ici Smart approach to constraint programming: intelligent backtracking using artificial intelligence By www.inderscience.com Published On :: 2024-07-01T23:20:50-05:00 Constrained programming is the concept used to select possible alternatives from an incredibly diverse range of candidates. This paper proposes an AI-assisted Backtracking Scheme (AI-BS) by integrating the generic backtracking algorithm with Artificial Intelligence (AI). The detailed study observes that the extreme dual ray associated with the infeasible linear program can be automatically extracted from minimum unfeasible sets. Constraints are used in artificial intelligence to list all possible values for a group of variables in a given universe. To put it another way, a solution is a way of assigning a value to each variable that these values satisfy all constraints. Furthermore, this helps the study reach a decreased search area for smart backtracking without paying high costs. The evaluation results exhibit that the IB-BC algorithm-based smart electricity schedule controller performs better electricity bill during the scheduled periods than comparison approaches such as binary backtracking and binary particle swarm optimiser. Full Article
ici Digitalisation boost operation efficiency with special emphasis on the banking sector By www.inderscience.com Published On :: 2024-10-01T23:20:50-05:00 The banking sector has experienced a substantial technological shift that has opened up new and better opportunities for its customers. Based on their technological expenditures, the study assessed the two biggest public Indian banks and the two biggest private Indian banks. The most crucial statistical techniques used to demonstrate the aims are realistic are bivariate correlations and ordinary least squares. This work aims to establish a connection between research and a technology index that serves as a proxy for operational efficiency. The results show that for both public and private banks, the technology index positively influences operational efficiency metrics like IT costs, marketing costs, and compensation costs. This suggests that when the technology index increases, so do IT, marketing, and compensation costs, even though it has been shown that the technology index favourably improves operational efficiency measures like depreciation and printing. This means that the cost to banks is high despite greater investment in technology for these activities. Full Article
ici Educational countermeasures of different learners in virtual learning community based on artificial intelligence By www.inderscience.com Published On :: 2024-07-02T23:20:50-05:00 In order to reduce the challenges encountered by learners and educators in engaging in educational activities, this paper classifies learners' roles in virtual learning communities, and explores the role of behaviour characteristics and their positions in collaborative knowledge construction networks in promoting the process of knowledge construction. This study begins with an analysis of the relationship structure among learners in the virtual learning community and then applies the FCM algorithm to arrange learners into various dimensional combinations and create distinct learning communities. The test results demonstrate that the FCM method performs consistently during the clustering process, with less performance oscillations, and good node aggregation, the ARI value of the model is up to 0.90. It is found that they play an important role in the social interaction of learners' virtual learning community, which plays a certain role in promoting the development of artificial intelligence. Full Article
ici Design of data mining system for sports training biochemical indicators based on artificial intelligence and association rules By www.inderscience.com Published On :: 2024-07-02T23:20:50-05:00 Physiological indicators are an important basis for reflecting the physiological health status of the human body and play an important role in medical practice. Association rules have also been one of the important research hotspots in recent years. This study aims to create a data mining system of association rules and artificial intelligence in biochemical indicators of sports training. This article uses Markov logic for network creation and system training, and tests whether the Markov logic network can be associated with the training system. The results show that the accuracy and recall rate obtained are about 90%, which shows that it is feasible to establish biochemical indicators of sports training based on Markov logic network, and the system has universal, guiding and constructive significance, ensuring that the construction of training system indicators will not go in the wrong direction. Full Article
ici Trust in news accuracy on X and its impact on news seeking, democratic perceptions and political participation By www.inderscience.com Published On :: 2024-10-29T23:20:50-05:00 Based on a survey of 2548 American adults conducted by Pew Research Center in 2021, this study finds that trust in the accuracy of news circulated on X (former Twitter) is positively correlated with following news sites on X, underscoring the crucial role of trust in news accuracy in shaping news-seeking behaviour. Trust in news accuracy also positively relates to political participation via X. Those who trust in news accuracy are more likely to perceive X as an effective tool for raising public awareness about political and social issues, as well as a positive force for democracy. However, exposure to misinformation weakens the connection between trust in news accuracy and users' perception about X as an effective tool for raising public awareness about political or social issues and as a positive driver for democracy. Full Article
ici Artificial neural networks for demand forecasting of the Canadian forest products industry By www.inderscience.com Published On :: 2024-11-11T23:20:50-05:00 The supply chains of the Canadian forest products industry are largely dependent on accurate demand forecasts. The USA is the major export market for the Canadian forest products industry, although some Canadian provinces are also exporting forest products to other global markets. However, it is very difficult for each province to develop accurate demand forecasts, given the number of factors determining the demand of the forest products in the global markets. We develop multi-layer feed-forward artificial neural network (ANN) models for demand forecasting of the Canadian forest products industry. We find that the ANN models have lower prediction errors and higher threshold statistics as compared to that of the traditional models for predicting the demand of the Canadian forest products. Accurate future demand forecasts will not only help in improving the short-term profitability of the Canadian forest products industry, but also their long-term competitiveness in the global markets. Full Article
ici Technology-based Participatory Learning for Indigenous Children in Chiapas Schools, Mexico By Published On :: Full Article
ici Delving into the Specificity of Instructional Guidance in Social Media-supported Learning Environments By Published On :: 2018-03-02 Aim/Purpose: This study investigates the variations in student participation patterns across different types of instructional activities, learning modes, and with different instructional guidance approaches. In the current study, different variables, modes of learning (guided versus unguided), and types of guidance (social versus cognitive) were manipulated in a series of microblogging-supported collaborative learning tasks to examine to what extent and in which aspects instructional guidance affects the effectiveness and student perception of microblogging-supported learning. Background: Despite the overwhelming agreement on the importance of instructional guidance in microblogging-supported learning environments, very few studies have been done to examine the specificity of guidance, such as how to structure and support microblogging activities, as well as what types of guidance are appropriate in what learning contexts. Methodology: This semester-long study utilized a case-study research design via a multi-dimensional approach in a hybrid classroom with both face-to-face and online environments. Tweets were collected from four types of activities and coded based on content within their contextual setting. Twenty-four college students participated in the study. Contribution: In response to the call to improve social media learning environments under-scored in contemporary education, the current case study took an initial step aiming at deepening the understanding of the role of instructional guidance in microblogging-supported learning environments. Findings: This study showcases that with instructor facilitation, students succeeded in being engaged in a highly participatory and interactive learning experience across a variety of tasks and activities. This study indicates that students’ perspectives