pr YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport. Full Article
pr Human Neutrophils Produce Antifungal Extracellular Vesicles against Aspergillus fumigatus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus. IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities. Full Article
pr Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met. IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures. Full Article
pr A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry. IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97. Full Article
pr Processing, Export, and Identification of Novel Linear Peptides from Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence. IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus. Full Article
pr X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. Full Article
pr The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis. IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens. Full Article
pr Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C–DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation. IMPORTANCE Ehrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies. Full Article
pr APOBEC3C Tandem Domain Proteins Create Super Restriction Factors against HIV-1 By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H. These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a "super restriction factor" that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greater increase in the antiviral activity—recapitulating a similar evolution seen in A3F and A3G (double domain A3s that use only a single catalytically active deaminase domain). These A3C tandem domain proteins do not have an increase in mutational activity but instead inhibit formation of reverse transcription products, which correlates with their ability to form large higher-order complexes in cells. Finally, the A3C-A3C super restriction factor largely escaped antagonism by the HIV-1 viral protein Vif. IMPORTANCE As a part of the innate immune system, humans encode proteins that inhibit viruses such as HIV-1. These broadly acting antiviral proteins do not protect humans from viral infections because viruses encode proteins that antagonize the host antiviral proteins to evade the innate immune system. One such example of a host antiviral protein is APOBEC3C (A3C), which weakly inhibits HIV-1. Here, we show that we can improve the antiviral activity of A3C by duplicating the DNA sequence to create a synthetic tandem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV. Full Article
pr Optimization of an Experimental Vaccine To Prevent Escherichia coli Urinary Tract Infection By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship. IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli. Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract. Full Article
pr Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization. IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity. Full Article
pr Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity. IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair. Full Article
pr US programs field 11,000 requests daily on domestic violence By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 On a single day in September, nearly 43,000 adults and children in the U.S. were living in emergency housing because of domestic violence. Full Article
pr Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention. Full Article
pr Long-acting, Injectable Buprenorphine: Great Promise, but Significant Barriers to Use By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 To the Editor—A 30-day injectable form of buprenorphine branded as SublocadeTM (Buprenorphine XR SQ) was approved by the FDA in 2017. This medication is administered by a health care professional subcutaneously in the abdomen to treat opioid use disorder. This long-acting delivery system holds great promise for many patients who have barriers to taking daily transmucosal buprenorphine-containing medications such as those with poor adherence to a daily medication. It is beneficial for those who have difficulty safely storing their medications, including patients who have children in the home, unstable housing, or live with others who have a use disorder. This product is also an option for patients who prefer mono-product buprenorphine. As Buprenorphine XR SQ is administered directly by a health care professional, it does not contain the abuse-deterrent naloxone that some patients feel causes side effects. There are two ways to acquire Buprenorphine XR SQ: 1) order product from the distributor (buy and bill); or 2) dispensed from a specialty pharmacy for a specific patient (specialty pharmacy) [1]. For the buy and bill option, the health care setting must be certified through the Risk Evaluation and Mitigation Strategy (REMS) program and adhere to dispensing regulations [2]. We found this challenging to implement in the outpatient setting, thus we pursued the specialty pharmacy option. It ultimately took us nearly one year to complete the process. The following are the barriers we faced with our first attempt. As a controlled substance, the medication must be stored in a refrigerated lockbox. Before... Full Article
