iab Motivational Interviewing and Diabetes: What Is It, How Is It Used, and Does It Work? By spectrum.diabetesjournals.org Published On :: 2006-01-01 Garry WelchJan 1, 2006; 19:5-11Lifestyle and Behavior Full Article
iab Making a Difference With Interactive Technology: Considerations in Using and Evaluating Computerized Aids for Diabetes Self-Management Education By spectrum.diabetesjournals.org Published On :: 2001-04-01 Russell E. GlasgowApr 1, 2001; 14:Feature Articles Full Article
iab Self-Management Goal Setting in a Community Health Center: The Impact of Goal Attainment on Diabetes Outcomes By spectrum.diabetesjournals.org Published On :: 2010-04-01 Daren R. AndersonApr 1, 2010; 23:97-105Feature Articles Full Article
iab Association of Self-Efficacy and Self-Care With Glycemic Control in Diabetes By spectrum.diabetesjournals.org Published On :: 2013-08-01 Carla Moore BeckerleAug 1, 2013; 26:172-178Feature Articles Full Article
iab Stress and Diabetes: A Review of the Links By spectrum.diabetesjournals.org Published On :: 2005-04-01 Cathy LloydApr 1, 2005; 18:121-127Feature Articles Full Article
iab A Review of Volunteer-Based Peer Support Interventions in Diabetes By spectrum.diabetesjournals.org Published On :: 2011-05-01 Tricia S. TangMay 1, 2011; 24:85-98From Research to Practice/Behavioral Interventions for Diabetes Self-Management Full Article
iab Associations Between Self-Management Education and Comprehensive Diabetes Clinical Care By spectrum.diabetesjournals.org Published On :: 2010-01-01 Tammie M. JohnsonJan 1, 2010; 23:41-46Feature Articles Full Article
iab Overview of Peer Support Models to Improve Diabetes Self-Management and Clinical Outcomes By spectrum.diabetesjournals.org Published On :: 2007-10-01 Michele HeislerOct 1, 2007; 20:214-221Articles Full Article
iab Diabetes Legal Advocacy Comes of Age By spectrum.diabetesjournals.org Published On :: 2006-07-01 Michael A. GreeneJul 1, 2006; 19:171-179Feature Articles Full Article
iab Family Conflict and Diabetes Management in Youth: Clinical Lessons From Child Development and Diabetes Research By spectrum.diabetesjournals.org Published On :: 2004-01-01 Barbara J. AndersonJan 1, 2004; 17:Articles Full Article
iab Implementing Diabetes Self-Management Education in Primary Care By spectrum.diabetesjournals.org Published On :: 2006-04-01 Sharlene EmersonApr 1, 2006; 19:79-83Articles Full Article
iab Group Education in Diabetes: Effectiveness and Implementation By spectrum.diabetesjournals.org Published On :: 2003-04-01 Carolé R. MensingApr 1, 2003; 16:Articles Full Article
iab Four Theories and a Philosophy: Self-Management Education for Individuals Newly Diagnosed With Type 2 Diabetes By spectrum.diabetesjournals.org Published On :: 2003-04-01 T. Chas SkinnerApr 1, 2003; 16:Lifestyle and Behavior Full Article
iab The Diabetes Attitudes, Wishes, and Needs (DAWN) Program: A New Approach to Improving Outcomes of Diabetes Care By spectrum.diabetesjournals.org Published On :: 2005-07-01 Soren E. SkovlundJul 1, 2005; 18:136-142Lifestyle and Behavior Full Article
iab Diabetics, asthma sufferers urged to take extra COVID caution By jamaica-star.com Published On :: Thu, 07 May 2020 05:01:36 -0500 Persons with diabetes, cardiovascular disease, and conditions such as high blood pressure and asthma are being urged to be particularly careful as those comorbidities have been identified in persons with COVID-19 in Jamaica requiring hospital care... Full Article
iab Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice By feedproxy.google.com Published On :: 2020-04-07 Taewook KangApr 7, 2020; 0:RA119.001882v1-mcp.RA119.001882Research Full Article
iab Insulin-Like Growth Factor Dysregulation Both Preceding and Following Type 1 Diabetes Diagnosis By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Insulin-like growth factors (IGFs), specifically IGF1 and IGF2, promote glucose metabolism, with their availability regulated by IGF-binding proteins (IGFBPs). We hypothesized that IGF1 and IGF2 levels, or their bioavailability, are reduced during type 1 diabetes development. Total serum IGF1, IGF2, and IGFBP1–7 levels were measured in an age-matched, cross-sectional cohort at varying stages of progression to type 1 diabetes. IGF1 and IGF2 levels were significantly lower in autoantibody (AAb)+ compared with AAb– relatives of subjects with type 1 diabetes. Most high-affinity IGFBPs were unchanged in individuals with pre–type 1 diabetes, suggesting that total IGF levels may reflect bioactivity. We also measured serum IGFs from a cohort of fasted subjects with type 1 diabetes. IGF1 levels significantly decreased with disease duration, in parallel with declining β-cell function. Additionally, plasma IGF levels were assessed in an AAb+ cohort monthly for a year. IGF1 and IGF2 showed longitudinal stability in single AAb+ subjects, but IGF1 levels decreased over time in subjects with multiple AAb and those who progressed to type 1 diabetes, particularly postdiagnosis. In sum, IGFs are dysregulated both before and after the clinical diagnosis of type 1 diabetes and may serve as novel biomarkers to improve disease prediction. Full Article
