nes

Technology to help Delhi Police breach iPhones, get back deleted data

Delhi Police is going to procure a technology which will help the cops extract data from iPhones seized by them from suspects. The software can even extract deleted data and data from installed applications on the phones.






nes

NDMA issues guidelines to safely open industries

In a communication to all states and union territories, the NDMA said due to several weeks of lockdown and the closure of industrial units, it is possible that some of the operators might not have followed the established standard operating procedures.




nes

Indian, Chinese troops clash in Sikkim sector

Many of them sustained minor injuries in the clash near Naku La in the Sikkim sector along the Sino-Indo border on Saturday




nes

A five-axis parallel kinematic mirror unit for soft X-ray beamlines at MAX IV

With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17–35 µrad angularly depending on the mirror chamber dimensions.




nes

Foreword to the special virtual issue dedicated to the proceedings of the PhotonDiag2018 workshop on FEL Photon Diagnostics, Instrumentation, and Beamlines Design




nes

EXAFS and XANES analysis of oxides at the nanoscale

This work presents a discussion of the possibilities offered by X-ray absorption spectroscopy (XAS) to study the local structure of nanomaterials. The current state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS), including an advanced approach based on the use of classical molecular dynamics, is described and exemplified in the case of NiO nanoparticles. In addition, the limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) in determining several effects associated with the nanocrystalline nature of materials are also discussed in connection with the development of ZnO-based dilute magnetic semiconductors and iron oxide nanoparticles.






nes

Structural and thermodynamic analysis of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) was found to form a complex with purpurin and the crystal structure of the complex was determined. Purpurin may be a good lead compound for for the discovery of inhibitors of DAPK1.




nes

Bis[2-(di­methyl­amino-κN)-α,α-di­phenyl­benzene­methano­lato-κO](tetra­hydro­furan-κO)magnesium(II)

The title magnesium complex, [Mg(C21H20NO2)2(C4H8O)]n, exhibits two N,O-bidentate 2-(di­methyl­amino)-α,α-di­phenyl­benzene­methano­late ligands, form­ing two six-membered chelate rings. The distorted square-pyramidal coordination sphere of the MgII atom is completed by the O atom of a tetra­hydro­furan ligand, with its O atom in the apical position. The O and N atoms are in a mutual trans arrangement. Except for two C—H⋯π inter­actions, no significant inter­molecular inter­actions are observed in the crystal.




nes

Dicaesium tetra­magnesium penta­kis­(carbonate) deca­hydrate, Cs2Mg4(CO3)5·10H2O

The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1∞[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water mol­ecule. The crystal under investigation was twinned by reticular pseudomerohedry.




nes

Crystal structures of a series of 6-aryl-1,3-diphenyl­fulvenes

The synthesis and crystal structures of a series of 6-aryl­fuvlenes (fulvene is 5-methyl­idene­cyclo­penta-1,3-diene) with varying methyl­ation patterns on the 6-phenyl substituent are reported, namely 6-(3-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-(4-methyl­phen­yl)-1,3-di­phenyl­fulvene (C25H20), 6-mesityl-3-di­phenyl­fulvene (C27H24) and 6-(2,3,4,5,6-penta­methyl­phen­yl)-1,3-di­phenyl­fulvene (C29H28). The bond lengths are typical of those observed in related fulvenes. A network of C—H⋯π ring inter­actions consolidates the packing in each structure.




nes

Some chalcones derived from thio­phene-3-carbaldehyde: synthesis and crystal structures

The synthesis, spectroscopic data and crystal and mol­ecular structures of four 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives, namely 1-(4-hydroxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-meth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-eth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-­bromophen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thio­phene-3-carbaldehyde with an aceto­phenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thio­phene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thio­phene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The mol­ecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O inter­actions. In addition, C—H⋯π(thio­phene) inter­actions in 2 and C—H⋯S(thio­phene) inter­actions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thio­phene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.




nes

Crystal structures and Hirshfeld surface analysis of a series of 4-O-aryl­perfluoro­pyridines