of social media tools rely heavily on what instructors do with the tool and how the instructional activities are structured and supported. Instructors’ scaffolding and support is instrumental in keeping students on task and engaging students with meaningful events, thus ensuring the success of microblogging-based learning activities. Meanwhile, students’ perception of usefulness of instructional guidance is closely related to their own pre-perception and experience. Recommendations for Practitioners: When incorporating social media tools, it is important to examine learner’s prior knowledge and comfort level with these tools and tailor the design of instructional activities to their attributes. It is also vital to monitor student progress, adjust the type and amount of guidance and scaffolding provided as they progress, and eventually remove the scaffolding until students can demonstrate that they can perform the task successfully without assistance. Recommendation for Researchers: Due to many other potential factors in place that could potentially influence student learning, no conclusive remarks can be made regarding the superiority of either one type of guidance approach. Future researchers should continue to develop robust research methodologies to seek ways to better operationalize this variable and strive to understand its effect. Future Research: Future replication studies in other settings, with a larger sample size, and different populations will certainly provide further insights on the effects of instructional guidance in microblogging-based learning. Alternative coding methods may also shed light on differences in student interaction in terms of content diversity and depth of learning when analyzing the tweets. Advanced data collection techniques may be explored to ascertain the completeness of data collection. Full Article
ici Students’ Awareness and Embracement of Soft Skills by Learning and Practicing Teamwork By Published On :: 2020-10-18 Aim/Purpose: This paper presents a study about changes in computer science and software engineering students’ perceptions of their soft skills during their progress through the Computer Science Soft Skills course. Background: Soft skills are often associated with a person’s social, emotional and cognitive capabilities. Soft skills are increasingly sought out and are well recognized by employers alongside standard qualifications. Therefore, high importance is attributed to soft skills in computer science and software engineering education. Methodology: Content analysis was applied to interpret, categorize and code statements from students’ course assignment answers. Data analysis was performed gradually at the three main stages of the course and by the two students’ study populations. Contribution: The paper highlights the variety of (a) soft skills that can be learnt in one course, both on the individual level and on the team level and (b) assignments that can be given to students to increase their awareness and motivation to practice and learn soft skills. Findings: Data analysis revealed the following: (a) five individual soft skills categories, with 95 skills, and five team-related soft skills categories, with 52 skills (in total, the students mentioned 147 soft skills); (b) course assignments and particularly team-based activities elicited student awareness of their individual soft skills, both as strengths and weaknesses; (c) students developed their reflection skills, particularly with respect to team-related soft skills; and (d) significant differences exist between the two groups of students in several categories. Recommendations for Practitioners: It is important to provide undergraduate students with opportunities to integrate soft skills during their training. Establishing a meaningful learning process, such as project-based learning, enables students to apply and develop soft skills when accompanied by reflective thought processes. Recommendation for Researchers: A similar course can be taught and be accompanied by similar analysis of students’ learning outcomes, to examine the influence of local culture on the characteristics of soft skills. Impact on Society: Increased awareness of soft skills in scientists and engineers’ undergraduate education. University graduates who will strengthen their variety of soft skills in their academic training process and will be more meaningful employees in the workplace and in society. Future Research: Our future research aims (a) to explore additional innovative ways to increase students’ learning processes, awareness and practices in relation to soft skills and (b) to research how students’ soft skills are developed during the entire undergraduate studies both on the individual level and the team level. Full Article
ici The authenticity of digital evidence in criminal courts: a comparative study By www.inderscience.com Published On :: 2024-10-07T23:20:50-05:00 Scientific progress has a significant impact on both reality and the law that applies to it. As the ICT system has positive points that are considered an added value to it, it made it easier for people to perform their tasks and facilitate interpersonal communication for individuals, saved effort and money, and reduced the time needed to accomplish part of the duties. However, at the same time, it has become a means of committing offences and a fertile space for the existence of offence, to the extent that offence in our current era has become the result of intermarriage between human intelligence and artificial intelligence. Thus, the issue of proving cybercrimes requires a deep exploration in the notion of the authenticity of audio evidence obtained from electronic searches, as well as the process of eavesdropping and recording phone calls, and the use of expert and inspection procedures in criminal lawsuits and its impact on proof before the criminal courts. Full Article
ici Determinants of FinTech adoption by microfinance institutions in India to increase efficiency and productivity By www.inderscience.com Published On :: 2024-10-21T23:20:50-05:00 The present study attempts to find out the determinants of FinTech adoption for financial inclusion by a microfinance institution in India. The factors such as efficiency, consistency, convenience, reliability are taken as predictors of organisational attitude. Similarly, organisational attitude, ease of use, and perceived benefits are considered as antecedents of organisational adoption intention of FinTech in microfinance institutions of India. The purposive sampling technique was used to get a filled survey instrument by target samples. The results indicate that convenience and consistency in the use of FinTech applications build a favourable attitude to adopt it. Furthermore, perceived benefits are the most important antecedents of the adoption intention of FinTech in the microfinance institution in India. Additionally, the reliability of the application has a positive but insignificant impact on organisational attitude to adopt FinTech. The implications of the present study are discussed. Full Article
ici Application of artificial intelligence in enterprise human resource management and employee performance evaluation By www.inderscience.com Published On :: 2024-10-03T23:20:50-05:00 With the rapid development of Artificial Intelligence (AI) technology, significant breakthroughs have been made in its application in many fields. Especially, in the field of enterprise human resource management and employee performance evaluation, AI has demonstrated its powerful ability to optimise and improve performance. This study explores the application of AI in enterprise human resource management and how to use AI to evaluate employee performance. The research includes analysing and comparing existing AI-driven human resource management models, evaluating how AI can help improve employee performance and leadership styles, and designing and developing human resource management computer systems for enterprise employees. Through empirical research and case analysis, this study proposes a new AI-optimised employee performance evaluation model and explores its application and effect in practice. In general, the application of AI can improve the efficiency and accuracy of enterprise human resource management, and provide new possibilities for employee performance evaluation. At present, artificial intelligence technology has been widely used in various fields of daily life, especially in corporate human resource management, providing better support for the development of enterprises. Full Article
