pr Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one By journals.iucr.org Published On :: 2024-01-26 The title compound, C13H11NO, adopts an E configuration about the C=C double bond. The pyrrole ring is inclined to the phenyl ring at an angle of 44.94 (8)°. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis. These ribbons are connected via C—H⋯π interactions, forming a three-dimensional network. No significant π–π interactions are observed. Full Article text
pr Crystal structure, Hirshfeld surface analysis, crystal voids, interaction energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hydroxy-5-methyl-1H-pyrazol-4-yl)-3-phenylpropanoate By journals.iucr.org Published On :: 2024-01-31 The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of molecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) interactions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
pr Crystal structure and characterization of a new lanthanide coordination polymer, [Pr2(pydc)(phth)2(H2O)3]·H2O By journals.iucr.org Published On :: 2024-01-31 A new lanthanide coordination polymer, poly[[triaquabis(μ4-phthalato)(μ3-pyridine-2,5-dicarboxylato)dipraseodymium] monohydrate], {[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O}n or {[Pr2(phth)2(pydc)(H2O)3]·H2O}n, (pydc2− = pyridine-2,5-dicarboxylate and phth2− = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr2(pydc)(phth)2(H2O)3}n layers. Each layer is built up by edge-sharing {Pr2N2O14} and {Pr2O16} dimers, which are connected through a new coordination mode of pydc2− and phth2−. These layers are stabilized by internal hydrogen bonds and π–π interactions. In addition, a three-dimensional supramolecular framework is built by interlayer hydrogen-bonding interactions involving the non-coordinated water molecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C. Full Article text
pr Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexa By journals.iucr.org Published On :: 2024-02-20 Two compounds, (S)-8-{[(tert-butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium trifluoromethanesulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodomethyl)-1-tosyl-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-butoxycarbonyl)-l-methionine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intramolecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group. Full Article text
pr Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, isopropyl 4-[4-(difluoro& By journals.iucr.org Published On :: 2024-02-08 The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(difluoromethoxy)phenyl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(difluoromethoxy)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, (C24H29F2NO4), (III) crystallize in the orthorhombic space group Pbca with Z = 8. In the crystal structure of (I), molecules are linked by N—H⋯O and C—H⋯O interactions, forming a tri-periodic network, while molecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π interactions, forming layers parallel to (002). The cohesion of the molecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-difluoromethoxyphenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclohexane ring, and the two carbon atoms of the cyclohexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio. Full Article text
pr Crystal structure and Hirshfeld surface analysis of 3-phenyl-1-{3-[(3-phenylquinoxalin-2-yl)oxy]propyl}-1,2-dihydroquinoxalin-2-one By journals.iucr.org Published On :: 2024-02-20 In the title compound, C31H24N4O2, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the molecules into chains extending along the a-axis direction. The chains are linked through π-stacking interactions between inversion-related quinoxaline moieties. Full Article text
pr Crystal structure of tetrakis(μ-2-hydroxy-3,5-diisopropylbenzoato)bis[(dimethyl sulfoxide)copper(II)] By journals.iucr.org Published On :: 2024-02-27 Metal complexes of 3,5-diisopropylsalicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diisopropylsalicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hydroxy group of the diisopropylsalicylate ligands participates in intramolecular O—H⋯O hydrogen-bonding interactions. Full Article text