iab Evaluation of dosimetry, quantitative methods and test-retest variability of 18F-PI-2620 PET for the assessment of tau deposits in the human brain By jnm.snmjournals.org Published On :: 2019-11-11T12:55:20-08:00 18F-PI-2620 is a next generation tau positron emission tomography (PET)-tracer that has demonstrated ability to image the spatial distribution of suspected tau pathology. The objective of this study was to assess the tracer biodistribution, dosimetry and quantitative methods of 18F-PI-2620 in the human brain. Full kinetic modelling approaches to quantify tau load were investigated. Non-invasive kinetic modeling approaches and semi-quantitative methods were evaluated against the full tracer kinetics. Finally, the reproducibility of PET measurements from test and retest scans was assessed. Methods: Three healthy controls (HC) and 4 Alzheimer disease (AD) subjects underwent two dynamic PET scans including arterial sampling. Distribution volume ratio (DVR) was estimated using full tracer kinetics (2 Tissue Compartment (2TC) models, Logan Graphical Analysis (LGA)) and non-invasive kinetic models (Non-Invasive Logan Graphical Analysis (NI-LGA) and the multilinear reference tissue model (MRTM2)). Standardized uptake value ratio (SUVR) was determined at different imaging windows after injection. Correlation between DVR and SUVR, effect size (Cohen’s d) and test-retest variability (TRV) were evaluated. Additionally, 6 HC subjects received one tracer administration and underwent whole-body PET for dosimetry calculation. Organ doses and the whole-body effective dose were calculated using OLINDA 2.0. Results: Strong correlation was found across different kinetic models (R2 >0.97) and between DVR(2TC) and SUVRs between 30 to 90 min with R2>0.95. Secular equilibrium was reached around 40 min post injection (p.i.) in most regions and subjects. The TRV and effect size for the SUVR across different regions was similar at 30-60 min (TRV=3.8%, d=3.80), 45-75 min (TRV=4.3%, d=3.77) and 60-90 min (TRV=4.9%, d=3.73) and increased at later time points. Elimination was via the hepatobiliary and urinary system. The whole-body effective dose was determined to be 33.3±2.1 μSv/MBq for an adult female and 33.1±1.4 μSv/MBq for an adult male with a 1.5 hour urinary bladder voiding interval. Conclusion: 18F-PI-2620 exhibits fast kinetics, suitable dosimetry and low TRV. DVR measured using the 2TC model with arterial sampling correlated strongly with DVR measured by NI-LGA, MRTM2 and SUVR. SUVR can be used for 18F-PI-2620 PET quantification of tau deposits avoiding arterial blood sampling. Static 18F-PI-2620 PET scans between 45-75min p.i. provide excellent quantification accuracy, large effect size and low TRV. Full Article
iab 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of Beta-Cell-Mass in Patients with Type-1 Diabetes By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Full Article
iab Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro. Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro. Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin. Full Article
iab Lipid-tuned Zinc Transport Activity of Human ZnT8 Protein Correlates with Risk for Type-2 Diabetes [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2016-12-30T00:06:37-08:00 Zinc is a critical element for insulin storage in the secretory granules of pancreatic beta cells. The islet-specific zinc transporter ZnT8 mediates granular sequestration of zinc ions. A genetic variant of human ZnT8 arising from a single nonsynonymous nucleotide change contributes to increased susceptibility to type-2 diabetes (T2D), but it remains unclear how the high risk variant (Arg-325), which is also a higher frequency (>50%) allele, is correlated with zinc transport activity. Here, we compared the activity of Arg-325 with that of a low risk ZnT8 variant (Trp-325). The Arg-325 variant was found to be more active than the Trp-325 form following induced expression in HEK293 cells. We further examined the functional consequences of changing lipid conditions to mimic the impact of lipid remodeling on ZnT8 activity during insulin granule biogenesis. Purified ZnT8 variants in proteoliposomes exhibited more than 4-fold functional tunability by the anionic phospholipids, lysophosphatidylcholine and cholesterol. Over a broad range of permissive lipid compositions, the Arg-325 variant consistently exhibited accelerated zinc transport kinetics versus the Trp-form. In agreement with the human genetic finding that rare loss-of-function mutations in ZnT8 are associated with reduced T2D risk, our results suggested that the common high risk Arg-325 variant is hyperactive, and thus may be targeted for inhibition to reduce T2D risk in the general populations. Full Article