pr A Call to Action for North Carolina Legislators on Improving Access to Health By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 To better the health of all North Carolinians, policymakers must come together to improve access to care, expand broadband, and close the coverage gap. Full Article
pr It's Time for Private Sector Business to Come to the Health Care Table By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 With rising costs and below-average outcomes, North Carolina's health care value proposition is upside down. It's time for employers to lead transformative change. Full Article
pr North Carolina's Health Care Transformation to Value: Progress to Date and Further Steps Needed By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 North Carolina has received national attention for its approach to health care payment and delivery reform. Importantly, payment reform alone is not enough to drive systematic changes in care delivery. We highlight the importance of progress in four complementary areas to achieve system-wide payment and care reform. Full Article
pr A Cohort Comparison of Differences Between Regional and Buncombe County Patients of a Comprehensive Perinatal Substance Use Disorders Program in Western North Carolina By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 BACKGROUND Pregnant patients from rural counties of Western North Carolina face additional barriers when accessing comprehensive perinatal substance use disorders care at Project CARA as compared to patients local to the program in Buncombe County. We hypothesized regional patients would be less engaged in care. METHOD Using a retrospective cohort design, univariate analyses (2, t-test; P < .05) compared patients' characteristics, engagement in care, and delivery outcomes. Engagement in care, the primary outcome, was operationalized as: attendance at expected, program-specific prenatal and postpartum visits, utilization of in-house counseling, community-based and/or inpatient substance use disorders treatment, and maternal urine drug screen at delivery negative for illicit substances. RESULTS Regional patients (n = 324) were more likely than Buncombe County patients (n = 284) to have opioid [209 (64.5%) versus 162 (57.0%)] or amphetamine/methamphetamine use disorders (25 [7.7%] versus 13 [4.6%]), but less likely to have cannabis use (19 [5.9%] versus 38 [13.4%]; P = .009) and concurrent psychiatric disorders (214 [66.0%] versus 220 [77.5%]; P = .002). Engagement at postpartum visits was the significantly different outcome between patients (110/221 [49.8%] versus 146/226 [64.6%]; P = .002). LIMITATIONS Outcomes were available for 66.8% of regional and 79.6% of Buncombe County patients of one program in one predominately white, non-Hispanic region of the state. CONCLUSION Contrary to our hypothesis, regional and Buncombe County women engaged in prenatal care equally. However, a more formal transition into the postpartum period is needed, especially for regional women. A "hub-and-spokes" model that extends delivery of perinatal substance use disorders care into rural communities may be more effective for engagement retention. Full Article
pr Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition By ng.neurology.org Published On :: 2020-04-01T13:06:22-07:00 Objective To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia. Methods Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations. Results All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations—one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse. Conclusions This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition. Full Article
pr N-Terminal Acetylation Stabilizes SIGMA FACTOR BINDING PROTEIN1 Involved in Salicylic Acid-Primed Cell Death By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants. Full Article
pr WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d-CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD. Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants. Full Article
pr The Unfolded Protein Response Modulates a Phosphoinositide-Binding Protein through the IRE1-bZIP60 Pathway By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Phosphoinositides function as lipid signals in plant development and stress tolerance by binding with partner proteins. We previously reported that Arabidopsis (Arabidopsis thaliana) phosphoinositide-specific phospholipase C2 functions in the endoplasmic reticulum (ER) stress response. However, the underlying molecular mechanisms of how phosphoinositides act in the ER stress response remain elusive. Here, we report that a phosphoinositide-binding protein, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB), is involved in the ER stress tolerance. SVB contains a DUF538 domain with unknown function; orthologs are exclusively found in Viridiplantae. We established that SVB is ubiquitously expressed in plant tissues and is localized to the ER, Golgi apparatus, prevacuolar compartment, and plasma membrane. The knockout mutants of svb showed enhanced tolerance to ER stress, which was genetically complemented by transducing genomic SVB. SVB showed time-dependent induction after tunicamycin-induced ER stress, which depended on IRE1 and bZIP60 but not bZIP17 and bZIP28 in the unfolded protein response (UPR). A protein–lipid overlay assay showed specific binding of SVB to phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. SVB is therefore suggested to be the plant-specific phosphoinositide-binding protein whose expression is controlled by the UPR through the IRE1-bZIP60 pathway in Arabidopsis. Full Article