pr Lithium and sodium 3-(3,4-dihydroxyphenyl)propenoate hydrate By journals.iucr.org Published On :: 2024-03-26 Treatment of 3-(3,4-dihydroxyphenyl)propenoic acid (caffeic acid or 3,4-dihydroxycinnamic acid) with the alkali hydroxides MOH (M = Li, Na) in aqueous solution led to the formation of poly[aqua[μ-3-(3,4-dihydroxyphenyl)propenoato]lithium], [Li(C9H7O4)(H2O)]n, 1, and poly[aqua[μ-3-(3,4-dihydroxyphenyl)propenoato]sodium], [Na(C9H7O4)(H2O)]n, 2. The crystal structure of 1 consists of a lithium cation that is coordinated nearly tetrahedrally by three carboxylate oxygen atoms and a water molecule. The carboxylate groups adopt a μ3-κ3O:O':O' coordination mode that leads to a chain-like catenation of Li cations and carboxylate units parallel to the b axis. Moreover, the lithium carboxylate chains are connected by hydrogen bonds between water molecules attached to lithium and catechol OH groups. The crystal structure of 2 shows a sevenfold coordination of the sodium cation by one water molecule, two monodentately binding carboxylate groups and four oxygen atoms from two catechol groups. The coordination polyhedra are linked by face- and edge-sharing into chains extending parallel to the b axis. The chains are interlinked by the bridging 3-(3,4-dihydroxyphenyl)propenoate units and by intermolecular hydrogen bonds to form the tri-periodic network. Full Article text
pr Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yloxy)quinoxaline By journals.iucr.org Published On :: 2024-03-21 In the title compound, C17H12N2O, the quinoxaline moiety shows deviations of 0.0288 (7) to −0.0370 (7) Å from the mean plane (r.m.s. deviation of fitted atoms = 0.0223 Å). In the crystal, corrugated layers two molecules thick are formed by C—H⋯N hydrogen bonds and π-stacking interactions. Full Article text
pr Synthesis, characterization and supramolecular analysis for (E)-3-(pyridin-4-yl)acrylic acid By journals.iucr.org Published On :: 2024-03-26 The title compound, C8H7NO2, crystallizes as prismatic colourless crystals in space group Poverline{1}, with one molecule in the asymmetric unit. The pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond with a torsion angle of −6.1 (2)°. In the crystal, strong O—H⋯N interactions link the molecules, forming chains along the [101] direction. Weak C—H⋯O interactions link adjacent chains along the [100] direction, generating an R22(14) homosynthon. Finally, π–π stacking interactions lead to the formation of the three-dimensional structure. The supramolecular analysis was supported by Hirshfeld surface and two-dimensional fingerprint plot analysis, indicating that the most abundant contacts are associated with H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C interactions. Full Article text
pr Synthesis, crystal structure and Hirshfeld surface analysis of bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide By journals.iucr.org Published On :: 2024-03-26 A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal space group P4/n. The CuII atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts. Full Article text
pr Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II) By journals.iucr.org Published On :: 2024-04-11 Reaction of Co(NCS)2 with 2-methylpyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thiocyanate anions and three crystallographically independent 2-methylpyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thiocyanate anions in the trans-positions and three 2-methylpyridine N-oxide coligands into discrete complexes. These complexes are linked by intermolecular C–H⋯S interactions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound. Full Article text
pr Crystal structure of (E)-N-(4-bromophenyl)-2-cyano-3-[3-(2-methylpropyl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide By journals.iucr.org Published On :: 2024-04-23 The structure of the title compound, C23H21BrN4O, contains two independent molecules connected by hydrogen bonds of the type Namide—H⋯N≡C to form a dimer. The configuration at the exocyclic C=C double bond is E. The molecules are roughly planar except for the isopropyl groups. There are minor differences in the orientations of these groups and the phenyl rings at N1. The dimers are further linked by ‘weak’ hydrogen bonds, two each of the types Hphenyl⋯O=C (H⋯O = 2.50, 2.51 Å) and Hphenyl⋯Br (H⋯Br = 2.89, 2.91 Å), to form ribbons parallel to the b and c axes, respectively. The studied crystal was a non-merohedral twin. Full Article text
pr Synthesis, crystal structure and thermal properties of the dinuclear complex bis(μ-4-methylpyridine N-oxide-κ2O:O)bis[(methanol-κO)(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II)] By journals.iucr.org Published On :: 2024-04-18 Reaction of Co(NCS)2 with 4-methylpyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methylpyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thiocyanate anions, two 4-methylpyridine N-oxide coligands and one methanol molecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octahedrally coordinate two terminal N-bonded thiocyanate anions, three 4-methylpyridine N-oxide coligands and one methanol molecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methylpyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-methylpyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol molecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methylpyridine N-oxide), which has been reported in the literature and which is of poor crystallinity. Full Article text
