iot Los mensajeros del Maestro, 5ª Parte: Judas Iscariote B By feeds.gracia.org Published On :: Thu, 07 Nov 2019 00:00:00 PST La enseñanza bíblica en profundidad de John MacArthur lleva la verdad transformadora de la Palabra de Dios a millones de personas cada día. Full Article
iot Adaptive Biotechnologies: A Coronavirus Battle Deserving A Premium Valuation By seekingalpha.com Published On :: Sat, 09 May 2020 07:33:49 -0400 Full Article AMGN GH MSFT RHHBF RHHBY ADPT Dulan Lokuwithana
iot Revisiting The Piotroski Portfolio By seekingalpha.com Published On :: Sat, 09 May 2020 06:09:58 -0400 Full Article ALXN AWI COP CR CSCO DJCO HELE HWKN NRC PAYC QCOM WINA WNC Ash Anderson
iot Adaptive Biotechnologies: A Coronavirus Battle Deserving A Premium Valuation By seekingalpha.com Published On :: Sat, 09 May 2020 07:33:49 -0400 Full Article AMGN GH MSFT RHHBF RHHBY ADPT Dulan Lokuwithana
iot Consultation on proposals to regulate consumer IoT device security By www.eversheds.com Published On :: 2019-05-01 On 1 May 2019 the UK government, through the Department for Digital, Culture, Media & Sport, launched a consultation on its proposals to regulate the security of consumer Internet of Things (“IoT”) or “smart” devices, whi... Full Article
iot Coronavirus: Indian manager of popular Chennai biotech firm consumes drug he invented to cure COVID-19, dies By article.wn.com Published On :: Sat, 09 May 2020 13:16 GMT Dubai: A 47-year-old pharmacist in the Indian state of Tamil Nadu, died on Thursday after consuming a “new cure” he had made for COVID-19. Indian tweeps shared reports of how the man, K. Sivanesan, made and drank the chemical concoction along with the owner of a popular Chennai-based herbal pharmaceutical company where he worked. According to a report by Indian newspaper, The Indian Express, the owner of Sujatha Bio Tech, along with his employee, tried to create a coronavirus cure, but consumed a... Full Article
iot The memory of compatriots who died during the Great Patriotic War was honored By article.wn.com Published On :: Sat, 09 May 2020 13:26 GMT The text version of this document in not available. You can access... Full Article
iot ICMR teams up with Bharat Biotech to develop Covid-19 vaccine - Hindustan Times By news.google.com Published On :: Sat, 09 May 2020 15:23:51 GMT ICMR teams up with Bharat Biotech to develop Covid-19 vaccine Hindustan TimesBharat Biotech to lead monoclonal antibodies project for Covid-19 therapy The Financial ExpressBharat Biotech leads CSIR project to develop antibodies against Covid-19 Times of IndiaBharat Biotech to lead project on monoclonal antibodies therapy for COVID-19 The New Indian ExpressIndian scientists to develop medicine against COVID-19 Deccan HeraldView Full coverage on Google News Full Article
iot Product safety and IoT: European Commission orders recall over data security failings By www.eversheds.com Published On :: 2019-02-08 The market for wearable tech is huge and growing, driven by new wellness applications and improved connectivity. Add to that the increasing number of new IoT devices and applications in the home, workplace and industry, and the opportunities both fo... Full Article
iot Intel: US to withdraw Patriot missile systems from Saudi Arabia By www.al-monitor.com Published On :: 5/8/20 1:44 PM The Pentagon is set to pull Patriot missile defense systems from Saudi Arabia amid internal pressure to transfer military assets to counter China. Full Article
iot Ainsley Harriott: ‘The Med felt close to home’ By cyprus-mail.com Published On :: Sat, 09 May 2020 08:00:40 +0000 By Lauren Taylor Has there ever been a happier man on TV? Ainsley Harriott, with his broad smile and infectious laugh, was a mainstay in living rooms for years on Ready Steady Cook and Can’t Cook, Won’t Cook back in the Nineties and Noughties, and at 63 he’s as cheerful... The post Ainsley Harriott: ‘The Med felt close to home’ appeared first on Cyprus Mail. Full Article Food and Drink Life & Style food and drink
iot US pulling Patriot missile batteries from Saudi Arabia By feedproxy.google.com Published On :: Sat, 09 May 2020 06:00:00 +0500 WASHINGTON: The US is pulling out four of its powerful Patriot missile systems from Saudi Arabia, after determining the threat from Iran that sparked an arms buildup in the region last year had waned, a Defense Department official said Thursday. Two of the anti-missile batteries deployed following... Full Article
