Agents. (arXiv:2005.03066v1 [cs.CL])

Dialogue engines that incorporate different types of agents to converse with humans are popular.

However, conversations are dynamic in the sense that a selected response will change the conversation on-the-fly, influencing the subsequent utterances in the conversation, which makes the response selection a challenging problem.

We model the problem of selecting the best response from a set of responses generated by a heterogeneous set of dialogue agents by taking into account the conversational history, and propose a emph{Neural Response Selection} method.

The proposed method is trained to predict a coherent set of responses within a single conversation, considering its own predictions via a curriculum training mechanism.

Our experimental results show that the proposed method can accurately select the most appropriate responses, thereby significantly improving the user experience in dialogue systems.




es

CovidCTNet: An Open-Source Deep Learning Approach to Identify Covid-19 Using CT Image. (arXiv:2005.03059v1 [eess.IV])

Coronavirus disease 2019 (Covid-19) is highly contagious with limited treatment options. Early and accurate diagnosis of Covid-19 is crucial in reducing the spread of the disease and its accompanied mortality. Currently, detection by reverse transcriptase polymerase chain reaction (RT-PCR) is the gold standard of outpatient and inpatient detection of Covid-19. RT-PCR is a rapid method, however, its accuracy in detection is only ~70-75%. Another approved strategy is computed tomography (CT) imaging. CT imaging has a much higher sensitivity of ~80-98%, but similar accuracy of 70%. To enhance the accuracy of CT imaging detection, we developed an open-source set of algorithms called CovidCTNet that successfully differentiates Covid-19 from community-acquired pneumonia (CAP) and other lung diseases. CovidCTNet increases the accuracy of CT imaging detection to 90% compared to radiologists (70%). The model is designed to work with heterogeneous and small sample sizes independent of the CT imaging hardware. In order to facilitate the detection of Covid-19 globally and assist radiologists and physicians in the screening process, we are releasing all algorithms and parametric details in an open-source format. Open-source sharing of our CovidCTNet enables developers to rapidly improve and optimize services, while preserving user privacy and data ownership.




es

Extracting Headless MWEs from Dependency Parse Trees: Parsing, Tagging, and Joint Modeling Approaches. (arXiv:2005.03035v1 [cs.CL])

An interesting and frequent type of multi-word expression (MWE) is the headless MWE, for which there are no true internal syntactic dominance relations; examples include many named entities ("Wells Fargo") and dates ("July 5, 2020") as well as certain productive constructions ("blow for blow", "day after day"). Despite their special status and prevalence, current dependency-annotation schemes require treating such flat structures as if they had internal syntactic heads, and most current parsers handle them in the same fashion as headed constructions. Meanwhile, outside the context of parsing, taggers are typically used for identifying MWEs, but taggers might benefit from structural information. We empirically compare these two common strategies--parsing and tagging--for predicting flat MWEs. Additionally, we propose an efficient joint decoding algorithm that combines scores from both strategies. Experimental results on the MWE-Aware English Dependency Corpus and on six non-English dependency treebanks with frequent flat structures show that: (1) tagging is more accurate than parsing for identifying flat-structure MWEs, (2) our joint decoder reconciles the two different views and, for non-BERT features, leads to higher accuracies, and (3) most of the gains result from feature sharing between the parsers and taggers.




es

Evaluating text coherence based on the graph of the consistency of phrases to identify symptoms of schizophrenia. (arXiv:2005.03008v1 [cs.CL])

Different state-of-the-art methods of the detection of schizophrenia symptoms based on the estimation of text coherence have been analyzed. The analysis of a text at the level of phrases has been suggested. The method based on the graph of the consistency of phrases has been proposed to evaluate the semantic coherence and the cohesion of a text. The semantic coherence, cohesion, and other linguistic features (lexical diversity, lexical density) have been taken into account to form feature vectors for the training of a model-classifier. The training of the classifier has been performed on the set of English-language interviews. According to the retrieved results, the impact of each feature on the output of the model has been analyzed. The results obtained can indicate that the proposed method based on the graph of the consistency of phrases may be used in the different tasks of the detection of mental illness.




es

Football High: Keeping Up with the Joneses

Competition is steep in games like football. The desire to win often trumps safety.




es

The Desire to Stay in the Game

Retired soccer star Briana Scurry talks about how frustrating and complicated it is trying to explain what it feels like to have symptoms from a concussion and why bouncing back is not always an option.




es

How Does the IMPACT Baseline Test for Athletes Really Work?