pr Synthesis, crystal structure and Hirshfeld surface analysis of 4-{(1E)-1-[(carbamothioylamino)imino]ethyl}phenyl propanoate By journals.iucr.org Published On :: 2024-04-18 The title compound, C12H15N3O2S, adopts an E configuration with respect to the C=N bond. The propionate group adopts an antiperiplanar (ap) conformation. There are short intramolecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs, respectively. In the crystal, molecules are connected into ribbons extending parallel to [010] by pairs of N—H⋯S interactions, forming rings with R22(8) graph-set motifs, and by pairs of C—H⋯S interactions, where rings with the graph-set motif R21(7) are observed. The O atom of the carbonyl group is disordered over two positions, with a refined occupancy ratio of 0.27 (2):0.73 (2). The studied crystal consisted of two domains. Full Article text
pr Synthesis and crystal structures of N,2,4,6-tetramethylanilinium trifluoromethanesulfonate and N-isopropylidene-N,2,4,6-tetramethylanilinium trifluoromethanesulfonate By journals.iucr.org Published On :: 2024-04-26 Two 2,4,6-trimethylaniline-based trifuloromethanesulfonate (trifluoromethanesulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetramethylanilinium trifluoromethanesulfonate, [C10H14NH2+][CF3O3S−] (1), was synthesized via methylation of 2,4,6-trimethylaniline. N-Isopropylidene-N,2,4,6-tetramethylanilinium trifluoromethanesulfonate, [C13H20N+][CF3O3S−] (2), was synthesized in a two-step reaction where the imine, N-isopropylidene-2,4,6-trimethylaniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methylation using methyl trifluoromethanesulfonate to form the iminium ion. In compound 1, both hydrogen bonding and π–π interactions form the main intermolecular interactions. The primary interaction is a strong N—H⋯O hydrogen bond with the oxygen atoms of the trifluoromethanesulfonate anions bonded to the hydrogen atoms of the ammonium nitrogen atom to generate a one-dimensional chain. The [C10H14NH2+] cations form dimers where the benzene rings form a π–π interaction with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the interplanar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and interplanar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major intermolecular interactions in 2 are instead a series of weaker C—H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an interaction virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional interactions in either structure. Full Article text
pr Synthesis and crystal structures of 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene, 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-di By journals.iucr.org Published On :: 2024-05-03 The calixarenes, 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (C34H26Br2O4, 1), 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C40H38Br2O4, 2) and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (C32H28Br2N6O4, 3) possess a pinched cone molecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intramolecular O—H⋯O hydrogen bonds, while in calixarene 2 intramolecular Br⋯Br interactions consolidate the 1,3-alternate molecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of π–π, C—H⋯π and C—H⋯O interactions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH2Cl2 solvent molecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 Å3 where there is room for 4.5 CH2Cl2 solvent molecules per unit cell. Rigid molecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals interactions, and the resulting columns are held together by weak C—H⋯π contacts. Full Article text
pr Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
pr Synthesis, crystal structure and properties of poly[di-μ3-chlorido-di-μ2-chlorido-bis[4-methyl-N-(pyridin-2-ylmethylidene)aniline]dicadmium(II)] By journals.iucr.org Published On :: 2024-05-21 The title coordination polymer with the 4-methyl-N-(pyridin-2-ylmethylidene)aniline Schiff base ligand (L, C13H12N2), [Cd2Cl4(C13H12N2)]n (1), exhibits a columnar structure extending parallel to [100]. The columns are aligned in parallel and are decorated with chelating L ligands on both sides. They are elongated into a supramolecular sheet extending parallel to (01overline{1}) through π–π stacking interactions involving L ligands of neighbouring columns. Adjacent sheets are packed into the tri-periodic supramolecular network through weak C—H⋯Cl hydrogen-bonding interactions that involve the phenyl CH groups and chlorido ligands. The thermal stability and photoluminescent properties of (1) have also been examined. Full Article text