Five new crystal structures of perfluoro­pyridine substituted in the 4-position with phen­oxy, 4-bromo­phen­oxy, naphthalen-2-yl­oxy, 6-bromo­naphthalen-2-yl­oxy, and 4,4'-biphen­oxy are reported, viz. 2,3,5,6-tetra­fluoro-4-phen­oxy­pyridine, C11H5F4NO (I), 4-(4-bromo­phen­oxy)-2,3,5,6-tetra­fluoro­pyridine, C11H4BrF4NO (II), 2,3,5,6-tetra­fluoro-4-[(naphthalen-2-yl)­oxy]pyridine, C15H7F4NO (III), 4-[(6-bromo­naphthalen-2-yl)­oxy]-2,3,5,6-tetra­fluoropyridine, C15H6BrF4NO (IV), and 2,2'-bis­[(perfluoro­pyridin-4-yl)­oxy]-1,1'-biphenyl, C22H8F8N2O2 (V). The dihedral angles between the aromatic ring systems in I–IV are 78.74 (8), 56.35 (8), 74.30 (7), and 64.34 (19)°, respectively. The complete mol­ecule of V is generated by a crystallographic twofold axis: the dihedral angle between the pyridine ring and adjacent phenyl ring is 80.89 (5)° and the equivalent angle between the biphenyl rings is 27.30 (5)°. In each crystal, the packing is driven by C—H⋯F inter­actions, along with a variety of C—F⋯π, C—H⋯π, C—Br⋯N, C—H⋯N, and C—Br⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing.




nes

Crystal structures of two isomeric 2-aryl-3-phenyl-1,3-thia­zepan-4-ones

The crystal of 6-(3-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (1), C19H18N2O3S, has monoclinic (P21/n) symmetry while that of its isomer 6-(4-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (2), has ortho­rhom­bic (Pca21) symmetry: compound 1 has two mol­ecules, A and B, in the asymmetric unit while 2 has one. In all three mol­ecules, the seven-membered thia­zepan ring exhibits a chair conformation with Q2 and Q3 values (Å) of 0.521 (3), 0.735 (3) and 0.485 (3), 0.749 (3) in 1 and 0.517 (5), 0.699 (5) in 2. In each structure, the phenyl rings attached to adjacent atoms of the thia­zepan ring have inter­planar angles ranging between 41 and 47°. Except for the nitro groups, the three mol­ecules have similar conformations when overlayed in pairs. Both crystal structures are consolidated by C—H⋯O hydrogen bonds.




nes

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




nes

Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine N-oxide

Four manganese(II) bromide coordination complexes have been prepared with four pyridine N-oxides, viz. pyridine N-oxide (PNO), 2-methyl­pyridine N-oxide (2MePNO), 3-methyl­pyridine N-oxide (3MePNO), and 4-methyl­pyridine N-oxide (4MePNO). The compounds are bis­(μ-pyridine N-oxide)bis­[aqua­dibromido­(pyridine N-oxide)manganese(II)], [Mn2Br4(C5H5NO)4(H2O)2] (I), bis­(μ-2-methyl­pyridine N-oxide)bis­[di­aqua­dibromido­manganese(II)]–2-methyl­pyridine N-oxide (1/2), [Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO (II), bis­(μ-3-methyl­pyridine N-oxide)bis­[aqua­dibromido­(3-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(H2O)2] (III), and bis­(μ-4-methyl­pyridine N-oxide)bis­[di­bromido­methanol(4-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(CH3OH)2] (IV). All the compounds have one unique MnII atom and form a dimeric complex that contains two MnII atoms related by a crystallographic inversion center. Pseudo-octa­hedral six-coordinate manganese(II) centers are found in all four compounds. All four compounds form dimers of Mn atoms bridged by the oxygen atom of the PNO ligand. Compounds I, II and III exhibit a bound water of solvation, whereas compound IV contains a bound methanol mol­ecule of solvation. Compounds I, III and IV exhibit the same arrangement of mol­ecules around each manganese atom, ligated by two bromide ions, oxygen atoms of two PNO ligands and one solvent mol­ecule, whereas in compound II each manganese atom is ligated by two bromide ions, one O atom of a PNO ligand and two water mol­ecules with a second PNO mol­ecule inter­acting with the complex via hydrogen bonding through the bound water mol­ecules. All of the compounds form extended hydrogen-bonding networks, and compounds I, II, and IV exhibit offset π-stacking between PNO ligands of neighboring dimers.




nes

Synthesis and structure of push–pull merocyanines based on barbituric and thio­barbituric acid

Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-tri­methyl­indolin-2-yl­idene]hexa-2,4-dien-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanyl­idene-5-[2-(1,3,3-tri­methyl­indolin-2-yl­idene)ethyl­idene]di­hydro­pyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, mol­ecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the mol­ecules are connected by weak C—H⋯O and/or C—H⋯S bonds.




nes

Crystal structures of three hexakis­(fluoroar­yloxy)cyclo­triphosphazenes

The syntheses and crystal structures of three cyclo­triphosphazenes, all with fluorinated ar­yloxy side groups that generate different steric characteristics, viz. hexa­kis­(penta­fluoro­phen­oxy)cyclo­triphosphazene, N3P3(OC6F5)6, 1, hexa­kis­[4-(tri­fluoro­methyl)­phen­oxy]cyclo­triphosphazene, N3P3[OC6H4(CF3)]6, 2 and hexa­kis­[3,5-bis(­tri­fluoro­methyl)­phen­oxy]cyclo­triphosphazene, N3P3[OC6H3(CF3)2]6 3, are reported. Specifically, each phospho­rus atom bears either two penta­fluoro­phen­oxy, 4-tri­fluoro­methyl­phen­oxy, or 3,5-tri­fluoro­methyl­phen­oxy groups. The central six-membered phosphazene rings display envelope pucker conformations in each case, albeit to varying degrees. The maximum displacement of the `flap atom' from the plane through the other ring atoms [0.308 (5) Å] is seen in 1, in a mol­ecule that is devoid of hydrogen atoms and which exhibits a `wind-swept' look with all the aromatic rings displaced in the same direction. In 3 an intra­molecular C—H(aromatic)⋯F inter­action is observed. All the –CF3 groups in 2 and 3 exhibit positional disorder over two rotated orientations in close to statistical ratios. The extended structures of 2 and 3 are consolidated by C—H⋯F inter­actions of two kinds: (a) linear chains, and (b) cyclic between mol­ecules related by inversion centers. In both 1 and 3, one of the six substituted phenyl rings has a parallel-displaced aromatic π–π stacking inter­action with its respective symmetry mate with slippage values of 2.2 Å in 1 and 1.0 Å in 3. None of the structures reported here have solvent voids that could lead to clathrate formation.




nes

Crystal structure and luminescence properties of 2-[(2',6'-dimeth­oxy-2,3'-bipyridin-6-yl)­oxy]-9-(pyridin-2-yl)-9H-carbazole

In the title com­pound, C29H22N4O3, the carbazole system forms a dihedral angle of 68.45 (3)° with the mean plane of the bi­pyridine ring system. The bi­pyridine ring system, with two meth­oxy substituents, is approximately planar (r.m.s. deviation = 0.0670 Å), with a dihedral angle of 7.91 (13)° between the planes of the two pyridine rings. Intra­molecular C—H⋯O/N hydrogen bonds may promote the planarity of the bipyridyl ring system. In the pyridyl-substituted carbazole fragment, the pyridine ring is tilted by 56.65 (4)° with respect to the mean plane of the carbazole system (r.m.s. deviation = 0.0191 Å). In the crystal, adjacent mol­ecules are connected via C—H⋯O/N hydrogen bonds and C—H⋯π inter­actions, resulting in the formation of a three-dimensional (3D) supra­molecular network. In addition, the 3D structure contains inter­molecular π–π stacking inter­actions, with centroid–centroid distances of 3.5634 (12) Å between pyridine rings. The title com­pound exhibits a high energy gap (3.48 eV) and triplet energy (2.64 eV), indicating that it could be a suitable host material in organic light-emitting diode (OLED) applications.




nes

Crystal structures of two solvated 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones

The synthesis and crystal structures of 2-(4-fluoro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one toluene hemisolvate (1), C19H13FN2OS·0.5C7H8, and 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one iso­propanol 0.25-solvate 0.0625-hydrate (2), C19H13N3O3S·0.25C3H7O·0.0625H2O, are reported. Both are racemic mixtures (centrosymmetric crystal structures) of the individual com­pounds and incorporate solvent mol­ecules in their structures. Compound 2 has four thia­zine mol­ecules in the asymmetric unit. All the thia­zine rings in this study show an envelope pucker, with the C atom bearing the substituted phenyl ring displaced from the other atoms. The phenyl and aryl rings in each of the mol­ecules are roughly orthogonal to each other, with dihedral angles of about 75°. The extended structures of 1 and 2 are consolidated by C—H⋯O and C—H⋯N(π), as well as T-type (C—H⋯π) inter­actions. Parallel aromatic ring inter­actions (π–π stacking) are observed only in 2.