iab Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research] By feedproxy.google.com Published On :: 2020-04-07T14:34:38-07:00 The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D. Full Article
iab Problem Notes for SAS®9 - 65922: Trying to read a Google BigQuery table that contains a variable defined as an array might result in a panic error and SAS shutting down By feedproxy.google.com Published On :: Wed, 6 May 2020 10:30:19 EST Trying to read a Google BigQuery table that contains a variable that is defined as an array of records might result in an error and cause SAS to shut down. This issue occurs when one of the variables contained in Full Article BIGQUERY+SAS/ACCESS+Interface+to+Google+
iab Problem Notes for SAS®9 - 34294: A missing discrete dependent variable in the selection model together with a OUTPUT statement might cause an Access Violation error By feedproxy.google.com Published On :: Tue, 5 May 2020 13:04:13 EST If the following conditions are met in PROC QLIM: the SELECT option and DISCRETE option are specified in the same MODEL statement or ENDOGENOUS statement the same dependent variable with S Full Article ETS+SAS/ETS
iab Problem Notes for SAS®9 - 65572: The length of a string variable might be longer than specified with the MAX_CHAR_LEN= option By feedproxy.google.com Published On :: Tue, 28 Apr 2020 08:30:03 EST When you read in a BigQuery table, the length of string variables might be longer than the length specified with the MAX_CHAR_LEN= option when running your SAS software with UTF-8. By Full Article BIGQUERY+SAS/ACCESS+Interface+to+Google+
iab Overexpression of GPR40 in Pancreatic {beta}-Cells Augments Glucose Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice By diabetes.diabetesjournals.org Published On :: 2009-02-10T11:50:44-08:00 Objective: GPR40 is a G protein-coupled receptor regulating free fatty acid-induced insulin secretion. We have generated transgenic mice overexpressing the human GPR40 gene (hGPR40-Tg) under control of the mouse insulin II promoter and have used them to examine the role of GPR40 in the regulation of insulin secretion and glucose homeostasis. Research Design and Methods: Normal (C57BL/6J) and diabetic (KK) mice overexpressing the human GPR40 gene under control of the insulin II promoter were generated, and their glucose metabolism and islet function were analyzed. Results: In comparison with nontransgenic littermates, hGPR40-Tg mice exhibited improved oral glucose tolerance with an increase in insulin secretion. Although islet morphological analysis showed no obvious differences between hGPR40-Tg and nontransgenic (NonTg) mice, isolated islets from hGPR40-Tg mice enhanced insulin secretion in response to high glucose (16 mM) than those from NonTg mice with unchanged low glucose (3 mM)-stimulated insulin secretion. In addition, hGPR40-Tg islets significantly increased insulin secretion against a naturally occurring agonist palmitate in the presence of 11 mM glucose. hGPR40-Tg mice were also found to be resistant to high fat diet-induced glucose intolerance, and hGPR40-Tg harboring KK mice showed augmented insulin secretion and improved oral glucose tolerance compared to nontransgenic littermates. Conclusions: Our results suggest that GPR40 may have a role in regulating glucose-stimulated insulin secretion and plasma glucose levels in vivo, and that pharmacological activation of GPR40 may provide a novel insulin secretagogue beneficial for the treatment of type 2 diabetes. Full Article
iab Novel Detection and Restorative Levodopa Treatment for Pre-Clinical Diabetic Retinopathy By diabetes.diabetesjournals.org Published On :: 2020-02-12T12:37:27-08:00 Diabetic retinopathy (DR) is diagnosed clinically by directly viewing retinal vascular changes during ophthalmoscopy or through fundus photographs. However, electroretinography (ERG) studies in humans and rodents have revealed that retinal dysfunction is demonstrable prior to the development of visible vascular defects. Specifically, delays in dark-adapted ERG oscillatory potential (OP) implicit times in response to dim flash stimuli (<-1.8 log cd·s/m2) occur prior to clinically-recognized diabetic retinopathy. Animal studies suggest that retinal dopamine deficiency underlies