pr Synthesis, crystal structure and Hirshfeld surface analysis of 1-[3-(2-oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)propyl]-3-phenyl-1,2-dihydroquinoxalin-2-one By journals.iucr.org Published On :: 2024-05-17 In the title compound, C31H24N4O2, the dihydroquinoxaline units are both essentially planar with the dihedral angle between their mean planes being 64.82 (4)°. The attached phenyl rings differ significantly in their rotational orientations with respect to the dihydroquinoxaline planes. In the crystal, one set of C—H⋯O hydrogen bonds form chains along the b-axis direction, which are connected in pairs by a second set of C—H⋯O hydrogen bonds. Two sets of π-stacking interactions and C—H⋯π(ring) interactions join the double chains into the final three-dimensional structure. Full Article text
pr Structural characterization of the supramolecular complex between a tetraquinoxaline-based cavitand and benzonitrile By journals.iucr.org Published On :: 2024-05-31 The structural characterization is reported of the supramolecular complex between the tetraquinoxaline-based cavitand 2,8,14,20-tetrahexyl-6,10:12,16:18,22:24,4-O,O'-tetrakis(quinoxaline-2,3-diyl)calix[4]resorcinarene (QxCav) with benzonitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent molecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzonitrile molecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly interact through weak C—H⋯π, C—H⋯N and dispersion interactions. These interactions help to consolidate the formation of supramolecular chains running along the crystallographic b-axis direction. Full Article text
pr Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) By journals.iucr.org Published On :: 2024-05-31 The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methylpyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methylpyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methylpyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methylpyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition. Full Article text
pr Crystal structures of four gold(I) complexes [AuL2]+[AuX2]− and a by-product (L·LH+)[AuBr2]− (L = substituted pyridine, X = Cl or Br) By journals.iucr.org Published On :: 2024-06-18 Bis(2-methylpyridine)gold(I) dibromidoaurate(I), [Au(C6H7N)2][AuBr2], (1), crystallizes in space group C2/c with Z = 4. Both gold atoms lie on twofold axes and are connected by an aurophilic contact. A second aurophilic contact leads to infinite chains of alternating cations and anions parallel to the b axis, and the residues are further connected by a short H⋯Au contact and a borderline Br⋯Br contact. Bis(3-methylpyridine)gold(I) dibromidoaurate(I), [Au(C6H7N)2][AuBr2], (2), crystallizes in space group C2/m with Z = 2. Both gold atoms lie on special positions with symmetry 2/m and are connected by an aurophilic contact; all other atoms except for one methyl hydrogen lie in mirror planes. The extended structure is closely analogous to that of 1, although the structures are formally not isotypic. Bis(3,5-dimethylpyridine)gold(I) dichloridoaurate(I), [Au(C7H9N)2][AuCl2], (3) crystallizes in space group Poverline{1} with Z = 2. The cation lies on a general position, and there are two independent anions in which the gold atoms lie on inversion centres. The cation and one anion associate via three short H⋯Cl contacts to form a ribbon structure parallel to the b axis; aurophilic contacts link adjacent ribbons. Bis(3,5-dimethylpyridine)gold(I) dibromidoaurate(I), [Au(C7H9N)2][AuBr2], (4) is isotypic to 3. Attempts to make similar compounds involving 2-bromopyridine led instead to 2-bromopyridinium dibromidoaurate(I)–2-bromopyridine (1/1), (C5H5BrN)[AuBr2]·C5H4BrN, (5), which crystallizes in space group Poverline{1} with Z = 2; all atoms lie on general positions. The 2-bromopyridinium cation is linked to the 2-bromopyridine molecule by an N—H⋯N hydrogen bond. Two formula units aggregate to form inversion-symmetric dimers involving Br⋯Br, Au⋯Br and H⋯Br contacts. Full Article text
pr Crystal structure and Hirshfeld surface analysis of 2-bromoethylammonium bromide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-06-18 This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H interactions, which constitute 62.6% of the overall close atom contacts. Full Article text