pr ONE-HELIX PROTEIN1 and 2 Form Heterodimers to Bind Chlorophyll in Photosystem II Biogenesis By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Members of the light-harvesting complex protein family participate in multiple processes connected with light sensing, light absorption, and pigment binding within the thylakoid membrane. Amino acid residues of the light-harvesting chlorophyll a/b-binding proteins involved in pigment binding have been precisely identified through x-ray crystallography experiments. In vitro pigment-binding studies have been performed with LIGHT-HARVESTING-LIKE3 proteins, and the pigment-binding ability of cyanobacterial high-light-inducible proteins has been studied in detail. However, analysis of pigment binding by plant high-light-inducible protein homologs, called ONE-HELIX PROTEINS (OHPs), is lacking. Here, we report on successful in vitro reconstitution of Arabidopsis (Arabidopsis thaliana) OHPs with chlorophylls and carotenoids and show that pigment binding depends on the formation of OHP1/OHP2 heterodimers. Pigment-binding capacity was completely lost in each of the OHPs when residues of the light-harvesting complex chlorophyll-binding motif required for chlorophyll binding were mutated. Moreover, the mutated OHP variants failed to rescue the respective knockout (T-DNA insertion) mutants, indicating that pigment-binding ability is essential for OHP function in vivo. The scaffold protein HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244) is tethered to the thylakoid membrane by the OHP heterodimer. We show that HCF244 stability depends on OHP heterodimer formation and introduce the concept of a functional unit consisting of OHP1, OHP2, and HCF244, in which each protein requires the others. Because of their pigment-binding capacity, we suggest that OHPs function in the delivery of pigments to the D1 subunit of PSII. Full Article
pr Responses of a Newly Evolved Auxotroph of Chlamydomonas to B12 Deprivation By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 The corrinoid B12 is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B12 dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non–B12-requiring alga Chlamydomonas reinhardtii in media supplemented with B12 generated a B12-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B12 auxotroph. Our analyses demonstrate that B12 deprivation of metE7 disrupts C1 metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B12 deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B12 limitation and an increase in B12 use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B12-producing bacterium. Therefore, although an early B12-dependent alga would likely be poorly adapted to coping with B12 deprivation, association with B12-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B12 limitation better. Full Article
pr Specific Lhc Proteins Are Bound to PSI or PSII Supercomplexes in the Diatom Thalassiosira pseudonana By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Despite the ecological relevance of diatoms, many aspects of their photosynthetic machinery remain poorly understood. Diatoms differ from the green lineage of oxygenic organisms by their photosynthetic pigments and light-harvesting complex (Lhc) proteins, the latter of which are also called fucoxanthin-chlorophyll proteins (FCP). These are composed of three groups of proteins: Lhcf as the main group, Lhcr that are PSI associated, and Lhcx that are involved in photoprotection. The FCP complexes are assembled in trimers and higher oligomers. Several studies have investigated the biochemical properties of purified FCP complexes, but limited knowledge is available about their interaction with the photosystem cores. In this study, isolation of stable supercomplexes from the centric diatom Thalassiosira pseudonana was achieved. To preserve in vivo structure, the separation of thylakoid complexes was performed by native PAGE and sucrose density centrifugation. Different subpopulations of PSI and PSII supercomplexes were isolated and their subunits identified. Analysis of Lhc antenna composition identified Lhc(s) specific for either PSI (Lhcr 1, 3, 4, 7, 10–14, and Lhcf10) or PSII (Lhcf 1–7, 11, and Lhcr2). Lhcx6_1 was reproducibly found in PSII supercomplexes, whereas its association with PSI was unclear. No evidence was found for the interaction between photosystems and higher oligomeric FCPs, comprising Lhcf8 as the main component. Although the subunit composition of the PSII supercomplexes in comparison with that of the trimeric FCP complexes indicated a close mutual association, the higher oligomeric pool is only weakly associated with the photosystems, albeit its abundance in the thylakoid membrane. Full Article