Retired Soccer Star Briana Scurry describes how the computerized baseline test works and how it is used for athletes who have sustained a concussion.




es

Retired Soccer Star Briana Scurry: Message to People Struggling After Concussions

If you don't feel right after a concussion, talk to your parents, your coach, your doctor ... get a second, third, fourth opinion ... Do not accept that you will not get better.




es

Retired Soccer Star Briana Scurry on Her Post-Concussion Depression

Was her depression physiological from the hit to her head or because her professional soccer career was over?




es

What “Friday Night Tykes” Can Teach Us About Youth Football

Why do some parents and coaches think it's okay to let 9-year-old kids get hit in the head over and over in football practices and games?




es

Chronic Traumatic Encephalopathy (CTE) in Amateur Athletes

A new study suggests that vulnerability to CTE is not limited to professional athletes.




es

Despite risks, many in small town continue to support youth football

Despite multiple concussions, a high school freshman continues to play football. Will family tradition outweigh the risks?




es

Teen athletes sandbag concussion tests to stay in the game

What happens when the drive to play outweighs the potential risk of injury? Some high school athletes are finding ways around the precautions coaching and medical staff take to ensure their safety.




es

24 Must-Know Graphic Design Terms

Graphic design is everywhere — it’s used in traditional marketing efforts like billboards and fliers, and more importantly, it’s used in nearly every single digital marketing initiative from web design to social media marketing. If you’re a business that’s working with a digital marketing agency for any number of marketing campaigns (especially web design), it’s […]

The post 24 Must-Know Graphic Design Terms appeared first on WebFX Blog.




es

5 Best Practices for Breadcrumb Navigation 

Breadcrumbs are a subtle element of a website that helps improve usability and navigation. They’re a utility that often receives little acknowledgment; however, breadcrumbs can have a large impact and provide a plethora of benefits, such as lowering bounce rate, increasing conversions, and improving user satisfaction.   Imagine you’re in a regular grocery store, except […]

The post 5 Best Practices for Breadcrumb Navigation  appeared first on WebFX Blog.




es

How Personalized Landing Pages Can Make Your Site More Profitable

Personalization is one of the most effective marketing techniques to connect with customers online. While the exact methods are different for every business, adding personalized elements to landing pages is a proven method of driving conversions on your site. But why is it so successful? The simple answer is that personalization shows customers that you […]

The post How Personalized Landing Pages Can Make Your Site More Profitable appeared first on WebFX Blog.




es

7 Examples of Great “About Us” Pages

Your website serves several important purposes for your company — attracting customers, generating leads, and making sales, just to name a few. And as your home on the Internet, it also needs to explain who you are to the world and why they should choose you over your competitors.   However, creating an “About Us” […]

The post 7 Examples of Great “About Us” Pages appeared first on WebFX Blog.




es

Is Your Website a Failure? 3 Reasons Sites Fail (And How to Save Yours)

Traffic isn’t great, online sales are even worse, and let’s not talk about the lack of phone calls. Everyone, including you, is wondering the same thing — is your website a failure? Not yet, and not if you have anything to say about it. While a failing website can seem like a problem without a […]

The post Is Your Website a Failure? 3 Reasons Sites Fail (And How to Save Yours) appeared first on WebFX Blog.