pr Crystal structure of 1,2,3,4-tetrahydroisoquinolin-2-ium (2S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate By journals.iucr.org Published On :: 2024-06-21 The crystal structure of 1,2,3,4-tetrahydroisoquinolin-2-ium (2S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate, C9H12N+·C4H5O6−·H2O, at 115 K shows orthorhombic symmetry (space group P212121). The hydrogen tartrate anions and solvent water molecules form an intricate diperiodic O—H⋯O hydrogen-bond network parallel to (001). The tetrahydroisoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N—H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydrocarbon tails of the tetrahydroisoquinolinium cations, resulting in hydrophobic and hydrophilic regions in the crystal structure. Full Article text
pr The crystal structure of a mononuclear PrIII complex with cucurbit[6]uril By journals.iucr.org Published On :: 2024-06-25 A new mononuclear complex, pentaaqua(cucurbit[6]uril-κ2O,O')(nitrato-κ2O,O')praseodymium(III) dinitrate 9.56-hydrate, [Pr(NO3)(CB6)(H2O)5](NO3)2·9.56H2O (1), was obtained as outcome of the hydrothermal reaction between the macrocyclic ligand cucurbit[6]uril (CB6, C36H36N24O12) with a tenfold excess of Pr(NO3)3·6H2O. Complex 1 crystallizes in the P21/n space group with two crystallographically independent but chemically identical [Pr(CB6)(NO3)(H2O)5]2+ complex cations, four nitrate counter-anions and 19.12 interstitial water molecules per asymmetric unit. The nonacoordinated PrIII in 1 are located in the PrO9 coordination environment formed by two carbonyl O atoms from bidentate cucurbit[6]uril units, two oxygen atoms from the bidentate nitrate anion and five water molecules. Considering the differences in Pr—O bond distances and O—Pr—O angles in the coordination spheres, the coordination polyhedrons of the two PrIII atoms can be described as distorted spherical capped square antiprismatic and muffin polyhedral. Full Article text
pr Synthesis, crystal structure and thermal properties of catena-poly[[bis(4-methylpyridine)nickel(II)]-di-μ-thiocyanato], which shows an alternating all-trans and cis–cis–trans-coordination of the NiS2Np2Nt2 octahedra (p = 4-me By journals.iucr.org Published On :: 2024-06-21 The title compound, [Ni(NCS)2(C6H7N)2]n, was prepared by the reaction of Ni(NCS)2 with 4-methylpyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thiocyanate anions and two independent 4-methylpyridine coligands in general positions. Each NiII cation is octahedrally coordinated by two 4-methylpyridine coligands as well as two N- and two S-bonded thiocyanate anions. One of the cations shows an all-trans, the other a cis–cis–trans configuration. The metal centers are linked by pairs of μ-1,3-bridging thiocyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methylpyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020). CrystEngComm. 22, 184–194] In its crystal structure, the metal cations are linked by one μ-1,3(N,S)- and one μ-1,3,3(N,S,S)-bridging thiocyanate anion into single chains that condense via the μ-1,3,3(N,S,S)-bridging anionic ligands into double chains. Full Article text
pr Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline By journals.iucr.org Published On :: 2024-06-28 A new quinoline derivative, namely, 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water molecule, resulting in a distorted octahedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent molecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and quantity of solvent molecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 molecules of ethanol in the unit cell. These ethanol molecules are not considered in the given chemical formula and other crystal data. Full Article text
pr Structural determination of oleanane-28,13β-olide and taraxerane-28,14β-olide fluorolactonization products from the reaction of oleanolic acid with SelectfluorTM By journals.iucr.org Published On :: 2024-07-15 The X-ray crystal structure data of 12-α-fluoro-3β-hydroxyolean-28,13β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (1), and 12-α-fluoro-3β-hydroxytaraxer-28,14β-olide methanol hemisolvate, 2C30H47FO3·CH3OH, (2), are described. The fluorolactonization of oleanolic acid using SelectfluorTM yielded a mixture of the six-membered δ-lactone (1) and the unusual seven-membered γ-lactone (2) following a 1,2-shift of methyl C-27 from C-14 to C-13. Full Article text
pr Synthesis and crystal structure of (2E)-1-[3,5-bis(benzyloxy)phenyl]-3-(4-ethoxyphenyl)prop-2-en-1-one By journals.iucr.org Published On :: 2024-08-06 In the title compound, C31H28O4, the phenyl rings of the chalcone unit subtend a dihedral angle of 26.43 (10)°. The phenyl rings of the pendant benzyloxy groups are orientated at 75.57 (13) and 75.70 (10)° with respect to their attached ring. In the crystal, weak C—H⋯O and C—H⋯π interactions link the molecules. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, which showed a breakdown into H⋯H (49.8%), H⋯C/C⋯H (33.8%) and H⋯O/O⋯H (13.6%) interactions with other types making negligible contributions. Full Article text