these early functional deficits. Here, we randomized persons with diabetes, without clinically detectable retinopathy, to treatment with either low or high dose Sinemet (levodopa plus carbidopa) for 2 weeks and compared their ERG findings with those of control (no DM) subjects. We assessed dim flash stimulated OP delays using a novel hand-held ERG system (RETeval) at baseline, 2 and 4 weeks. RETeval recordings identified significant OP implicit-time delays in persons with diabetes without retinopathy compared to age-matched controls (p<0.001). After two weeks of Sinemet treatment, OP implicit times were restored to control values, and these improvements persisted even after a two-week washout. We conclude that detection of dim flash OP delays could provide early detection of DR, and that Sinemet treatment may reverse retinal dysfunction. Full Article
iab Dopamine and Early Retinal Dysfunction in Diabetes: Insights From a Phase 1 Study By diabetes.diabetesjournals.org Published On :: 2020-04-20T15:26:16-07:00 Full Article
iab Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival. Full Article
iab Pathogenic Role of PPAR{alpha} Down-Regulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 The purpose of this study was to investigate the protective role of Peroxisome Proliferator-Activated Receptor-alpha (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from diabetic and non-diabetic human donors. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was down-regulated in the corneas of diabetic humans and rats. Immunostaining of β-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which was partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα-/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα-/- mice relative to wild-type mice by nine months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy. Full Article
iab Lactogens Reduce Endoplasmic Reticulum Stress-induced Rodent and Human {beta}-cell Death and Diabetes Incidence in Akita Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway, endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines if lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita mice, a rodent model of ER stress-induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of pro-apoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Akita mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Akita littermates. These are the first studies in any cell type demonstrating lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress. Full Article
iab Elevated First-Trimester Neutrophil Count Is Closely Associated with the Development of Maternal Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 Chronic low-grade inflammation plays a central role in the pathophysiology of gestational diabetes mellitus (GDM). In order to investigate the ability of different inflammatory blood cell parameters in predicting the development of GDM and pregnancy outcomes, 258 women with GDM and 1154 women without were included in this retrospective study. First-trimester neutrophil count outperformed white blood cell (WBC) count, and neutrophil-to-lymphocyte ratio (NLR) in the predictability for GDM. Subjects were grouped based on tertiles of neutrophil count during their first-trimester pregnancy. The results showed that as the neutrophil count increased, there was a step-wise increase in GDM incidence, as well as glucose and glycosylated hemoglobin (HbA1c) level, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR), macrosomia incidence and newborn weight. Neutrophil count was positively associated with pre-pregnancy Body Mass Index (BMI), HOMA-IR and newborn weight. Additionally, neutrophil count was an independent risk factor for the development of GDM, regardless of the history of GDM. Spline regression showed that there was a significant linear association between GDM incidence and continuous neutrophil count when it exceeded 5.0 x 109/L. This work suggested that first-trimester neutrophil count is closely associated with the development of GDM and adverse pregnancy outcomes. Full Article