iot US to remove Patriots, other military assets from Saudi Arabia By feedproxy.google.com Published On :: Sat, 09 May 2020 06:00:00 +0500 WASHINGTON: The US is pulling out four of its powerful Patriot missile systems from Saudi Arabia, after determining the threat from Iran that sparked an arms buildup in the region last year had waned, a Defence Department official said late on Thursday.Two of the anti-missile batteries deployed... Full Article
iot Enabling Cloud Connectivity to All MCUs and MPUs, Microchip Launches a Range of Embedded IoT Solutions for Rapid Prototyping By www.microchip.com Published On :: 3/11/2020 2:03:00 PM Enabling Cloud Connectivity to All MCUs and MPUs, Microchip Launches a Range of Embedded IoT Solutions for Rapid Prototyping Full Article
iot Getting Started Guide: Microchip PIC-IoT WA (Wireless for Amazon Web Services) Application By ww1.microchip.com Published On :: 5/4/2020 12:47:05 PM Getting Started Guide: Microchip PIC-IoT WA (Wireless for Amazon Web Services) Application Full Article
iot Dentons advises biotech company Pluristem on European Investment Bank financing By www.dentons.com Published On :: Tue, 05 May 2020 00:00:00 GMT Global law firm Dentons has advised the Israeli biotech company Pluristem on a €50 million loan provided by the European Investment Bank (EIB). The financing is part of a cooperation agreement between the EIB and the Israel Innovation Authority, which aims to strengthen Israeli-EU cooperation in innovative research in the field of biotech, pharmaceutical research and public health. Full Article Banking and Finance Banking and Finance in Europe Banking and Finance in Germany Venture Capital Financial Institutions Financial Institutions in Europe Life Sciences and Health Care Life Sciences and Healthcare in Europe Biotechnology Companies Life Sciences in Europe Life Sciences in Germany Life Sciences Europe Germany Düsseldorf Frankfurt
iot HARMAN and IBM Watson IoT Introduce Cognitive Rooms that Bring Connected Experiences to Enterprise Settings By news.harman.com Published On :: Wed, 19 Apr 2017 10:00:00 GMT HARMAN Professional Solutions and IBM (NYSE: IBM) Watson Internet of Things (IoT) today unveiled Voice-Enabled Cognitive Rooms. Using IBM's Watson artificial intelligence (AI) technology and HARMAN AKG microphones, JBL speakers and AMX AV control and ... Full Article
iot Too Many Antibiotics, Opioids Given to Dental Patients in the ER By www.medicinenet.com Published On :: Tue, 25 Feb 2020 00:00:00 PDT Title: Too Many Antibiotics, Opioids Given to Dental Patients in the ERCategory: Health NewsCreated: 2/25/2020 12:00:00 AMLast Editorial Review: 2/25/2020 12:00:00 AM Full Article
iot liothyronine sodium, Cytomel, Triostat By www.medicinenet.com Published On :: Wed, 31 Jul 2019 00:00:00 PDT Title: liothyronine sodium, Cytomel, TriostatCategory: MedicationsCreated: 12/31/1997 12:00:00 AMLast Editorial Review: 7/31/2019 12:00:00 AM Full Article
iot Study Casts Doubt on Use of Common Antibiotic for UTIs in Women By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Study Casts Doubt on Use of Common Antibiotic for UTIs in WomenCategory: Health NewsCreated: 4/30/2015 12:00:00 AMLast Editorial Review: 5/1/2015 12:00:00 AM Full Article
iot Some Antibiotics Linked to Miscarriage Risk By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Some Antibiotics Linked to Miscarriage RiskCategory: Health NewsCreated: 5/1/2017 12:00:00 AMLast Editorial Review: 5/1/2017 12:00:00 AM Full Article
iot With 'Super Gonorrhea' a Threat, Many Still Getting Wrong Antibiotics By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: With 'Super Gonorrhea' a Threat, Many Still Getting Wrong AntibioticsCategory: Health NewsCreated: 4/27/2018 12:00:00 AMLast Editorial Review: 4/30/2018 12:00:00 AM Full Article
iot VA Doctors Prescribing Unnecessary Antibiotics, Study Says By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: VA Doctors Prescribing Unnecessary Antibiotics, Study SaysCategory: Health NewsCreated: 4/26/2019 12:00:00 AMLast Editorial Review: 4/29/2019 12:00:00 AM Full Article
iot New Angiotensin Studies in COVID-19 Give More Reassurance By www.webmd.com Published On :: Wed, 06 May 2020 12:51:01 EST A deluge of new data does not suggest harm with ACE inhibitors and angiotensin blockers in COVID-19 rates or outcomes but suggests possible differential effects of the two drug classes. Full Article