pr Puckering effects of 4-hydroxy-l-proline isomers on the conformation of ornithine-free Gramicidin S By journals.iucr.org Published On :: 2024-08-09 The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hydroxyprolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anticipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by interactions between the hydroxyl groups of hydroxyproline, the solvent molecules, and peptides. Full Article text
pr Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hydroxy-N'-(propan-2-ylidene)benzohydrazide] By journals.iucr.org Published On :: 2024-08-20 The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [trichloridocopper(II)]-μ-chlorido-{bis[2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one molecule of water, which forms interactions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitrogen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetrahedral geometry. The arrangement around the first copper ion exhibits a distorted geometry intermediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via intermolecular interactions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding interactions parallel to the ac plane, and through slipped π–π stacking interactions parallel to the ab plane, resulting in a three-dimensional network. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol molecules in the void space could not be reasonably modelled, thus a solvent mask was applied. Full Article text
pr Crystal structure of propane-1,3-diaminium squarate dihydrate By journals.iucr.org Published On :: 2024-08-30 Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-diamine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetragonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supramolecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types. Full Article text
pr Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4]− (R = tert-butyl or isopropyl, E = S or Se, and X = Cl or Br) By journals.iucr.org Published On :: 2024-09-30 During our studies of the oxidation of gold(I) complexes of trialkylphosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis(trialkylphosphane chalcogenido)gold(I) tetrahalogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]−. These correspond to the addition of one halogen atom per gold atom of the AuI precursor. Compound 1, bis(triisopropylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis(tert-butyldiisopropylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis(tri-tert-butylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis(tert-butyldiisopropylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis(tert-butyldiisopropylphosphane selenide)gold(I) tetrabromidoaurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis(tri-tert-butylphosphane selenide)gold(I) tetrabromidoaurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are antiperiplanar to each other across the S⋯S vectors. There are several short intramolecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl interactions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane. Full Article text
pr Crystal structure and Hirshfeld surface analyses, crystal voids, intermolecular interaction energies and energy frameworks of 3-benzyl-1-(3-bromopropyl)-5,5-diphenylimidazolidine-2,4-dione By journals.iucr.org Published On :: 2024-10-04 The title molecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions form helical chains of molecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) interactions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy. Full Article text
pr Crystal structure and supramolecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene By journals.iucr.org Published On :: 2024-09-24 A host–guest supramolecular inclusion complex was obtained from the co-crystallization of A1/A2-bromobutoxy-hydroxy difunctionalized pillar[5]arene (PilButBrOH) with adiponitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adiponitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π interactions. Both functional groups on the macrocyclic rim are engaged in supramolecular interactions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) interactions, resulting in the formation of a supramolecular dimer in the crystal structure. Full Article text