nes

Crystal structure and photoluminescence properties of catena-poly[[bis­(1-benzyl-1H-imidazole-κN3)cadmium(II)]-di-μ-azido-κ4N1:N3]

The new title one-dimensional CdII coordination polymer, [Cd(C10H10N2)2(μ1,3-N3)2]n, has been synthesized and structurally characterized by single-crystal X-ray diffraction. The asymmetric unit consists of a CdII ion, one azide and one 1-benzyl­imidazole (bzi) ligand. The CdII ion is located on an inversion centre and is surrounded in a distorted octa­hedral coordination sphere by six N atoms from four symmetry-related azide ligands and two symmetry-related bzi ligands. The CdII ions are linked by double azide bridging ligands within a μ1,3-N3 end-to-end (EE) coordination mode, leading to a one-dimensional linear structure extending parallel to [100]. The supra­molecular framework is stabilized by the presence of weak C—H⋯N inter­actions, π–π stacking [centroid-to-centroid distance of 3.832 (2) Å] and C—H⋯π inter­actions between neighbouring chains.




nes

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




nes

Two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones: disorder and supra­molecular assembly

Two new chalcones containing both pyrazole and thio­phene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thio­phene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds.




nes

Crystal structures and Hirshfeld surface analysis of trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline-κ2N,N'}manganese(II) and trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyri

Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thio­cyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The tri­methyl­benzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify these inter­molecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].




nes

Bulky 2,6-disubstituted aryl siloxanes and a disilanamine

The crystal structures of 5-bromo-1,3-di-tert-butyl-2-[(tri­methyl­sil­yl)­oxy]benzene, C17H29BrOSi, (I), 1,3-di-tert-butyl-2-[(tri­methyl­sil­yl)­oxy]benzene, C17H30OSi, (II), and N-(2,6-diiso­propyl­phen­yl)-1,1,1-trimethyl-N-(tri­methyl­sil­yl)silanamine, C18H35NSi2, (III), are reported. Compound (I) crystallizes in space group P21/c with Z' = 1, (II) in Pnma with Z' = 0.5 and (III) in Cmcm with Z' = 0.25. Consequently, the mol­ecules of (II) are constrained by m and those of (III) by m2m site symmetries. Despite this, both (I) and (II) are distorted towards mild boat conformations, as is typical of 2,6-di-tert-butyl-substituted phenyl compounds, reflecting the high local steric pressure of the flanking alkyl groups. Compound (III) by contrast is planar and symmetric, and this lack of distortion is compatible with the lower steric pressure of the flanking 2,6-diisopropyl substituents.




nes

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.




nes

Crystal structures and Hirshfeld surface analyses of two new tetra­kis-substituted pyrazines and a degredation product

The two new tetra­kis-substituted pyrazines, 1,1',1'',1'''-(pyrazine-2,3,5,6-tetra­yl) tetra­kis­(N,N-di­methyl­methanamine), C16H32N6, (I) and N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline), C36H40N6, (II), both crystallize with half a mol­ecule in the asymmetric unit; the whole mol­ecules are generated by inversion symmetry. There are weak intra­molecular C—H⋯N hydrogen bonds present in both mol­ecules and in (II) the pendant N-methyl­aniline rings are linked by a C—H⋯π inter­action. The degredation product, N,N'-[(6-phenyl-6,7-di­hydro-5H-pyrrolo­[3,4-b]pyrazine-2,3-di­yl)bis(methyl­ene)]bis­(N-methyl­aniline), C28H29N5, (III), was obtained several times by reacting (II) with different metal salts. Here, the 6-phenyl ring is almost coplanar with the planar pyrrolo­[3,4-b]pyrazine unit (r.m.s. deviation = 0.029 Å), with a dihedral angle of 4.41 (10)° between them. The two N-meth­yl­aniline rings are inclined to the planar pyrrolo­[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intra­molecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methyl­aniline groups. In the crystal of (I), there are no significant inter­molecular contacts present, while in (II) mol­ecules are linked by a pair of C—H⋯π inter­actions, forming chains along the c-axis direction. In the crystal of (III), mol­ecules are linked by two pairs of C—H⋯π inter­actions, forming inversion dimers, which in turn are linked by offset π–π inter­actions [inter­centroid distance = 3.8492 (19) Å], forming ribbons along the b-axis direction.