ici Can artificial intelligence replace whistle-blowers in the business sector? By www.inderscience.com Published On :: 2020-02-07T23:20:50-05:00 The major technological developments have changed the traditional way of doing business. These developments have facilitated whistle-blowing. Access to data is easier and faster and communicating with the public can be done in seconds. Another development is the artificial intelligence (AI) which enters the business workplace in different forms challenging the traditional working relations. The combination of these concepts gives the idea of artificial whistle-blowing or robot whistle-blowing. The concept is that a machine should conceive and report relevant wrongdoing avoiding the traditional model of whistle-blowing where the employee is the person who should report. This concept, yet unexplored, presents interesting positive and negative aspects. The purpose of this contribution is to present the idea of artificial whistle-blowing and its advantages and disadvantages for the business sector. As a conclusion, this paper suggests that the concept of artificial whistle-blowing needs still to be researched and an optimal solution, for the time being, is to permit artificial whistle-blowing as a helping tool for the employees to detect wrongdoings but report them themselves. Full Article
ici Creation of Anticipatory Information Support for Virtual Organizations between System(S) Theory and System Thinking By Published On :: Full Article
ici Strategic Knowledge of Computer Applications: The Key to Efficient Computer Use By Published On :: Full Article
ici Technology Use, Technology Views: Anticipating ICT Use for Beginning Physical and Health Education Teachers By Published On :: Full Article
ici Efficient Consumer Response (ECR) Practices as Responsible for the Creation of Knowledge and Sustainable Competitive Advantages in the Grocery Industry By Published On :: Full Article
ici The Energy Inefficiency of Office Computing and Potential Emerging Technology Solutions By Published On :: Full Article
ici Extending Learning to Interacting with Multiple Participants in Multiple Web 2.0 Learning Communities By Published On :: Full Article
ici Practicing M-Application Services Opportunities with Special Reference to Oman By Published On :: Full Article
ici Requirements Elicitation Problems: A Literature Analysis By Published On :: 2015-06-03 Requirements elicitation is the process through which analysts determine the software requirements of stakeholders. Requirements elicitation is seldom well done, and an inaccurate or incomplete understanding of user requirements has led to the downfall of many software projects. This paper proposes a classification of problem types that occur in requirements elicitation. The classification has been derived from a literature analysis. Papers reporting on techniques for improving requirements elicitation practice were examined for the problem the technique was designed to address. In each classification the most recent or prominent techniques for ameliorating the problems are presented. The classification allows the requirements engineer to be sensitive to problems as they arise and the educator to structure delivery of requirements elicitation training. Full Article
ici Machine Learning-based Flu Forecasting Study Using the Official Data from the Centers for Disease Control and Prevention and Twitter Data By Published On :: 2021-06-03 Aim/Purpose: In the United States, the Centers for Disease Control and Prevention (CDC) tracks the disease activity using data collected from medical practice's on a weekly basis. Collection of data by CDC from medical practices on a weekly basis leads to a lag time of approximately 2 weeks before any viable action can be planned. The 2-week delay problem was addressed in the study by creating machine learning models to predict flu outbreak. Background: The 2-week delay problem was addressed in the study by correlation of the flu trends identified from Twitter data and official flu data from the Centers for Disease Control and Prevention (CDC) in combination with creating a machine learning model using both data sources to predict flu outbreak. Methodology: A quantitative correlational study was performed using a quasi-experimental design. Flu trends from the CDC portal and tweets with mention of flu and influenza from the state of Georgia were used over a period of 22 weeks from December 29, 2019 to May 30, 2020 for this study. Contribution: This research contributed to the body of knowledge by using a simple bag-of-word method for sentiment analysis followed by the combination of CDC and Twitter data to generate a flu prediction model with higher accuracy than using CDC data only. Findings: The study found that (a) there is no correlation between official flu data from CDC and tweets with mention of flu and (b) there is an improvement in the performance of a flu forecasting model based on a machine learning algorithm using both official flu data from CDC and tweets with mention of flu. Recommendations for Practitioners: In this study, it was found that there was no correlation between the official flu data from the CDC and the count of tweets with mention of flu, which is why tweets alone should be used with caution to predict a flu out-break. Based on the findings of this study, social media data can be used as an additional variable to improve the accuracy of flu prediction models. It is also found that fourth order polynomial and support vector regression models offered the best accuracy of flu prediction models. Recommendations for Researchers: Open-source data, such as Twitter feed, can be mined for useful intelligence benefiting society. Machine learning-based prediction models can be improved by adding open-source data to the primary data set. Impact on Society: Key implication of this study for practitioners in the field were to use social media postings to identify neighborhoods and geographic locations affected by seasonal outbreak, such as influenza, which would help reduce the spread of the disease and ultimately lead to containment. Based on the findings of this study, social media data will help health authorities in detecting seasonal outbreaks earlier than just using official CDC channels of disease and illness reporting from physicians and labs thus, empowering health officials to plan their responses swiftly and allocate their resources optimally for the most affected areas. Future Research: A future researcher could use more complex deep learning algorithms, such as Artificial Neural Networks and Recurrent Neural Networks, to evaluate the accuracy of flu outbreak prediction models as compared to the regression models used in this study. A future researcher could apply other sentiment analysis techniques, such as natural language processing and deep learning techniques, to identify context-sensitive emotion, concept extraction, and sarcasm detection for the identification of self-reporting flu tweets. A future researcher could expand the scope by continuously collecting tweets on a public cloud and applying big data applications, such as Hadoop and MapReduce, to perform predictions using several months of historical data or even years for a larger geographical area. Full Article
ici Towards a Methodology to Elicit Tacit Domain Knowledge from Users By Published On :: Full Article
ici Towards Network Perspective of Intra-Organizational Learning: Bridging the Gap between Acquisition and Participation Perspective By Published On :: Full Article
ici From Tailored Databases to Wikis: Using Emerging Technologies to Work Together More Efficiently By Published On :: Full Article
ici Environmental Knowledge Management of Finnish Food and Drink Companies in Eco-Efficiency and Waste Management By Published On :: Full Article
ici A Decision Support System and Warehouse Operations Design for Pricing Products and Minimizing Product Returns in a Food Plant By Published On :: 2021-01-28 Aim/Purpose: The first goal is to develop a decision support system for pricing and production amounts for a firm facing high levels of product returns. The second goal is to improve the management of the product returns process. Background: This study was conducted at a food importer and manufacturer in Israel facing a very high rate of product returns, much of which is eventually discarded. The firm’s products are commonly considered to be a low-cost generic alternative and are therefore popular among low-income families. Methodology: A decision support module was added to the plant’s business information system. The module is based on a supply chain pricing model and uses the sales data to infer future demand’s distribution. Ergonomic models were used to improve the design of the returns warehouse and the handling of the returns. Contribution: The decision support system allows to improve the plant’s pricing and quantity planning. Consequently, it reduced the size of product returns. The new design of the returns process is expected to improve worker’s productivity, reduces losses and results in safer outcomes. This study also demonstrates a successful integration and of a theoretical economical model into an information system. Findings: The results show the promise of incorporating pricing supply chain models into informing systems to achieve a practical business task. We were able to construct actual demand distributions from the data and offer actual pricing