pr Synthesis, crystal structure and properties of μ-tetrathioantimonato-bis[(cyclam)zinc(II)] perchlorate 0.8-hydrate By journals.iucr.org Published On :: 2024-10-11 The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/acetonitrile mixture leads to the formation of the title compound, (μ-tetrathioantimonato-κ2S:S')bis[(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water molecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water molecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water molecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water molecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties. Full Article text
pr Synthesis and crystal structure of sodium (ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolate] octahydrate By journals.iucr.org Published On :: 2024-10-08 The title compound, catena-poly[[triaquasodium]-di-μ-aqua-[triaquasodium]-μ-(ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the methoxypropyl unit of the ligand to form infinite chains. Full Article text
pr Crystal structure of N,N',N''-tricyclopropylbenzene-1,3,5-tricarboxamide By journals.iucr.org Published On :: 2024-10-24 The title compound, C18H21N3O3, was prepared from 1,3,5-benzenetricarbonyl trichloride and cyclopropylamine. Its crystal structure was solved in the monoclinic space group P21/c. In the crystal, the three amide groups of the molecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the benzene ring. The molecules are linked by N—H⋯O hydrogen bonds, forming two-dimensional supramolecular aggregates that extend parallel to the crystallographic ab plane and are further connected by C—H⋯O contacts. As a result of the supramolecular interactions, a propeller-like conformation of the title molecule can be observed. Full Article text
pr Structural multiplicity in a solvated hydrate of the antiretroviral protease inhibitor Lopinavir By journals.iucr.org Published On :: 2024-10-24 Lopinavir is a potent protease inhibitor that is used as a first-line pharmaceutical drug for the treatment of HIV. The multi-component solvated Lopinavir crystal, systematic name (2S)-N-[(2S,4S,5S)-5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide–ethane-1,2-diol–water (8/3/7) 8C37H48N4O5·3C2H6O2·7H2O, was prepared using evaporative methods. The crystalline material obtained from this experimental synthesis was characterized and elucidated by single-crystal X-ray diffraction (SC-XRD). The crystal structure is unusual in that the unit cell contains 18 molecules. The stoichiometric ratio of this crystal is eight Lopinavir molecules [8(C37H48N4O5)], three ethane-1,2-diol molecules [3(C2H6O2)] and seven water molecules [7(H2O)]. The crystal packing features both bi- and trifurcated hydrogen bonds between atoms. Full Article text
pr Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by triethylammonium By journals.iucr.org Published On :: 2024-10-24 Two new zinc(II) complexes, triethylammonium dichlorido[2-(4-nitrophenyl)-4-phenylquinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis(triethylammonium) {2,2'-[1,4-phenylenebis(nitrilomethylidyne)]diphenolato}bis[dichloridozinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitrophenyl)-4-phenylquinolin-8-ol (HOQ) and N,N'-bis(2-hydroxybenzylidene)benzene-1,4-diamine (H2BS) were deprotonated by triethyl-amine, forming the counter-ion Et3NH+, which interacts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetrahedral (ZnBS) geometries with a coordination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitrogen for the HOQ ligand, while for the H2BS ligand, it is the nitrogen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π interactions, while that of ZnBS by C—H⋯Cl interactions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence. Full Article text
pr Crystal structure and Hirshfeld surface analysis of the salt 2-iodoethylammonium iodide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-10-31 The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodoethylammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supramolecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I interactions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001]. Full Article text
pr Reducing heat load density with asymmetric and inclined double-crystal monochromators: principles and requirements revisited By journals.iucr.org Published On :: The major principles and requirements of asymmetric and inclined double-crystal monochromators are re-examined and presented to guide their design and development for significantly reducing heat load density and gradient on the monochromators of fourth-generation synchrotron light sources and X-ray free-electron lasers. Full Article text