iab Acute Hyperglycemia Increases Brain Pregenual Anterior Cingulate Cortex Glutamate Concentrations in Type 1 Diabetes Mellitus By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 The brain mechanisms underlying the association of hyperglycemia with depressive symptoms are unknown. We hypothesized that disrupted glutamate metabolism in pregenual anterior cingulate cortex (ACC) in type 1 diabetes (T1D) without depression affects emotional processing. Using proton magnetic resonance spectroscopy (MRS), we measured glutamate concentrations in ACC and occipital cortex (OCC) in 13 T1D without major depression (HbA1c=7.1±0.7% [54±7mmol/mol]) and 11 healthy non-diabetic controls (HbA1c=5.5±0.2% [37±3mmol/mol]) during fasting euglycemia (EU) followed by a 60-minute +5.5mmol/l hyperglycemic clamp (HG). Intrinsic neuronal activity was assessed using resting-state blood oxygen level dependent functional MRI to measure the fractional amplitude of low frequency fluctuations in slow-band 4 (fALFF4). Emotional processing and depressive symptoms were assessed using emotional tasks (Emotional-Stroop, Self-Referent-Encoding-Task SRET) and clinical ratings (HAM-D, SCL-90-R), respectively. During HG, ACC glutamate increased (1.2mmol/kg, +10%, p=0.014) while ACC fALFF4 was unchanged (-0.007, -2%, p=0.449) in T1D; in contrast, glutamate was unchanged (-0.2mmol/kg, -2%, p=0.578) while fALFF4 decreased (-0.05, -13%, p=0.002) in controls. OCC glutamate and fALFF4 were unchanged in both groups. T1D had longer SRET negative-word response-times (p=0.017) and higher depression-rating scores (HAM-D p=0.020; SCL-90-R-depression p=0.008). Higher glutamate change tended to associate with longer Emotional-Stroop response-times in T1D only. Brain glutamate must be tightly controlled during hyperglycemia due to the risk for neurotoxicity with excessive levels. Results suggest that ACC glutamate control mechanisms are disrupted in T1D, which affects glutamatergic neurotransmission related to emotional or cognitive processing. Increased prefrontal glutamate during acute hyperglycemic episodes could explain our previous findings of associations between chronic hyperglycemia, cortical thinning and depressive symptoms in T1D. Full Article
iab Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment after Acute Myocardial Infarction in Patients with Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-24T19:07:13-07:00 Type 2 diabetes mellitus predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (n=1147, n=265 diabetic; n=882 non-diabetic) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF), global longitudinal, circumferential and radial strains (GLS, GCS and GRS), LA reservoir, conduit and booster pump strains, as well as infarct size, edema and microvascular obstruction. Predefined endpoints were major adverse cardiovascular events (MACE) within 12 months. Diabetic patients had impaired LA reservoir (19.8 vs. 21.2%, p<0.01) and conduit strains (7.6 vs. 9.0%, p<0.01) but not ventricular function or myocardial damage. They were at higher risk of MACE than non-diabetic patients (10.2% vs. 5.8%, p<0.01) with most MACE occurring in patients with LVEF≥35%. Whilst LVEF (p=0.045) and atrial reservoir strain (p=0.024) were independent predictors of MACE in non-diabetic patients, GLS was in diabetic patients (p=0.010). Considering patients with diabetes and LVEF≥35% (n=237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above LVEF. Full Article
iab TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration By diabetes.diabetesjournals.org Published On :: 2020-04-24T20:01:59-07:00 Hypo-vascularised diabetic non-healing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that, limits their recruitment and mobilization at the wound site. To enrich the EPC repertoire from non-endothelial precursors, abundantly available mesenchymal stromal cells (MSCs) were reprogrammed into induced-endothelial cells (iECs). We identified cell signaling molecular targets by meta-analysis of microarray datasets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of WJ-MSC into iEC. TWIST1, in turn, regulates endothelial genes transcription, positively of pro-angiogenic-KDR and negatively, in part, of anti-angiogenic-SFRP4. Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC, increased the vasculogenic potential of reprogrammed EC (rEC). Transplantation of stable TWIST1-rECs into full-thickness type 1 and 2 diabetic-splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased co-localization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSCs into rECs using unique transcription factors, TWIST1 for an efficacious cell transplantation therapy to induce neovascularization–mediated diabetic wound tissue regeneration. Full Article