recommendations that reduce the number of returns while increasing potential profits. We were able to identify key deficiencies in the returns operations and added a module to the decisions support system that improves the returns management and links it with the sales and pricing modules. Finally, we produced a better warehouse design that supports efficient and ergonomic product returns handling. Recommendations for Practitioners: This work can be replicated for different suppliers, manufacturers and retailers that suffer from product returns. They will benefit from the reduction in returns, as well as the decrease in the losses associated with these returns. Recommendation for Researchers: It is worthwhile to research whether decision support systems can be applied to other aspects of the organizations’ operations. Impact on Society: Product returns is a lose-lose situation for producers, retailers and customers. Moreover, mismanagement of these returns is harmful for the environment and may result in the case of foods, in health hazards. Reducing returns and improving the handling improves sustainability and is beneficial for society. Future Research: The decision support system’s underlying pricing model assumes a specific business setting. This can be extended using other pricing models and applying them in a similar fashion to the current application. Full Article
ici Implementing Security in IoT Ecosystem Using 5G Network Slicing and Pattern Matched Intrusion Detection System: A Simulation Study By Published On :: 2021-01-18 Aim/Purpose: 5G and IoT are two path-breaking technologies, and they are like wall and climbers, where IoT as a climber is growing tremendously, taking the support of 5G as a wall. The main challenge that emerges here is to secure the ecosystem created by the collaboration of 5G and IoT, which consists of a network, users, endpoints, devices, and data. Other than underlying and hereditary security issues, they bring many Zero-day vulnerabilities, which always pose a risk. This paper proposes a security solution using network slicing, where each slice serves customers with different problems. Background: 5G and IoT are a combination of technology that will enhance the user experience and add many security issues to existing ones like DDoS, DoS. This paper aims to solve some of these problems by using network slicing and implementing an Intrusion Detection System to identify and isolate the compromised resources. Methodology: This paper proposes a 5G-IoT architecture using network slicing. Research here is an advancement to our previous implementation, a Python-based software divided into five different modules. This paper’s amplification includes induction of security using pattern matching intrusion detection methods and conducting tests in five different scenarios, with 1000 up to 5000 devices in different security modes. This enhancement in security helps differentiate and isolate attacks on IoT endpoints, base stations, and slices. Contribution: Network slicing is a known security technique; we have used it as a platform and developed a solution to host IoT devices with peculiar requirements and enhance their security by identifying intruders. This paper gives a different solution for implementing security while using slicing technology. Findings: The study entails and simulates how the IoT ecosystem can be variedly deployed on 5G networks using network slicing for different types of IoT devices and users. Simulation done in this research proves that the suggested architecture can be successfully implemented on IoT users with peculiar requirements in a network slicing environment. Recommendations for Practitioners: Practitioners can implement this solution in any live or production IoT environment to enhance security. This solution helps them get a cost-effective method for deploying IoT devices on a 5G network, which would otherwise have been an expensive technology to implement. Recommendation for Researchers: Researchers can enhance the simulations by amplifying the different types of IoT devices on varied hardware. They can even perform the simulation on a real network to unearth the actual impact. Impact on Society: This research provides an affordable and modest solution for securing the IoT ecosystem on a 5G network using network slicing technology, which will eventually benefit society as an end-user. This research can be of great assistance to all those working towards implementing security in IoT ecosystems. Future Research: All the configuration and slicing resources allocation done in this research was performed manually; it can be automated to improve accuracy and results. Our future direction will include machine learning techniques to make this application and intrusion detection more intelligent and advanced. This simulation can be combined and performed with smart network devices to obtain more varied results. A proof-of-concept system can be implemented on a real 5G network to amplify the concept further. Full Article
ici Modeling the Impact of Covid-19 on the Farm Produce Availability and Pricing in India By Published On :: 2022-01-09 Aim/Purpose: This paper aims to analyze the availability and pricing of perishable farm produce before and during the lockdown restrictions imposed due to Covid-19. This paper also proposes machine learning and deep learning models to help the farmers decide on an appropriate market to sell their farm produce and get a fair price for their product. Background: Developing countries like India have regulated agricultural markets governed by country-specific protective laws like the Essential Commodities Act and the Agricultural Produce Market Committee (APMC) Act. These regulations restrict the sale of agricultural produce to a predefined set of local markets. Covid-19 pandemic led to a lockdown during the first half of 2020 which resulted in supply disruption and demand-supply mismatch of agricultural commodities at these local markets. These demand-supply dynamics led to disruptions in the pricing of the farm produce leading to a lower price realization for farmers. Hence it is essential to analyze the impact of this disruption on the pricing of farm produce at a granular level. Moreover, the farmers need a tool that guides them with the most suitable market/city/town to sell their farm produce to get a fair price. Methodology: One hundred and fifty thousand samples from the agricultural dataset, released by the Government of India, were used to perform statistical analysis and identify the supply disruptions as well as price disruptions of perishable agricultural produce. In addition, more than seventeen thousand samples were used to implement and train machine learning and deep learning models that can predict and guide the farmers about the appropriate market to sell their farm produce. In essence, the paper uses descriptive analytics to analyze the impact of COVID-19 on agricultural produce pricing. The paper explores the usage of prescriptive analytics to recommend an appropriate market to sell agricultural produce. Contribution: Five machine learning models based on Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Gradient Boosting, and three deep learning models based on Artificial Neural Networks were implemented. The performance of these models was compared using metrics like Precision, Recall, Accuracy, and F1-Score. Findings: Among the five classification models, the Gradient Boosting classifier was the optimal classifier that achieved precision, recall, accuracy, and F1 score of 99%. Out of the three deep learning models, the Adam optimizer-based deep neural network achieved precision, recall, accuracy, and F1 score of 99%. Recommendations for Practitioners: Gradient boosting technique and Adam-based deep learning model should be the preferred choice for analyzing agricultural pricing-related problems. Recommendation for Researchers: Ensemble learning techniques like Random Forest and Gradient boosting perform better than non-Ensemble classification techniques. Hyperparameter tuning is an essential step in developing these models and it improves the performance of the model. Impact on Society: Statistical analysis of the data revealed the true nature of demand and supply and price disruption. This analysis helps to assess the revenue impact borne by the farmers due to Covid-19. The machine learning and deep learning models help the farmers to get a better price for their crops. Though the da-taset used in this paper is related to India, the outcome of this research work applies to many developing countries that have similar regulated markets. Hence farmers from developing countries across the world can benefit from the outcome of this research work. Future Research: The machine learning and deep learning models were implemented and tested for markets in and around Bangalore. The model can be expanded to cover other markets within India. Full Article