iot Iliotibial (IT) Band Syndrome By www.medicinenet.com Published On :: Tue, 10 Mar 2020 00:00:00 PDT Title: Iliotibial (IT) Band SyndromeCategory: Diseases and ConditionsCreated: 4/18/2011 12:00:00 AMLast Editorial Review: 3/10/2020 12:00:00 AM Full Article
iot Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials. Full Article
iot Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate. IMPORTANCE Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. Full Article
iot Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor" By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 Full Article
iot Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Human milk oligosaccharides (HMOs) may provide health benefits to infants partly by shaping the development of the early-life intestinal microbiota. In a randomized double-blinded controlled multicentric clinical trial, healthy term infants received either infant formula (control) or the same formula with two HMOs (2'-fucosyllactose and lacto-N-neotetraose; test) from enrollment (0 to 14 days) to 6 months. Then, all infants received the same follow-up formula without HMOs until 12 months of age. Breastfed infants (BF) served as a reference group. Stool microbiota at 3 and 12 months, analyzed by 16S rRNA gene sequencing, clustered into seven fecal community types (FCTs) with marked differences in total microbial abundances. Three of the four 12-month FCTs were likely precursors of the adult enterotypes. At 3 months, microbiota composition in the test group (n = 58) appeared closer to that of BF (n = 35) than control (n = 63) by microbiota alpha (within group) and beta (between groups) diversity analyses and distribution of FCTs. While bifidobacteriaceae dominated two FCTs, its abundance was significantly higher in one (FCT BiH for Bifidobacteriaceae at high abundance) than in the other (FCT Bi for Bifidobacteriaceae). HMO supplementation increased the number of infants with FCT BiH (predominant in BF) at the expense of FCT Bi (predominant in control). We explored the association of the FCTs with reported morbidities and medication use up to 12 months. Formula-fed infants with FCT BiH at 3 months were significantly less likely to require antibiotics during the first year than those with FCT Bi. Previously reported lower rates of infection-related medication use with HMOs may therefore be linked to gut microbiota community types. (This study has been registered at ClinicalTrials.gov under registration number NCT01715246.) IMPORTANCE Human milk is the sole and recommended nutrition for the newborn infant and contains one of the largest constituents of diverse oligosaccharides, dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association studies indicate that HMOs have multiple physiological functions largely mediated through the establishment of the gut microbiome. Until recently, HMOs were not available to investigate their role in randomized controlled intervention trials. To our knowledge, this is the first report on the effects of 2 HMOs on establishing microbiota in newborn infants. We provide a detailed description of the microbiota changes observed upon feeding a formula with 2 HMOs in comparison to breastfed reference infants' microbiota. Then, we associate the microbiota to long-term health as assessed by prescribed antibiotic use. Full Article
iot Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive. IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis. Full Article
iot Modulation of the Gut Microbiota during High-Dose Glycerol Monolaurate-Mediated Amelioration of Obesity in Mice Fed a High-Fat Diet By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Obesity and associated metabolic disorders are worldwide public health issues. The gut microbiota plays a key role in the pathophysiology of diet-induced obesity. Glycerol monolaurate (GML) is a widely consumed food emulsifier with antibacterial properties. Here, we explore the anti-obesity effect of GML (1,600 mg/kg of body weight) in high-fat diet (HFD)-fed mice. HFD-fed mice were treated with 1,600 mg/kg GML. Integrated microbiome, metabolome, and transcriptome analyses were used to systematically investigate the metabolic effects of GML, and antibiotic treatment was used to assess the effects of GML on the gut microbiota. Our data indicated that GML significantly reduced body weight and visceral fat deposition, improved hyperlipidemia and hepatic lipid metabolism, and ameliorated glucose homeostasis and inflammation in HFD-fed