iab Motifs of Three HLA-DQ Amino Acid Residues ({alpha}44, {beta}57, {beta}135) Capture Full Association with the Risk of Type 1 Diabetes in DQ2 and DQ8 Children By diabetes.diabetesjournals.org Published On :: 2020-04-24T20:01:59-07:00 HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1-18 year-old patients (n=962) and controls (n=636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically-organized haplotype (HOH) association analysis, allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster, included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (OR 3.29, p=2.38*10-85 ) and β57A (OR 3.44, p=3.80*10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage-disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, p=1.96*10-20). The motif "QAD" of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, p=3.80*10-84), the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10, p=1.96*10-20). Two risk associations were related to GADA and IA-2A, but in opposite directions. "CAD" was positively associated with GADA (OR 1.56; p=6.35*10-8) but negatively with IA-2A (OR 0.59, p= 6.55*10-11). "QAD" was negatively associated with GADA (OR 0.88; p= 3.70*10-3) but positively with IA-2A (OR 1.64; p= 2.40*10-14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential TCR contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AA (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies. Full Article
iab Myo-Inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulo-Interstitial Injury in Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-27T15:42:34-07:00 Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP-1, a transcription factor of ER stress response. Previous studies indicate that MIOX’s upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated if hyperglycemia leads to accentuation of oxidant and ER stress, while boosting each other’s activities and thereby augmenting tubulo-interstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and -knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2Akita to generate Ins2Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/DHE staining, perturbed NAD/NADH and GSH/GSSG ratios, increased NOX-4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP-1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers) and accelerated tubulo-interstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2Akita/KO mice, and likewise in vitro experiments with XBP1-siRNA. These findings suggest that MIOX expression accentuates while its deficiency shields kidneys from tubulo-interstitial injury by dampening oxidant and ER stress, which mutually enhance each other’s activity. Full Article
iab Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in {beta}-Cells By diabetes.diabetesjournals.org Published On :: 2020-04-27T15:42:34-07:00 Obesity is a risk factor for type 2 diabetes (T2D), however not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from T2D and non-T2D (ND) especially obese donors (BMI ≥30 kg/m2). Islets from obese T2D donors had reduced insulin secretion, decreased β-cell exocytosis and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis and reduced granule docking. This was accompanied with reduced expression of the exocytotic proteins, SNAP25, STXBP1 and VAMP2, likely because CD36 induced down-regulation of the IRS proteins, suppressed insulin signaling PI3K-AKT pathway and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line, EndoC-βH1, increased IRS1 and exocytotic protein levels, improved granule docking and enhanced insulin secretion. Our results demonstrate that β-cells from obese T2D donors have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity. Full Article
iab Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration and their Defects in Diabetic Corneas By diabetes.diabetesjournals.org Published On :: 2020-04-28T07:09:24-07:00 Diabetic Keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by Resiniferatoxin severely impaired corneal wound healing and markedly up-regulated pro-inflammatory gene expression. Exogenous neuropeptides CGRP, SP, and VIP partially reversed Resiniferatoxin’s effects, with VIP specifically inducing IL-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIPR1 expression in normal (NL), but not diabetic (DM) mouse corneas. Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (SHH) in a VIP-dependent manner. Downregulating SHH expression in NL corneas decreased, while exogenous SHH in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of SHH signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in a SHH-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy. Full Article
iab Pharmacologic PPAR-{gamma} Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-28T07:09:24-07:00 Mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPCs. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR- activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12. In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc-independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In diabetic patients under pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization. Full Article