ici Medicine Recommender System Based on Semantic and Multi-Criteria Filtering By Published On :: 2023-07-21 Aim/Purpose: This study aims to devise a personalized solution for online healthcare platforms that can alleviate problems arising from information overload and data sparsity by providing personalized healthcare services to patients. The primary focus of this paper is to develop an effective medicine recommendation approach for recommending suitable medications to patients based on their specific medical conditions. Background: With a growing number of people becoming more conscious about their health, there has been a notable increase in the use of online healthcare platforms and e-services as a means of diagnosis. As the internet continues to evolve, these platforms and e-services are expected to play an even more significant role in the future of healthcare. For instance, WebMD and similar platforms offer valuable tools and information to help manage patients’ health, such as searching for medicines based on their medical conditions. Nonetheless, patients often find it arduous and time-consuming to sort through all the available medications to find the ones that match their specific medical conditions. To address this problem, personalized recommender systems have emerged as a practical solution for mitigating the burden of information overload and data sparsity-related issues that are frequently encountered on online healthcare platforms. Methodology: The study utilized a dataset of MC ratings obtained from WebMD, a popular healthcare website. Patients on this website can rate medications based on three criteria, including medication effectiveness, ease of use, and satisfaction, using a scale of 1 to 5. The WebMD MC rating dataset used in this study contains a total of 32,054 ratings provided by 2,136 patients for 845 different medicines. The proposed HSMCCF approach consists of two primary modules: a semantic filtering module and a multi-criteria filtering module. The semantic filtering module is designed to address the issues of data sparsity and new item problems by utilizing a medicine taxonomy that sorts medicines according to medical conditions and makes use of semantic relationships between them. This module identifies the medicines that are most likely to be relevant to patients based on their current medical conditions. The multi-criteria filtering module, on the other hand, enhances the approach’s ability to capture the complexity of patient preferences by considering multiple criteria and preferences through a unique similarity metric that incorporates both distance and structural similarities. This module ensures that patients receive more accurate and personalized medication recommendations. Moreover, a medicine reputation score is employed to ensure that the approach remains effective even when dealing with limited ratings or new items. Overall, the combination of these modules makes the proposed approach more robust and effective in providing personalized medicine recommendations for patients. Contribution: This study addresses the medicine recommendation problem by proposing a novel approach called Hybrid Semantic-based Multi-Criteria Collaborative Filtering (HSMCCF). This approach effectively recommends medications for patients based on their medical conditions and is specifically designed to overcome issues related to data sparsity and new item recommendations that are commonly encountered on online healthcare platforms. The proposed approach addresses data sparsity and new item issues by incorporating a semantic filtering module and a multi-criteria filtering module. The semantic filtering module sorts medicines based on medical conditions and uses semantic relationships to identify relevant ones. The multi-criteria filtering module accurately captures patient preferences and provides precise recommendations using a novel similarity metric. Additionally, a medicine reputation score is also employed to further expand potential neighbors, improving predictive accuracy and coverage, particularly in sparse datasets or new items with few ratings. With the HSMCCF approach, patients can receive more personalized recommendations that are tailored to their unique medical needs and conditions. By leveraging a combination of semantic-based and multi-criteria filtering techniques, the proposed approach can effectively address the challenges associated with medicine recommendations on online healthcare platforms. Findings: The proposed HSMCCF approach demonstrated superior effectiveness compared to benchmark recommendation methods in multi-criteria rating datasets in terms of enhancing both prediction accuracy and coverage while effectively addressing data sparsity and new item challenges. Recommendations for Practitioners: By applying the proposed medicine recommendation approach, practitioners can develop a medicine recommendation system that can be integrated into online healthcare platforms. Patients can then utilize this system to make better-informed decisions regarding the medications that are most suitable for their specific medical conditions. This personalized approach to medication recommendations can ultimately lead to improved patient satisfaction. Recommendation for Researchers: Integrating patient medicine reviews is a promising way for researchers to elevate the proposed medicine recommendation approach. By leveraging patient reviews, the approach can gain a more comprehensive understanding of how certain medications perform for specific medical conditions. Additionally, exploring the relationship between MC-based ratings using an improved aggregation function can potentially enhance the accuracy of medication predictions. This involves analyzing the relationship between different criteria, such as medication effectiveness, ease of use, and satisfaction of the patients, and determining the optimal weighting for each criterion based on patient feedback. A more holistic approach that incorporates patient reviews and an improved aggregation function can enable the proposed medicine recommendation approach to provide more personalized and accurate recommendations to patients. Impact on Society: To mitigate the risk of infection during the COVID-19 pandemic, the promotion of online healthcare services was actively encouraged. This allowed patients to continue accessing care and receiving treatment while adhering to physical distancing guidelines and shielding measures where necessary. As a result, the implementation of personalized healthcare services for patients is expected to be a major disruptive force in healthcare in the coming years. This study proposes a personalized medicine recommendation approach that can effectively address this issue and aid patients in making informed decisions about the medications that are most suitable for their specific medical conditions. Future Research: One way that may enhance the proposed medicine recommendation approach is to incorporate patient medicine reviews. Furthermore, the analysis of MC-based ratings using an improved aggregation function can also potentially enhance the accuracy of medication predictions. Full Article
ici Employing Artificial Neural Networks and Multiple Discriminant Analysis to Evaluate the Impact of the COVID-19 Pandemic on the Financial Status of Jordanian Companies By Published On :: 2023-05-08 Aim/Purpose: This paper aims to empirically quantify the financial distress caused by the COVID-19 pandemic on companies listed on Amman Stock Exchange (ASE). The paper also aims to identify the most important predictors of financial distress pre- and mid-pandemic. Background: The COVID-19 pandemic has had a huge toll, not only on human lives but also on many businesses. This provided the impetus to assess the impact of the pandemic on the financial status of Jordanian companies. Methodology: The initial sample comprised 165 companies, which was cleansed and reduced to 84 companies as per data availability. Financial data pertaining to the 84 companies were collected over a two-year period, 2019 and 2020, to empirically quantify the impact of the pandemic on companies in the dataset. Two approaches were employed. The first approach involved using Multiple Discriminant Analysis (MDA) based on Altman’s (1968) model to obtain the Z-score of each company over the investigation period. The second approach involved developing models using Artificial Neural Networks (ANNs) with 15 standard financial ratios to find out the most important variables in predicting financial distress and create an accurate Financial Distress Prediction (FDP) model. Contribution: This research contributes by providing a better understanding of how financial distress predictors perform during dynamic and risky times. The research confirmed that in spite of the negative impact of COVID-19 on the financial health of companies, the main predictors of financial distress remained relatively steadfast. This indicates that standard financial distress predictors can be regarded as being impervious to extraneous financial and/or health