mice. Importantly, GML modulated HFD-induced gut microbiota dysbiosis and selectively increased the abundance of Bifidobacterium pseudolongum. Antibiotic treatment abolished all the GML-mediated metabolic improvements. A multiomics (microbiome, metabolome, and transcriptome) association study showed that GML significantly modulated glycerophospholipid metabolism, and the abundance of Bifidobacterium pseudolongum strongly correlated with the metabolites and genes that participated in glycerophospholipid metabolism. Our results indicated that GML may be provided for obesity prevention by targeting the gut microbiota and regulating glycerophospholipid metabolism. Full Article
iot The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics. IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria. Full Article
iot Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus. IMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus. Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections. Full Article
iot Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Temporal dynamics of certain human microbiotas have been described in longitudinal studies; variability often relates to modifiable factors or behaviors. Early studies of the urinary microbiota preferentially used samples obtained by transurethral catheterization to minimize vulvovaginal microbial contributions. Whereas voided specimens are preferred for longitudinal studies, the few studies that reported longitudinal data were limited to women with lower urinary tract (LUT) symptoms, due to ease of accessing a clinical population for sampling and the impracticality and risk of collecting repeated catheterized urine specimens in a nonclinical population. Here, we studied the microbiota of the LUT of nonsymptomatic, premenopausal women using midstream voided urine (MSU) specimens to investigate relationships between microbial dynamics and personal factors. Using 16S rRNA gene sequencing and a metaculturomics method called expanded quantitative urine culture (EQUC), we characterized the microbiotas of MSU and periurethral swab specimens collected daily for approximately 3 months from a small cohort of adult women. Participants were screened for eligibility, including the ability to self-collect paired urogenital specimens prior to enrollment. In this population, we found that measures of microbial dynamics related to specific participant-reported factors, particularly menstruation and vaginal intercourse. Further investigation of the trends revealed differences in the composition and diversity of LUT microbiotas within and across participants. These data, in combination with previous studies showing relationships between the LUT microbiota and LUT symptoms, suggest that personal factors relating to the genitourinary system may be an important consideration in the etiology, prevention, and/or treatment of LUT disorders. IMPORTANCE Following the discovery of the collective human urinary microbiota, important knowledge gaps remain, including the stability and variability of this microbial niche over time. Initial urinary studies preferentially utilized samples obtained by transurethral catheterization to minimize contributions from vulvovaginal microbes. However, catheterization has the potential to alter the urinary microbiota; therefore, voided specimens are preferred for longitudinal studies. In this report, we describe microbial findings obtained by daily assessment over 3 months in a small cohort of adult women. We found that, similarly to vaginal microbiotas, lower urinary tract (LUT) microbiotas are dynamic, with changes relating to several factors, particularly menstruation and vaginal intercourse. Our study results show that LUT microbiotas are both dynamic and resilient. They also offer novel opportunities to target LUT microbiotas by preventative or therapeutic means, through risk and/or protective factor modification. Full Article