pr Sensory-Directed Genetic and Biochemical Characterization of Volatile Terpene Production in Kiwifruit By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Terpene volatiles are found in many important fruit crops, but their relationship to flavor is poorly understood. Here, we demonstrate using sensory descriptive and discriminant analysis that 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe 'Hort16A’ kiwifruit (Actinidia chinensis). Two quantitative trait loci (QTLs) for 1,8-cineole production were identified on linkage groups 27 and 29a in a segregating A. chinensis population, with the QTL on LG29a colocating with a complex cluster of putative terpene synthase (TPS)-encoding genes. Transient expression in Nicotiana benthamiana and analysis of recombinant proteins expressed in Escherichia coli showed four genes in the cluster (AcTPS1a–AcTPS1d) encoded functional TPS enzymes, which produced predominantly sabinene, 1,8-cineole, geraniol, and springene, respectively. The terpene profile produced by AcTPS1b closely resembled the terpenes detected in red-fleshed A. chinensis. AcTPS1b expression correlated with 1,8-cineole content in developing/ripening fruit and also showed a positive correlation with 1,8-cineole content in the mapping population, indicating the basis for segregation is an expression QTL. Transient overexpression of AcTPS1b in Actinidia eriantha fruit confirmed this gene produced 1,8-cineole in Actinidia. Structure-function analysis showed AcTPS1a and AcTPS1b are natural variants at key TPS catalytic site residues previously shown to change enzyme specificity in vitro. Together, our results indicate that AcTPS1b is a key gene for production of the signature flavor terpene 1,8-cineole in ripe kiwifruit. Using a sensory-directed strategy for compound identification provides a rational approach for applying marker-aided selection to improving flavor in kiwifruit as well as other fruits. Full Article
pr SUMOylation Stabilizes the Transcription Factor DREB2A to Improve Plant Thermotolerance By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Heat stress (HS) has serious effects on plant development, resulting in heavy agricultural losses. A critical transcription factor network is involved in plant adaptation to high temperature. DEHYDRATION RESPONSIVE ELEMENT-BINDING PROTEIN2A (DREB2A) is a key transcription factor that functions in plant thermotolerance. The DREB2A protein is unstable under normal temperature and is degraded by the 26S proteasome; however, the mechanism by which DREB2A protein stability dramatically increases in response to HS remains poorly understood. In this study, we found that the DREB2A protein of Arabidopsis (Arabidopsis thaliana) is stabilized under high temperature by the posttranslational modification SUMOylation. Biochemical data indicated that DREB2A is SUMOylated at K163, a conserved residue adjacent to the negative regulatory domain during HS. SUMOylation of DREB2A suppresses its interaction with BPM2, a ubiquitin ligase component, consequently increasing DREB2A protein stability under high temperature. In addition, analysis of plant heat tolerance and marker gene expression indicated that DREB2A SUMOylation is essential for its function in the HS response. Collectively, our data reveal a role for SUMOylation in the maintenance of DREB2A stability under high temperature, thus improving our understanding of the regulatory mechanisms underlying HS response in plant cells. Full Article
pr Starting Off Right: N-Terminal Acetylation Stabilizes an Immune-Activating Protein By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
pr Improving Crop Water-Use Efficiency Requires Optimizing the Circadian Clock By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
pr NIT Proteins Regulate Rice Root Plasticity in Response to Nitrate and Ammonium By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
pr Hot on the Trail of DREB2A Protein Stability By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
pr Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2. All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020. Univariate and multivariate logistic regression was performed to investigate the relationship between each variable and the risk of death of COVID-19 pneumonia patients. In total, 179 patients with COVID-19 pneumonia (97 male and 82 female) were included in the present prospective study, of whom 21 died. Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146-17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755-8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·μL–1 (OR 3.982, 95% CI 1.132-14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL–1 (OR 4.077, 95% CI 1.166-14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia. In a sex-, age- and comorbid illness-matched case–control study, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1 remained as predictors for high mortality from COVID-19 pneumonia. We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL–1 and cardiac troponin I ≥0.05 ng·mL–1. The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients. Full Article