calamities. Findings: Results using MDA indicated that more than 63% of companies in the dataset have a lower Z-score in 2020 when compared to 2019. There was also an 8% increase in distressed companies in 2020, and around 6% of companies came to be no longer healthy. As for the models built using ANNs, results show that the most important variable in predicting financial distress is the Return on Capital. The predictive accuracy for the 2019 and 2020 models measured using the area under the Receiver Operating Characteristic (ROC) graph was 87.5% and 97.6%, respectively. Recommendations for Practitioners: Decision makers and top management are encouraged to focus on the identified highly liquid ratios to make thoughtful decisions and initiate preemptive actions to avoid organizational failure. Recommendation for Researchers: This research can be considered a stepping stone to investigating the impact of COVID-19 on the financial status of companies. Researchers are recommended to replicate the methods used in this research across various business sectors to understand the financial dynamics of companies during uncertain times. Impact on Society: Stakeholders in Jordanian-listed companies should concentrate on the list of most important predictors of financial distress as presented in this study. Future Research: Future research may focus on expanding the scope of this study by including other geographical locations to check for the generalisability of the results. Future research may also include post-COVID-19 data to check for changes in results. Full Article
ici A Learn-to-Rank Approach to Medicine Selection for Patient Treatments By Published On :: 2024-10-20 Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level. Full Article
ici Revolutionizing Autonomous Parking: GNN-Powered Slot Detection for Enhanced Efficiency By Published On :: 2024-08-11 Aim/Purpose: Accurate detection of vacant parking spaces is crucial for autonomous parking. Deep learning, particularly Graph Neural Networks (GNNs), holds promise for addressing the challenges of diverse parking lot appearances and complex visual environments. Our GNN-based approach leverages the spatial layout of detected marking points in around-view images to learn robust feature representations that are resilient to occlusions and lighting variations. We demonstrate significant accuracy improvements on benchmark datasets compared to existing methods, showcasing the effectiveness of our GNN-based solution. Further research is needed to explore the scalability and generalizability of this approach in real-world scenarios and to consider the potential ethical implications of autonomous parking technologies. Background: GNNs offer a number of advantages over traditional parking spot detection methods. Unlike methods that treat objects as discrete entities, GNNs may leverage the inherent connections among parking markers (lines, dots) inside an image. This ability to exploit spatial connections leads to more accurate parking space detection, even in challenging scenarios with shifting illumination. Real-time applications are another area where GNNs exhibit promise, which is critical for autonomous vehicles. Their ability to intuitively understand linkages across marking sites may further simplify the process compared to traditional deep-learning approaches that need complex feature development. Furthermore, the proposed GNN model streamlines parking space recognition by potentially combining slot inference and marking point recognition in a single step. All things considered, GNNs present a viable method for obtaining stronger and more precise parking slot recognition, opening the door for autonomous car self-parking technology developments. Methodology: The proposed research introduces a novel, end-to-end trainable method for parking slot detection using bird’s-eye images and GNNs. The approach involves a two-stage process. First, a marking-point detector network is employed to identify potential parking markers, extracting features such as confidence scores and positions. After refining these detections, a marking-point encoder network extracts and embeds location and appearance information. The enhanced data is then loaded into a fully linked network, with each node representing a marker. An attentional GNN is then utilized to leverage the spatial relationships between neighbors, allowing for selective information aggregation and capturing intricate interactions. Finally, a dedicated entrance line discriminator network, trained on GNN outputs, classifies pairs of markers as potential entry lines based on learned node attributes. This multi-stage approach, evaluated on benchmark datasets, aims to achieve robust and accurate parking slot detection even in diverse and challenging environments. Contribution: The present study makes a significant contribution to the parking slot detection domain by introducing an attentional GNN-based approach that capitalizes on the spatial relationships between marking points for enhanced robustness. Additionally, the paper offers a fully trainable end-to-end model that eliminates the need for manual post-processing, thereby streamlining the process. Furthermore, the study reduces training costs by dispensing with the need for detailed annotations of marking point properties, thereby making it more accessible and cost-effective. Findings: The goal of this research is to present a unique approach to parking space recognition using GNNs and bird’s-eye photos. The study’s findings demonstrated significant improvements over earlier algorithms, with accuracy on par with the state-of-the-art DMPR-PS method. Moreover, the suggested method provides a fully trainable solution with less reliance on manually specified rules and more economical training needs. One crucial component of this approach is the GNN’s performance. By making use of the spatial correlations between marking locations, the GNN delivers greater accuracy and recall than a completely linked baseline. The GNN successfully learns discriminative features by separating paired marking points (creating parking spots) from unpaired ones, according to further analysis using cosine similarity. There are restrictions, though, especially where there are unclear markings. Successful parking slot identification in various circumstances proves the recommended method’s usefulness, with occasional failures in poor visibility conditions. Future work addresses these limitations and explores adapting the model to different image formats (e.g., side-view) and scenarios without relying on prior entry line information. An ablation study is conducted to investigate the impact of different backbone architectures on image feature extraction. The results reveal that VGG16 is optimal for balancing accuracy and real-time processing requirements. Recommendations for Practitioners: Developers of parking systems are encouraged to incorporate GNN-based techniques into their autonomous parking systems, as these methods exhibit enhanced accuracy and robustness when handling a wide range of parking scenarios. Furthermore, attention mechanisms within deep learning models can provide significant advantages for tasks that involve spatial relationships and contextual information in other vision-based applications. Recommendation for Researchers: Further research is necessary to assess the effectiveness of GNN-based methods in real-world situations. To obtain accurate results, it is important to employ large-scale datasets that include diverse lighting conditions, parking layouts, and vehicle types. Incorporating semantic information such as parking signs and lane markings into GNN models can enhance their ability to interpret and understand context. Moreover, it is crucial to address ethical concerns, including privacy, potential biases, and responsible deployment, in the development of autonomous parking technologies. Impact on Society: Optimized utilization of parking spaces can help cities manage parking resources efficiently, thereby reducing traffic congestion and fuel consumption. Automating parking processes can also enhance accessibility and provide safer and more convenient parking experiences, especially for individuals with disabilities. The development of dependable parking capabilities for autonomous vehicles can also contribute to smoother traffic flow, potentially reducing accidents and positively impacting society. Future Research: Developing and optimizing graph neural network-based models for real-time deployment in autonomous vehicles with limited resources is a critical objective. Investigating the integration of GNNs with other deep learning techniques for multi-modal parking slot detection, radar, and other sensors is essential for enhancing the understanding of the environment. Lastly, it is crucial to develop explainable AI methods to elucidate the decision-making processes of GNN models in parking slot detection, ensuring fairness, transparency, and responsible utilization of this technology. Full Article