iot Topoisomerases Modulate the Timing of Meiotic DNA Breakage and Chromosome Morphogenesis in Saccharomyces cerevisiae [Genome Integrity and Transmission] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 During meiotic prophase, concurrent transcription, recombination, and chromosome synapsis place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles of topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae. We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes, including many meiotic double-strand break (DSB) hotspots. Despite the comparable binding patterns, top1 and top2 mutations have different effects on meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants exhibit a marked delay in meiotic chromosome remodeling and elevated DSB signals on synapsed chromosomes. The problems in chromosome remodeling were linked to altered Top2 binding patterns rather than a loss of Top2 catalytic activity, and stemmed from a defect in recruiting the chromosome remodeler Pch2/TRIP13 to synapsed chromosomes. No chromosomal defects were observed in the absence of TOP1. Our results imply independent roles for Top1 and Top2 in modulating meiotic chromosome structure and recombination. Full Article
iot A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Antimicrobial peptides play an important role in host defense against Vibrio cholerae. Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS, regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains. We designated the two alleles present in PB-resistant and -sensitive strains carRr and carRs alleles, respectively, and replaced the carRs allele of a sensitive strain with the carRr allele, using an allelic-exchange approach. The sensitive strain then became resistant. The PB-resistant strain N16961 was made susceptible to PB in a similar fashion. Our in silico CarR protein models suggested that the D89N substitution in the more stable CarRs protein brings the two structural domains of CarR closer, constricting the DNA binding cleft. This probably reduces the expression of the carR-regulated almEFG operon, inducing PB susceptibility. Expression of almEFG in PB-sensitive strains was found to be downregulated under natural culturing conditions. In addition, the expression of carR and almEG decreased in all strains with increased concentrations of extracellular Ca2+ but increased with a rise in pH. The downregulation of almEFG in CarRs strains confirmed that the G265A mutation is responsible for the emergence of PB-sensitive El Tor strains. Full Article
iot The Microbiota Contributes to the Control of Highly Pathogenic H5N9 Influenza Virus Replication in Ducks [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks. IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir. Full Article
iot Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T01:37:03-07:00 Jing Wen, Tingbei Bo, Xueying Zhang, Zuoxin Wang, and Dehua WangAmbient temperature and food composition can affect energy metabolism of the host. Thermal transient receptor potential (thermo-TRPs) ion channels can detect temperature signals and are involved in the regulation of thermogenesis and energy homeostasis. Further, the gut microbiota has also been implicated in thermogenesis and obesity. In the present study, we tested the hypothesis that thermo-TRPs and gut microbiota are involved in reducing diet-induced obesity (DIO) during low temperature exposure. C57BL/6J mice in obese (body mass gain >45%), lean (body mass gain <15%), and control (body mass gain<1%) groups were exposed to high (23±1°C) or low (4±1°C) ambient temperature for 28 days. Our data showed that low temperature exposure attenuated DIO, but enhanced brown adipose tissue (BAT) thermogenesis. Low temperature exposure also resulted in increased norepinephrine (NE) concentrations in the hypothalamus, decreased TRP melastatin 8 (TRPM8) expression in the small intestine, and altered composition and diversity of gut microbiota. In DIO mice, there was a decrease in overall energy intake along with a reduction in TRP ankyrin 1 (TRPA1) expression and an increase in NE concentration in the small intestine. DIO mice also showed increases in Oscillospira, [Ruminococcus], Lactococcus, and Christensenella and decreases in Prevotella, Odoribacter, and Lactobacillus at the genus level in fecal samples. Together, our data suggest that thermos-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure in DIO mice. Full Article