es

Website Redesign Checklist + 7 Handy Website Redesign Tips

Does your website feature design straight out of the ’90s and functionality from the stone age? If so, it’s time for an upgrade — and WebFX can help. When it comes to website redesign checklists, we’re at the top of our game, and we know how to get things done. But where do you start […]

The post Website Redesign Checklist + 7 Handy Website Redesign Tips appeared first on WebFX Blog.




es

Pay Attention to These Web Design Trends for 2020 [7+ Trends]

If you’re not already thinking about 2020 web design, the time is now. Already, web design trends for 2020 have started to emerge, and if you want to stay on-trend and engage site visitors, it’s crucial to pay attention. But what is the future of web design in 2020? Will everything change? Well — not […]

The post Pay Attention to These Web Design Trends for 2020 [7+ Trends] appeared first on WebFX Blog.





es

Is My WordPress Site Secure? 13 Tips for Locking Down Your WordPress Site

WordPress powers 35% of all websites, which makes WordPress sites a go-to target for hackers. If you’re like most WordPress site owners, you’re probably asking the same question: Is my WordPress site secure? While you can’t guarantee site security, you can take several steps to improve and maximize your WordPress security. Keep reading to learn […]

The post Is My WordPress Site Secure? 13 Tips for Locking Down Your WordPress Site appeared first on WebFX Blog.




es

5 Lead Generation Website Design Best Practices

Are you looking to generate more leads and revenue with your website? If so, it’s time to consider web design for lead generation to help you create a website that caters to your audience and encourages them to become leads for your business.  On this page, we’ll provide you with five lead generation website design […]

The post 5 Lead Generation Website Design Best Practices appeared first on WebFX Blog.




es

Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out!

Did you know that breaking the Americans with Disabilities Act (ADA) can result in a six-figure fine? For every violation, companies can receive a $150,000 fine — and if you have a WordPress site, you could be liable. While WordPress aims to ensure website accessibility, it cannot guarantee it since every site owner customizes the […]

The post Is My WordPress Site ADA Compliant? 3+ Plugins for Finding Out! appeared first on WebFX Blog.




es

What Is Website Hosting and Why Does It Matter for Your Website?

Subscribe to our YouTube channel for the latest in digital marketing! we know you’ll love this additional resource! (how to host a website)   Transcript: What is website hosting?  This is to make a point, I promise.  When you go to a party, there’s always a host. The host is usually the one who sets […]

The post What Is Website Hosting and Why Does It Matter for Your Website? appeared first on WebFX Blog.




es

Category Page Design Examples: 6 Category Page Inspirations

Dozens of people find your business when looking for a type of product but aren’t sure which product fits their needs best. With a well-designed and organized category page, you’ll help people browse products easier and find what they want. To help you get inspired, let’s take a look at some excellent category page design […]

The post Category Page Design Examples: 6 Category Page Inspirations appeared first on WebFX Blog.




es

6 Best CMS Software for Website Development & SMBs

Are you looking for a content management system (CMS) that will help you create the digital content you need? With so many options on the market, it’s challenging to know which one is the best CMS software for your business. On this page, we’ll take a look at the six best CMS’s for website development […]

The post 6 Best CMS Software for Website Development & SMBs appeared first on WebFX Blog.




es

Going Beyond Sales: 7 Types of Website Conversions to Optimize for on Your Website

If you’re looking to grow your business online, it’s time to start setting up different types of website conversions to help your company succeed. Whether you’re looking to earn more email subscribers or sell more products, you can set conversion goals that grow your business. On this page, we’ll discuss what a conversion goal is, […]

The post Going Beyond Sales: 7 Types of Website Conversions to Optimize for on Your Website appeared first on WebFX Blog.




es

10 Modern Web Design Trends for 2020

Web design is responsible for nearly 95% of a visitor’s first impression of your business. That’s why it’s more important than ever to incorporate modern web design into your marketing strategy. But what modern web design trends are on the horizon for 2020 — and how can you use them to freshen up your site? […]

The post 10 Modern Web Design Trends for 2020 appeared first on WebFX Blog.