iab Necrostatin-1 Mitigates Cognitive Dysfunction in Prediabetic Rats With no Alteration in Insulin Sensitivity By diabetes.diabetesjournals.org Published On :: 2020-04-28T14:32:29-07:00 Previous studies show that 12-week of high-fat diet (HFD) consumption caused not only prediabetes, but also cognitive decline and brain pathologies. Recently, necrostatin-1 (nec-1), a necroptosis inhibitor, showed beneficial effects in brain against stroke. However, the comparative effects of nec-1 and metformin on cognition and brain pathologies in prediabetes have not been investigated. We hypothesized that nec-1 and metformin equally attenuated cognitive decline and brain pathologies in prediabetic rats. Rats (n=32) were fed with either normal diet (ND) or high-fat diet (HFD) for 20 weeks. At week 13, ND-fed rats were given a vehicle (n=8) and HFD-fed rats were randomly assigned into 3 subgroups (n=8/subgroup) with vehicle, nec-1 or metformin for 8 weeks. Metabolic parameters, cognitive function, brain insulin receptor function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, Alzheimer’s protein, and cell death were determined. HFD-fed rats exhibited prediabetes, cognitive decline, and brain pathologies. Nec-1 and metformin equally improved cognitive function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, reduced hyperphosphorylated-tau and necroptosis in HFD-fed rats. Interestingly metformin, but not nec-1, improved brain insulin sensitivity in those rats. In conclusion, necroptosis inhibition directly improved cognition in prediabetic rats without alteration in insulin sensitivity. Full Article
iab Is Type 2 Diabetes Mellitus Causally Associated with Cancer Risk? Evidence From a Two-Sample Mendelian Randomisation Study By diabetes.diabetesjournals.org Published On :: 2020-04-29T13:57:29-07:00 We conducted a two-sample Mendelian randomisation study to investigate the causal associations of type 2 diabetes mellitus (T2DM) with risk of overall cancer and 22 site-specific cancers. Summary-level data for cancer were extracted from the Breast Cancer Association Consortium and UK Biobank. Genetic predisposition to T2DM was associated with higher odds of pancreatic, kidney, uterine and cervical cancer, lower odds of oesophageal cancer and melanoma, but not associated with 16 other site-specific cancers or overall cancer. The odds ratios (95% confidence interval) were 1.13 (1.04, 1.22), 1.08 (1.00, 1.17), 1.08 (1.01, 1.15), 1.07 (1.01, 1.15), 0.89 (0.81, 0.98), and 0.93 (0.89, 0.97) for pancreatic, kidney, uterine, cervical, and oesophageal cancer and melanoma, respectively. The association between T2DM and pancreatic cancer was also observed in a meta-analysis of this and a previous Mendelian randomisation study (odds ratio 1.08; 1.02, 1.14; p=0.009). There was limited evidence supporting causal associations between fasting glucose and cancer. Genetically predicted fasting insulin levels were positively associated with cancers of the uterus, kidney, pancreas and lung. The present study found causal detrimental effects of T2DM on several cancers. We suggested to reinforce the cancers screening in T2DM patients to enable the early detection of cancer. Full Article
iab Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction By diabetes.diabetesjournals.org Published On :: 2020-05-04T10:07:04-07:00 Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear if these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy we generated transgenic mice with inducible cardiomyocyte-specific expression of the glucose transporter (GLUT4). We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in non-diabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset, exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations. Full Article
iab Erratum. Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes 2019;68:441--456 By diabetes.diabetesjournals.org Published On :: 2020-05-06T12:11:43-07:00 Full Article
iab Dextran Sulfate Protects Pancreatic {beta}-Cells, Reduces Autoimmunity and Ameliorates Type 1 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-05-07T07:53:04-07:00 A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D. Full Article
iab MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress By diabetes.diabetesjournals.org Published On :: 2020-05-07T08:35:09-07:00 Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor widely expressed in mammalian tissues, and it exerts critical protective effects on neurons and other cell types in various disease models, such as those for diabetes. However, to date, the expression and roles of MANF in the cornea, with or without diabetic keratopathy (DK), remain unclear. Here, we demonstrate that MANF is abundantly expressed in normal corneal epithelial cells; however, MANF expression was significantly reduced in both unwounded and wounded corneal epithelium in streptozotocin-induced type 1 diabetic C57BL/6 mice. Recombinant