iot Post-Breast Cancer Radiotherapy Bronchiolitis Obliterans Organizing Pneumonia By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Radiotherapy for breast cancer has been implicated in the development of bronchiolitis obliterans organizing pneumonia (BOOP). Patients may be asymptomatic or may have pulmonary and constitutional symptoms that are moderate or severe. Postradiotherapy BOOP usually develops during the 12 months after completion of radiotherapy and is characterized by ground-glass opacities in the radiation-exposed lung and frequently in the non-irradiated lung.METHODS:An updated literature search and review was performed to update the systematic review we conducted in 2014. Ten new publications were identified: 2 Japanese epidemiological studies, 1 Japanese case series study, 6 case reports, and 1 review article.RESULTS:The incidence of postradiotherapy BOOP was 1.4% in both Japanese epidemiological studies. Risk factors included increasing age, cigarette smoking, and increasing central lung distance. The case reports included 7 women who had breast cancer postradiation BOOP and 1 woman who had an ataxia telangiectasia mutated (ATM) gene mutation, which may increase radiation sensitivity.CONCLUSION:Postradiotherapy BOOP in women with breast cancer occurs at a rate of 1.0–3.0% and may occur in women with immune system dysfunction and genetic mutations. Full Article
iot Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials. Full Article
iot Evaluation of ID Fungi Plates Medium for Identification of Molds by MALDI Biotyper [Mycology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 MALDI-TOF mass spectrometry (MS) identification of pathogenic filamentous fungi is often impaired by difficulties in harvesting hyphae embedded in the medium and long extraction protocols. The ID Fungi Plate (IDFP) is a novel culture method developed to address such difficulties and improve the identification of filamentous fungi by MALDI-TOF MS. We cultured 64 strains and 11 clinical samples on IDFP, Sabouraud agar-chloramphenicol (SAB), and ChromID Candida agar (CAN2). We then compared the three media for growth, ease of harvest, amount of material picked, and MALDI-TOF identification scores after either rapid direct transfer (DT) or a long ethanol-acetonitrile (EA) extraction protocol. Antifungal susceptibility testing and microscopic morphology after subculture on SAB and IDFP were also compared for ten molds. Growth rates and morphological aspects were similar for the three media. With IDFP, harvesting of fungal material for the extraction procedure was rapid and easy in 92.4% of cases, whereas it was tedious on SAB or CAN2 in 65.2% and 80.3% of cases, respectively. The proportion of scores above 1.7 (defined as acceptable identification) were comparable for both extraction protocols using IDFP (P = 0.256). Moreover, rates of acceptable identification after DT performed on IDFP (93.9%) were significantly higher than those obtained after EA extraction with SAB (69.7%) or CAN2 (71.2%) (P = <0.001 and P = 0.001, respectively). Morphological aspects and antifungal susceptibility testing were similar between IDFP and SAB. IDFP is a culture plate that facilitates and improves the identification of filamentous fungi, allowing accurate routine identification of molds with MALDI-TOF-MS using a rapid-extraction protocol. Full Article
iot Lack of Evidence for Microbiota in the Placental and Fetal Tissues of Rhesus Macaques By msphere.asm.org Published On :: 2020-05-06T07:29:31-07:00 ABSTRACT The prevailing paradigm in obstetrics has been the sterile womb hypothesis. However, some are asserting that the placenta, intra-amniotic environment, and fetus harbor microbial communities. The objective of this study was to determine whether the fetal and placental tissues of rhesus macaques harbor bacterial communities. Fetal, placental, and uterine wall samples were obtained from cesarean deliveries without labor (~130/166 days gestation). The presence of bacteria in the fetal intestine and placenta was investigated through culture. The bacterial burden and profiles of the placenta, umbilical cord, and fetal brain, heart, liver, and colon were determined through quantitative real-time PCR and DNA sequencing. These data were compared with those of the uterine wall as well as to negative and positive technical controls. Bacterial cultures of fetal and placental tissues yielded only a single colony of Cutibacterium acnes. This bacterium was detected at a low relative abundance (0.02%) in the 16S rRNA gene profile of the villous tree sample from which it was cultured, yet it was also identified in 12/29 background technical controls. The bacterial burden and profiles of fetal and placental tissues did not exceed or differ from those of background technical controls. By contrast, the bacterial burden and profiles of positive controls exceeded and differed from those of background controls. Among the macaque