nes

Structural and luminescent properties of co-crystals of tetra­iodo­ethyl­ene with two aza­phenanthrenes

Two new co-crystals, tetra­iodo­ethyl­ene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetra­iodo­ethyl­ene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetra­iodo­ethyl­ene and aza­phenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent mol­ecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar aza­phenanthrenes lend themselves to π–π stacking and C—H⋯π inter­actions, leading to a diversity of supra­molecular three-dimensional structural motifs being formed by these inter­actions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature.




nes

Synthesis and crystal structure of (1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)(tetra­sulfido-κ2S1,S4)manganese(II)

The title compound, [Mn(S4)(C8H20N4)], was accidentally obtained by the hydro­thermal reaction of Mn(ClO4)2·6H2O, cyclen (cyclen = 1,4,7,10-tetra­aza­cyclo­dodeca­ne) and Na3SbS4·9H2O in water at 413 K, indicating that polysulfide anions might represent inter­mediates in the synthesis of thio­metallate compounds using Na3SbS4·9H2O as a reactant. X-ray powder diffraction proves that the sample is slightly contaminated with NaSb(OH)6 and an unknown crystalline phase. The crystal investigated was twinned with a twofold rotation axis as the twin element, and therefore a twin refinement using data in HKLF-5 format was performed. The asymmetric unit of the title compound consists of one MnII cation, one [S4]2− anion and one cyclen ligand in general positions. The MnII cation is sixfold coordinated by two cis-S atoms of the [S4]2− anions, as well as four N atoms of the cyclen ligand within an irregular coordination. The complexes are linked via pairs of N—H⋯S hydrogen bonds into chains, which are further linked into layers by additional N—H⋯S hydrogen bonding. These layers are connected into a three-dimensional network by inter­molecular N—H⋯S and C—H⋯S hydrogen bonding. It is noted that only one similar complex with MnII is reported in the literature.




nes

Crystal structure and photoluminescent properties of bis­(4'-chloro-2,2':6',2''-terpyrid­yl)cobalt(II) dichloride tetra­hydrate

In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by overline{4} symmetry. The CoN6 moiety shows distortion from regular octa­hedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O inter­actions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum.




nes

Functionalized 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples

Five examples each of 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-ones and the corresponding 1-(4-azido­phen­yl)-3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C32H24N2O3, (Ie), the mol­ecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific inter­molecular inter­actions in the structure of 1-(4-azido­phen­yl)-3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azido­phen­yl)-3-[5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the di­chloro­phenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the mol­ecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azido­phen­yl)-3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the mol­ecular conformations within both series of compounds.




nes

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II)

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.




nes

R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials

In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones.




nes

Mutagenesis facilitated crystallization of GLP-1R

The class B family of G-protein-coupled receptors (GPCRs) has long been a paradigm for peptide hormone recognition and signal transduction. One class B GPCR, the glucagon-like peptide-1 receptor (GLP-1R), has been considered as an anti-diabetes drug target and there are several peptidic drugs available for the treatment of this overwhelming disease. The previously determined structures of inactive GLP-1R in complex with two negative allosteric modulators include ten thermal-stabilizing mutations that were selected from a total of 98 designed mutations. Here we systematically summarize all 98 mutations we have tested and the results suggest that the mutagenesis strategy that strengthens inter-helical hydro­phobic interactions shows the highest success rate. We further investigate four back mutations by thermal-shift assay, crystallization and molecular dynamic simulations, and conclude that mutation I1962.66bF increases thermal stability intrinsically and that mutation S2714.47bA decreases crystal packing entropy extrinsically, while mutations S1932.63bC and M2333.36bC may be dispensable since these two cysteines are not di­sulfide-linked. Our results indicate intrinsic connections between different regions of GPCR transmembrane helices and the current data suggest a general mutagenesis principle for structural determination of GPCRs and other membrane proteins.