human MANF significantly promoted normal and diabetic corneal epithelial wound healing and nerve regeneration. Furthermore, MANF inhibited hyperglycemia-induced endoplasmic reticulum (ER) stress and ER stress–mediated apoptosis. Attenuation of ER stress with 4-phenylbutyric acid (4-PBA) also ameliorated corneal epithelial closure and nerve regeneration. However, the beneficial effects of MANF and 4-PBA were abolished by an Akt inhibitor and Akt-specific small interfering RNA (siRNA). Finally, we reveal that the subconjunctival injection of MANF-specific siRNA prevents corneal epithelial wound healing and nerve regeneration. Our results provide important evidence that hyperglycemia-suppressed MANF expression may contribute to delayed corneal epithelial wound healing and impaired nerve regeneration by increasing ER stress, and MANF may be a useful therapeutic modality for treating DK. Full Article
iab Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-05-08T10:11:46-07:00 The increasing prevalence of type 2 diabetes poses a major challenge to societies worldwide. Blood-based factors like serum proteins are in contact with every organ in the body to mediate global homeostasis and may thus directly regulate complex processes such as aging and the development of common chronic diseases. We applied a data-driven proteomics approach, measuring serum levels of 4,137 proteins in 5,438 elderly Icelanders and identified 536 proteins associated with prevalent and/or incident type 2 diabetes. We validated a subset of the observed associations in an independent case-control study of type 2 diabetes. These protein associations provide novel biological insights into the molecular mechanisms that are dysregulated prior to and following the onset of type 2 diabetes and can be detected in serum. A bi-directional two-sample Mendelian randomization analysis indicated that serum changes of at least 23 proteins are downstream of the disease or its genetic liability, while 15 proteins were supported as having a causal role in type 2 diabetes. Full Article
iab Glucolipotoxicity, {beta}-Cells, and Diabetes: The Emperor Has No Clothes By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Reduction of β-cell mass and function is central to the pathogenesis of type 2 diabetes. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity are used to describe potentially responsible processes. The premise is that chronically elevated glucose levels are toxic to β-cells, that elevated lipid levels in the form of circulating free fatty acids (FFA) also have toxic effects, and that the combination of the two, glucolipotoxicity, is particularly harmful. Much work has shown that high concentrations of FFA can be very damaging to β-cells when used for in vitro experiments, and when infused in large amounts in humans and rodents they produce suppression of insulin secretion. The purpose of this Perspective is to raise doubts about whether the FFA levels found in real-life situations are ever high enough to cause problems. Evidence supporting the importance of glucotoxicity is strong because there is such a tight correlation between defective insulin secretion and rising glucose levels. However, there is virtually no convincing evidence that the alterations in FFA levels occurring during progression to diabetes are pathogenic. Thus, the terms lipotoxicity and glucolipotoxicity should be used with great caution, if at all, because evidence supporting their importance has not yet emerged. Full Article
iab Epigenetic Regulation of Hepatic Lipogenesis: Role in Hepatosteatosis and Diabetes By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Hepatosteatosis, which is frequently associated with development of metabolic syndrome and insulin resistance, manifests when triglyceride (TG) input in the liver is greater than TG output, resulting in the excess accumulation of TG. Dysregulation of lipogenesis therefore has the potential to increase lipid accumulation in the liver, leading to insulin resistance and type 2 diabetes. Recently, efforts have been made to examine the epigenetic regulation of metabolism by histone-modifying enzymes that alter chromatin accessibility for activation or repression of transcription. For regulation of lipogenic gene transcription, various known lipogenic transcription factors, such as USF1, ChREBP, and LXR, interact with and recruit specific histone modifiers, directing specificity toward lipogenesis. Alteration or impairment of the functions of these histone modifiers can lead to dysregulation of lipogenesis and thus hepatosteatosis leading to insulin resistance and type 2 diabetes. Full Article
iab Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders. Full Article