samples, distinct microbial signals were limited to the uterine wall. Therefore, using multiple modes of microbiologic inquiry, there was not consistent evidence of bacterial communities in the fetal and placental tissues of rhesus macaques. IMPORTANCE Microbial invasion of the amniotic cavity (i.e., intra-amniotic infection) has been causally linked to pregnancy complications, especially preterm birth. Therefore, if the placenta and the fetus are typically populated by low-biomass microbial communities, current understanding of the role of microbes in reproduction and pregnancy outcomes will need to be fundamentally reconsidered. Could these communities be of benefit by competitively excluding potential pathogens or priming the fetal immune system for the microbial bombardment it will experience upon delivery? If so, what properties (e.g., microbial load and community membership) of these microbial communities preclude versus promote intra-amniotic infection? Given the ramifications of the in utero colonization hypothesis, critical evaluation is required. In this study, using multiple modes of microbiologic inquiry (i.e., culture, quantitative real-time PCR [qPCR], and DNA sequencing) and controlling for potential background DNA contamination, we did not find consistent evidence for microbial communities in the placental and fetal tissues of rhesus macaques. Full Article
iot Subtle Variations in Dietary-Fiber Fine Structure Differentially Influence the Composition and Metabolic Function of Gut Microbiota By msphere.asm.org Published On :: 2020-05-06T07:29:31-07:00 ABSTRACT The chemical structures of soluble fiber carbohydrates vary from source to source due to numerous possible linkage configurations among monomers. However, it has not been elucidated whether subtle structural variations might impact soluble fiber fermentation by colonic microbiota. In this study, we tested the hypothesis that subtle structural variations in a soluble polysaccharide govern the community structure and metabolic output of fermenting microbiota. We performed in vitro fecal fermentation studies using arabinoxylans (AXs) from different classes of wheat (hard red spring [AXHRS], hard red winter [AXHRW], and spring red winter [AXSRW]) with identical initial microbiota. Carbohydrate analyses revealed that AXSRW was characterized by a significantly shorter backbone and increased branching compared with those of the hard varieties. Amplicon sequencing demonstrated that fermentation of AXSRW resulted in a distinct community structure of significantly higher richness and evenness than those of hard-AX-fermenting cultures. AXSRW favored OTUs within Bacteroides, whereas AXHRW and AXHRS favored Prevotella. Accordingly, metabolic output varied between hard and soft varieties; higher propionate production was observed with AXSRW and higher butyrate and acetate with AXHRW and AXHRS. This study showed that subtle changes in the structure of a dietary fiber may strongly influence the composition and function of colonic microbiota, further suggesting that physiological functions of dietary fibers are highly structure dependent. Thus, studies focusing on interactions among dietary fiber, gut microbiota, and health outcomes should better characterize the structures of the carbohydrates employed. IMPORTANCE Diet, especially with respect to consumption of dietary fibers, is well recognized as one of the most important factors shaping the colonic microbiota composition. Accordingly, many studies have been conducted to explore dietary fiber types that could predictably manipulate the colonic microbiota for improved health. However, the majority of these studies underappreciate the vastness of fiber structures in terms of their microbial utilization and omit detailed carbohydrate structural analysis. In some cases, this causes conflicting results to arise between studies using (theoretically) the same fibers. In this investigation, by performing in vitro fecal fermentation studies using bran arabinoxylans obtained from different classes of wheat, we showed that even subtle changes in the structure of a dietary fiber result in divergent microbial communities and metabolic outputs. This underscores the need for much higher structural resolution in studies investigating interactions of dietary fibers with gut microbiota, both in vitro and in vivo. Full Article