ici Workers’ Knowledge Sharing and Its Relationship with Their Colleague’s Political Publicity in Social Media By Published On :: 2024-06-12 Aim/Purpose: This paper intends to answer the question regarding the extent to which political postings with value differences/similarities will influence the level of implicit knowledge sharing (KS) among work colleagues in organizations. More specifically, the study assesses contributors’ responses to a workmate’s publicity about politics on social media platforms (SMP) and their eagerness to implement implicit KS to the co-worker. Background: Previously published articles have confirmed an association between publicity about politics and the reactions from workfellows in the organization. Moreover, prior work confirmed that workers’ social media postings about politics may create unfavorable responses, such as being disliked and distrusted by workfellows. This may obstruct the KS because interpersonal relations are among the KS’s essential components. Therefore, it is imperative to assess whether the workfellows’ relationship affected by political publicity would impede the KS in the office. Methodology: Data was gathered using the vignette technique and online survey. A total of 510 online and offline questionnaires were distributed to respondents in Indonesian Halal firms who have implemented knowledge-sharing practices and have been at work for no less than twelve months in the present role. Next, the 317 completed questionnaires were examined with partial least squares structural equation modeling (PLS-SEM). Contribution: Postings about politics on SMP can either facilitate or impede the level of KS in organizations, and this research topic is relatively scarce in the knowledge management discipline. While previously published articles have concentrated on public organizations, this research centers on private firms. Moreover, this work empirically examines private companies in Indonesia, which is also understudied in the existing literature. Findings: The outcomes confirm that perceived political value similarity (PPV) in a co-worker’s social-media publicity has a significant and indirect influence on contributors’ eagerness to perform implicit/tacit KS. Further, colleague likability and trustworthiness significantly influence the level of KS among respondents. As PPV significantly forms colleague likability, likability strongly and positively shapes trustworthiness. Recommendations for Practitioners: The study shows that political publicity significantly affects implicit knowledge sharing (KS). As a result, managers and leaders, particularly those in private firms, are strengthened to instruct their staff about the ramifications of publicity embedded in employees’ SMP postings, particularly about political topics, as it may result in either negative or positive perceptions amongst the staff towards the workmate who posts. Recommendation for Researchers: As this study focuses on examining KS behavior in a large context, i.e., Indonesia Halal firms that dominate the Indonesian economy, and the fact that much polarization research focuses on society at large and less on specific sectors of life, it is important and interesting for researchers to conduct similar studies in a specific workplace as political agreements and disagreements become so important and consequential in everyday lives. Impact on Society: This article makes the implication that a person’s personality can influence how they react to political posts on SMP. It is difficult for the exposers to know the personality of each viewer of publicity in daily life. Workers’ newfound knowledge can motivate them to use SMP responsibly and lessen the probability that they will disclose information that might make their co-workers feel or perceive anything unfavorably. Future Research: There is a need for further studies to examine if the results can be applied to different locations and organizations, as individuals’ behaviors may vary according to the cultures of society and firms. Furthermore, future research can take into account the individual characteristics of workers, such as hospitability, self-confidence, and psychological strength, which may be well-matched with future work models. Future research may potentially employ a qualitative technique to offer deeper insights into the same topic. Full Article
ici Factors that Influence Student E-learning Participation in a UK Higher Education Institution By Published On :: Full Article
ici Recurrent Online Quizzes: Ubiquitous Tools for Promoting Student Presence, Participation and Performance By Published On :: Full Article
ici 5-7 Year Old Children's Conceptions of Behaving Artifacts and the Influence of Constructing Their Behavior on the Development of Theory of Mind (ToM) and Theory of Artificial Mind (ToAM) By Published On :: 2015-12-14 Nowadays, we are surrounded by artifacts that are capable of adaptive behavior, such as electric pots, boiler timers, automatic doors, and robots. The literature concerning human beings’ conceptions of “traditional” artifacts is vast, however, little is known about our conceptions of behaving artifacts, nor of the influence of the interaction with such artifacts on cognitive development, especially among children. Since these artifacts are provided with an artificial “mind,” it is of interest to assess whether and how children develop a Theory of Artificial Mind (ToAM) which is distinct from their Theory of Mind (ToM). The study examined a new theoretical scheme named ToAM (Theory of Artificial Mind) by means of qualitative and quantitative methodology among twenty four 5-7 year old children from central Israel. It also examined the effects of interacting with behaving artifacts (constructing versus observing the robot’s behavior) using the “RoboGan” interface on children’s development of ToAM and their ToM and looked for conceptions that evolve among children while interacting with behaving artifacts which are indicative of the acquisition of ToAM. In the quantitative analysis it was found that the interaction with behaving artifacts, whether as observers or constructors and for both age groups, brought into awareness children’s ToM as well as influenced their ability to understand that robots can behave independently and based on external and environmental conditions. In the qualitative analysis it was found that participating in the intervention influenced the children’s ToAM for both constructors and for the younger observer. Engaging in building the robot’s behavior influenced the children’s ability to explain several of the robots’ behaviors, their understanding of the robot’s script-based behavior and rule-based behavior and the children’s metacognitive development. The theoretical and practical importance of the study is discussed. Full Article
ici From an Artificial Neural Network to Teaching By Published On :: 2020-06-24 Aim/Purpose: Using Artificial Intelligence with Deep Learning (DL) techniques, which mimic the action of the brain, to improve a student’s grammar learning process. Finding the subject of a sentence using DL, and learning, by way of this computer field, to analyze human learning processes and mistakes. In addition, showing Artificial Intelligence learning processes, with and without a general overview of the problem that it is under examination. Applying the idea of the general perspective that the network gets on the sentences and deriving recommendations from this for teaching processes. Background: We looked for common patterns of computer errors and human grammar mistakes. Also deducing the neural network’s learning process, deriving conclusions, and applying concepts from this process to the process of human learning. Methodology: We used DL technologies and research methods. After analysis, we built models from three types of complex neuronal networks – LSTM, Bi-LSTM, and GRU – with sequence-to-sequence architecture. After this, we combined the sequence-to- sequence architecture model with the attention mechanism that gives a general overview of the input that the network receives. Contribution: The cost of computer applications is cheaper than that of manual human effort, and the availability of a computer program is much greater than that of humans to perform the same task. Thus, using computer applications, we can get many desired examples of mistakes without having to pay humans to perform the same task. Understanding the mistakes of the machine can help us to under-stand the human mistakes, because the human brain is the model of the artificial neural network. This way, we can facilitate the student learning process by teaching students not to make mistakes that we have seen made by the artificial neural network. We hope that with the method we have developed, it will be easier for teachers to discover common mistakes in students’ work before starting to teach them. In addition, we show that a “general explanation” of the issue under study can help the teaching and learning process. Findings: We performed the test case on the Hebrew language. From the mistakes we received from the computerized neuronal networks model we built, we were able to classify common human errors. That is, we were able to find a correspondence between machine mistakes and student mistakes. Recommendations for Practitioners: Use an artificial neural network to discover mistakes, and teach students not to make those mistakes. We recommend that before the teacher begins teaching a new topic, he or she gives a general explanation of the problems this topic deals with, and how to solve them. Recommendations for Researchers: To use machines that simulate the learning processes of the human brain, and study if we can thus learn about human learning processes. Impact on Society: When the computer makes the same mistakes as a human would, it is very easy to learn from those mistakes and improve the study process. The fact that ma-chine and humans make similar mistakes is a valuable insight, especially in the field of education, Since we can generate and analyze computer system errors instead of doing a survey of humans (who make mistakes similar to those of the machine); the teaching process becomes cheaper and more efficient. Future Research: We plan to create an automatic grammar-mistakes maker (for instance, by giving the artificial neural network only a tiny data-set to learn from) and ask the students to correct the errors made. In this way, the students will practice on the material in a focused manner. We plan to apply these techniques to other education subfields and, also, to non-educational fields. As far as we know, this is the first study to go in this direction ‒ instead of looking at organisms and building machines, to look at machines and learn about organisms. Full Article
ici Development of a Video Network for Efficient Dissemination of the Graphical Images in a Collaborative Environment By Published On :: Full Article
ici The Prediction of Perceived Level of Computer Knowledge: The Role of Participant Characteristics and Aversion toward Computers By Published On :: Full Article
ici A Case Study of Physicians at Work at the University Hospital of Northern Norway By Published On :: Full Article
ici The Value of User Participation in E-Commerce Systems Development By Published On :: Full Article
ici Does Uncertainty Play a Vicious Role in IOS Adoption Decisions by Small Business Managers? By Published On :: 2022-10-17 Aim/Purpose: Explores the interrelationships between uncertainty, motivation, and IT readiness when predicting IOS adoption among small businesses. Background: Small business IOS adoption is proportionally low in most countries worldwide. Methodology: Uses a sample of small businesses and PLS structural-equations path modelling approach. Contribution: Uncertainty is an underexplored construct in information systems research, and our research shows that it plays a significant role in IOS adoption among small businesses Findings: The findings support that uncertainty has a negative effect on intent to adopt IOS and that motivation and IT readiness have a positive effect. Recommendation for Researchers: To alleviate uncertainty, an effort to win over small business managers to IOS over the internet must encompass accessible information, security provisions, low-cost product, simple interfaces, and system adaptability to existing provisions in the IOS network. The uncertainty perspective has not been tested extensively empirically, especially not in the context of technology adoption, and needs further investigation. Future Research: Future research could explore the uncertainty construct in the context of IOS among different size businesses Full Article
ici The Impact of Artificial Intelligence on Workers’ Skills: Upskilling and Reskilling in Organisations By Published On :: 2023-02-22 Aim/Purpose: This paper examines the transformative impact of Artificial Intelligence (AI) on professional skills in organizations and explores strategies to address the resulting challenges. Background: The rapid integration of AI across various sectors is automating tasks and reducing cognitive workload, leading to increased productivity but also raising concerns about job displacement. Successfully adapting to this transformation requires organizations to implement new working models and develop strategies for upskilling and reskilling their workforce. Methodology: This review analyzes recent research and practice on AI's impact on human skills in organizations. We identify key trends in how AI is reshaping professional competencies and highlight the crucial role of transversal skills in this evolving landscape. The paper also discusses effective strategies to support organizations and guide workers through upskilling and reskilling processes. Contribution: The paper contributes to the existing body of knowledge by examining recent trends in AI's impact on professional skills and workplaces. It emphasizes the importance of transversal skills and identifies strategies to support organizations and workers in meeting upskilling and reskilling challenges. Our findings suggest that investing in workforce development is crucial for ensuring that the benefits of AI are equitably distributed among all stakeholders. Findings: Our findings indicate that organizations must employ a proactive approach to navigate the AI-driven transformation of the workplace. This approach involves mapping the transversal skills needed to address current skill gaps, helping workers identify and develop skills required for effective AI adoption, and implementing processes to support workers through targeted training and development opportunities. These strategies are essential for ensuring that workers' attitudes and mental models towards AI are adaptable and prepared for the changing labor market. Recommendation for Researchers: We emphasize the need for researchers to adopt a transdisciplinary approach when studying AI's impact on the workplace. Given AI's complexity and its far-reaching implications across various fields including computer science, mathematics, engineering, and behavioral and social sciences, integrating diverse perspectives is crucial for a holistic understanding of AI's applications and consequences. Future Research: Looking ahead, further research is needed to deepen our understanding of AI's impact on human skills, particularly the role of soft skills in AI adoption within organizations. Future studies should also address the challenges posed by Industry 5.0, which is expected to bring about even more extensive integration of new technologies and automation. Full Article
ici A new model for efficiency estimation and evaluation: DEA-RA-inverted DEA model By www.inderscience.com Published On :: 2024-10-02T23:20:50-05:00 Data envelopment analysis (DEA) is widely used in various fields and for various models. Inverted data envelopment analysis (inverted DEA) is an extended model of DEA. Regression analysis (RA) is a statistical process for estimating the relationships among variables based on the model of averaged image. There are no essential relations among DEA and RA and inverted DEA. We creatively combine DEA, RA and inverted DEA to propose a new model: DEA-RA-Inverted DEA model. The model realises the efficiency estimation and evaluation through a discussion of the residual variables and the residual ratio coefficients. In addition, we will demonstrate the effectiveness of the model by applying it to efficiency estimation and evaluation of 16 Chinese logistics enterprises. Full Article
ici Pricing strategies in a risk-averse dual-channel supply chain with manufacturer services By www.inderscience.com Published On :: 2024-10-02T23:20:50-05:00 This paper studies a dual-channel supply chain consisting of one risk-averse manufacturer and one risk-averse retailer with stochastic demand. Herein, the manufacturer provides value-added services to enhance channel demand. First, the optimal pricing and service decisions of the channel members are investigated under different settings, i.e., the cooperative game, Bertrand game, and manufacturer Stackelberg (MS) game models. Second, the effects of channel members' risk aversion on optimal channel prices and expected utilities are analysed under the assumption that the manufacturer service is a decision variable and an exogenous variable, respectively. Third, sensitivity analysis and numerical simulation are performed to verify our propositions consistently and seek more managerial implications. The findings suggest that the manufacturer's value-added services in their direct channel will improve the direct price while decreasing the retail price. Consumers' channel loyalty degree has a great influence on the optimal price decisions and the performance of the channel members. The direct price increases while the retail price decreases in the manufacturer's value-added services. The retailer's risk aversion has a greater influence on price decisions than that of the manufacturer. Full Article