pr Development and testing of a dual-frequency, real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF By journals.iucr.org Published On :: we introduce a novel approach for a real-time dual-frequency feedback system, which has been firstly used at the hard X-ray nanoprobe beamline of SSRF. The BiBEST can then efficiently stabilize X-ray beam position and stability in parallel, making use of different optical systems in the beamline. Full Article text
pr (U)SAXS characterization of porous microstructure of chert: insights into organic matter preservation By journals.iucr.org Published On :: 2023-11-15 This study characterizes the microstructure and mineralogy of 132 (ODP sample), 1000 and 1880 million-year-old chert samples. By using ultra-small-angle X-ray scattering (USAXS), wide-angle X-ray scattering and other techniques, the preservation of organic matter (OM) in these samples is studied. The scarce microstructural data reported on chert contrast with many studies addressing porosity evolution in other sedimentary rocks. The aim of this work is to solve the distribution of OM and silica in chert by characterizing samples before and after combustion to pinpoint the OM distribution inside the porous silica matrix. The samples are predominantly composed of alpha quartz and show increasing crystallite sizes up to 33 ± 5 nm (1σ standard deviation or SD). In older samples, low water abundances (∼0.03%) suggest progressive dehydration. (U)SAXS data reveal a porous matrix that evolves over geological time, including, from younger to older samples, (1) a decreasing pore volume down to 1%, (2) greater pore sizes hosting OM, (3) decreasing specific surface area values from younger (9.3 ± 0.1 m2 g−1) to older samples (0.63 ± 0.07 m2 g−1, 1σ SD) and (4) a lower background intensity correlated to decreasing hydrogen abundances. The pore-volume distributions (PVDs) show that pores ranging from 4 to 100 nm accumulate the greater volume fraction of OM. Raman data show aromatic organic clusters up to 20 nm in older samples. Raman and PVD data suggest that OM is located mostly in mesopores. Observed structural changes, silica–OM interactions and the hydrophobicity of the OM could explain the OM preservation in chert. Full Article text
pr ProLEED Studio: software for modeling low-energy electron diffraction patterns By journals.iucr.org Published On :: 2024-02-01 Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results. Full Article text
pr BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis By journals.iucr.org Published On :: 2024-02-01 BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program. Full Article text
pr A simple solution to the Rietveld refinement recipe problem By journals.iucr.org Published On :: 2024-02-01 Rietveld refinements are widely used for many purposes in the physical sciences. Conducting a Rietveld refinement typically requires expert input because correct results may require that parameters be added to the fit in the proper order. This order will depend on the nature of the data and the initial parameter values. A mechanism for computing the next parameter to add to the refinement is shown. The fitting function is evaluated with the current parameter value set and each parameter incremented and decremented by a small offset. This provides the partial derivatives with respect to each parameter, along with information to discriminate meaningful values from numerical computational errors. The implementation of this mechanism in the open-source GSAS-II program is discussed. This new method is discussed as an important step towards the development of automated Rietveld refinement technology. Full Article text
pr Time-resolved AUSAXS at BL28XU at SPring-8 By journals.iucr.org Published On :: 2024-02-01 An anomalous ultra-small-angle X-ray scattering (AUSAXS) system has been constructed at BL28XU at SPring-8 for time-resolved AUSAXS experiments. The path length was extended to 9.1 m and a minimum of q = 0.0069 nm−1 was attained. Scattering profiles at 0.0069 to 0.3 nm−1 were successfully obtained at 17 different X-ray energies in 30 s using the BL28XU optical setup, which enables adjustment of the energy of the incident X-rays quickly without the beam position drifting. Time-resolved measurements were conducted to investigate changes in the structure of zinc compounds in poly(styrene-ran-butadiene) rubber during vulcanization. A change in energy dependence of the scattered intensity with time was found during vulcanization, suggesting the transformation of zinc in the reaction. Full Article text
pr The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches By journals.iucr.org Published On :: 2024-02-12 Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code. Full Article text