iot Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer [Review] By mmbr.asm.org Published On :: 2020-03-04T05:30:12-08:00 Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues. Full Article
iot Bioavailability Based on the Gut Microbiota: a New Perspective [Review] By mmbr.asm.org Published On :: 2020-04-29T05:30:12-07:00 The substantial discrepancy between the strong effects of functional foods and various drugs, especially traditional Chinese medicines (TCMs), and the poor bioavailability of these substances remains a perplexing problem. Understanding the gut microbiota, which acts as an effective bioreactor in the human intestinal tract, provides an opportunity for the redefinition of bioavailability. Here, we discuss four different pathways associated with the role of the gut microbiota in the transformation of parent compounds to beneficial or detrimental small molecules, which can enter the body’s circulatory system and be available to target cells, tissues, and organs. We further describe and propose effective strategies for improving bioavailability and alleviating side effects with the help of the gut microbiota. This review also broadens our perspectives for the discovery of new medicinal components. Full Article
iot Early Childhood Antibiotic Treatment for Otitis Media and Other Respiratory Tract Infections Is Associated With Risk of Type 1 Diabetes: A Nationwide Register-Based Study With Sibling Analysis By care.diabetesjournals.org Published On :: 2020-04-20T12:00:32-07:00 OBJECTIVE The effect of early-life antibiotic treatment on the risk of type 1 diabetes is debated. This study assessed this question, applying a register-based design in children up to age 10 years including a large sibling-control analysis. RESEARCH DESIGN AND METHODS All singleton children (n = 797,318) born in Sweden between 1 July 2005 and 30 September 2013 were included and monitored to 31 December 2014. Cox proportional hazards models, adjusted for parental and perinatal characteristics, were applied, and stratified models were used to account for unmeasured confounders shared by siblings. RESULTS Type 1 diabetes developed in 1,297 children during the follow-up (median 4.0 years [range 0–8.3]). Prescribed antibiotics in the 1st year of life (23.8%) were associated with an increased risk of type 1 diabetes (adjusted hazard ratio [HR] 1.19 [95% CI 1.05–1.36]), with larger effect estimates among children delivered by cesarean section (P for interaction = 0.016). The association was driven by exposure to antibiotics primarily used for acute otitis media and respiratory tract infections. Further, we found an association of antibiotic prescriptions in pregnancy (22.5%) with type 1 diabetes (adjusted HR 1.15 [95% CI 1.00–1.32]). In general, sibling analysis supported these results, albeit often with statistically nonsignificant associations. CONCLUSIONS Dispensed prescription of antibiotics, mainly for acute otitis media and respiratory tract infections, in the 1st year of life is associated with an increased risk of type 1 diabetes before age 10 years, most prominently in children delivered by cesarean section. Full Article
iot Prebiotics Inhibit Proteolysis by Gut Bacteria in a Host Diet-Dependent Manner: a Three-Stage Continuous In Vitro Gut Model Experiment [Food Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491–502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers. IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models. Full Article
iot Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally. IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally. Full Article
iot Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation [Biotechnology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (~8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections. IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa. A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections. Full Article
iot Two Functional Fatty Acyl Coenzyme A Ligases Affect Free Fatty Acid Metabolism To Block Biosynthesis of an Antifungal Antibiotic in Lysobacter enzymogenes [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes. Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2. In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes. IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes. Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes. Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes. Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria. Full Article