nes

Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction

A large amount of hydrogen circulates inside the Earth, which affects the long-term evolution of the planet. The majority of this hydrogen is stored in deep Earth within the crystal structures of dense minerals that are thermodynamically stable at high pressures and temperatures. To understand the reason for their stability under such extreme conditions, the chemical bonding geometry and cation exchange mechanism for including hydrogen were analyzed in a representative structure of such minerals (i.e. phase E of dense hydrous magnesium silicate) by using time-of-flight single-crystal neutron Laue diffraction. Phase E has a layered structure belonging to the space group R3m and a very large hydrogen capacity (up to 18% H2O weight fraction). It is stable at pressures of 13–18 GPa and temperatures of up to at least 1573 K. Deuterated high-quality crystals with the chemical formula Mg2.28Si1.32D2.15O6 were synthesized under the relevant high-pressure and high-temperature conditions. The nuclear density distribution obtained by neutron diffraction indicated that the O—D dipoles were directed towards neighboring O2− ions to form strong interlayer hydrogen bonds. This bonding plays a crucial role in stabilizing hydrogen within the mineral structure under such high-pressure and high-temperature conditions. It is considered that cation exchange occurs among Mg2+, D+ and Si4+ within this structure, making the hydrogen capacity flexible.




nes

Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines

Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays.




nes

High-dynamic-range transmission-mode detection of synchrotron radiation using X-ray excited optical luminescence in diamond

Enhancement of X-ray excited optical luminescence in a 100 µm-thick diamond plate by introduction of defect states via electron beam irradiation and subsequent high-temperature annealing is demonstrated. The resulting X-ray transmission-mode scintillator features a linear response to incident photon flux in the range 7.6 × 108 to 1.26 × 1012 photons s−1 mm−2 for hard X-rays (15.9 keV) using exposure times from 0.01 to 5 s. These characteristics enable a real-time transmission-mode imaging of X-ray photon flux density without disruption of X-ray instrument operation.




nes

Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Corrigendum

Errors in the article by Opara, Martiel, Arnold, Braun, Stahlberg, Makita, David & Padeste [J. Appl. Cryst. (2017), 50, 909–918] are corrected.




nes

In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin

Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis.




nes

Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals

Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment.




nes

Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds

Crystal structure and microscopic optical properties of anthracene derivative compounds have been investigated by single-crystal synchrotron X-ray diffraction, laser confocal microscopy and fluorescence lifetime imaging microscopy.




nes

Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target

A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg−1 min−1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.




nes

Dog bones reveal ecological history of California’s Channel Islands

A recent study of dog bones excavated from archaeological sites on the Channel Islands of California has cast new light on the past ecology of the islands and the impact that domestic dogs--brought to the islands by Native Americans more than 6,000 years ago—may have once had on the islands’ animals and ecosystems.

The post Dog bones reveal ecological history of California’s Channel Islands appeared first on Smithsonian Insider.




nes

John Marshall Ju/’hoan Bushman Film and Video Collection added to UNESCO register

The John Marshall Ju/'hoan Bushman Film and Video Collection, 1950-2000, was among 35 documentary heritage items of exceptional value added to UNESCO’s Memory of the World Register in 2009.

The post John Marshall Ju/’hoan Bushman Film and Video Collection added to UNESCO register appeared first on Smithsonian Insider.



  • Anthropology
  • Science & Nature
  • National Museum of Natural History

nes

Japanese giant salamanders given to the National Zoo by Asa Zoological Park in Hiroshima

The Smithsonian’s National Zoo recently acquired Japanese giant salamanders given to the Zoo by the City of Hiroshima Asa Zoological Park. This donation will be the foundation of a new long-term breeding program in the United States and may play an important role in saving amphibians around the globe.

The post Japanese giant salamanders given to the National Zoo by Asa Zoological Park in Hiroshima appeared first on Smithsonian Insider.




nes

National Zoo scientists successfully grow two species of anemones in aquarium tanks

The anemones—both of which are commonly called Tealia red anemones under the species of Urticina—spawned in late April and early May, just days apart. Henley collected the eggs and sperm from the more than 2,000-gallon tank and put them together in smaller tanks to increase the chances of fertilization. After fertilization, the larvae settled and metamorphosed into a polyp.

The post National Zoo scientists successfully grow two species of anemones in aquarium tanks appeared first on Smithsonian Insider.




nes

Shera, a 5-year-old lioness at the National Zoological Park

On Aug, 31, the Smithsonian’s National Zoo welcomed this year’s second litter of African lion (Panthera leo) cubs. Five-year-old Shera (shown at right) gave birth […]

The post Shera, a 5-year-old lioness at the National Zoological Park appeared first on Smithsonian Insider.