pr The ERS approach to e-cigarettes is entirely rational By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The call for the European Respiratory Society (ERS) to change their e-cigarette and vaping policy, from honourable people with decades of experience fighting the evils of tobacco, is unfortunately misconceived. The three issues of greatest concern are acute toxicity, chronic toxicity and, most importantly, the effects on children and young people. The efficacy of e-cigarettes as an adjunct to smoking cessation are outwith the expertise of paediatric specialists, but we would ask for assurances that any benefits really do outweigh the risks to children and young people (below). Our comments on these key issues are as follows: Full Article
pr A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 We wish to thank J. Britton and co-workers for responding to our editorial and giving us an opportunity to clarify our position as well as correct a few misunderstandings. We definitely share the same goal, which is to relieve Europe and the rest of the world from the terrible results of the tobacco epidemic. We also do not "blankly oppose e-cigarettes"; however, we strongly advocate against a harm reduction strategy including e-cigarettes as well as heated tobacco products [1]. As clinicians we all see reluctant smokers where e-cigarettes can be tried as a last resort for getting off cigarette smoking, but that is of little relevance for a general harm reduction strategy. We also agree that the UK has achieved a lot in the area of smoking cessation but would argue that this has been achieved by impressive tobacco control, not by the use of e-cigarettes, and that a country such as Australia, which has banned nicotine-containing e-cigarettes, has achieved similar results. Full Article
pr A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The respiratory community is united in its desire to reduce and eliminate the harm caused by tobacco smoking, which is at present on course to kill one billion people in the 21st century. The stated policy of the European Respiratory Society is to strive "constantly to promote strong and evidence-based policies to reduce the burden of tobacco related diseases". In our view, the recent ERS Tobacco Control Committee statement on tobacco harm reduction [1], though well-intentioned, appears to be based on a number of false premises and draws its conclusions from a partial account of available data. It also presents a false dichotomy between the provision of "conventional" tobacco control and harm reduction approaches. We therefore respond, in turn, to the seven arguments presented against the adoption of harm reduction in the Committee's statement. Full Article
pr Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The treatment for obstructive sleep apnoea (OSA) with continuous positive airway pressure (CPAP) or mandibular advancement devices (MADs) is associated with blood pressure (BP) reduction; however, the overall effect is modest. The aim of this systematic review and meta-analysis of randomised controlled trials (RCTs) comparing the effect of such treatments on BP was to identify subgroups of patients who respond best to treatment. The article search was performed in three different databases with specific search terms and selection criteria. From 2289 articles, we included 68 RCTs that compared CPAP or MADs with either passive or active treatment. When all the studies were pooled together, CPAP and MADs were associated with a mean BP reduction of –2.09 (95% CI –2.78– –1.40) mmHg for systolic BP and –1.92 (95% CI –2.40– –1.43) mmHg for diastolic BP and –1.27 (95% CI –2.34– –0.20) mmHg for systolic BP and –1.11 (95% CI –1.82– –0.41) mmHg for diastolic BP, respectively. The subgroups of patients who showed a greater response were those aged <60 years (systolic BP –2.93 mmHg), with uncontrolled BP at baseline (systolic BP –4.14 mmHg) and with severe oxygen desaturations (minimum arterial oxygen saturation measured by pulse oximetry <77%) at baseline (24-h systolic BP –7.57 mmHg). Although this meta-analysis shows that the expected reduction of BP by CPAP/MADs is modest, it identifies specific characteristics that may predict a pronounced benefit from CPAP in terms of BP control. These findings should be interpreted with caution; however, they are particularly important in identifying potential phenotypes associated with BP reduction in patients treated for OSA. Full Article
pr Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 Background Chronic lung disease of prematurity (CLD), also called bronchopulmonary dysplasia, is a major consequence of preterm birth, but the role of the microbiome in its development remains unclear. Therefore, we assessed the progression of the bacterial community in ventilated preterm infants over time in the upper and lower airways, and assessed the gut–lung axis by comparing bacterial communities in the upper and lower airways with stool findings. Finally, we assessed whether the bacterial communities were associated with lung inflammation to suggest dysbiosis. Methods We serially sampled multiple anatomical sites including the upper airway (nasopharyngeal aspirates), lower airways (tracheal aspirate fluid and bronchoalveolar lavage fluid) and the gut (stool) of ventilated preterm-born infants. Bacterial DNA load was measured in all samples and sequenced using the V3–V4 region of the 16S rRNA gene. Results From 1102 (539 nasopharyngeal aspirates, 276 tracheal aspirate fluid, 89 bronchoalveolar lavage, 198 stool) samples from 55 preterm infants, 352 (32%) amplified suitably for 16S RNA gene sequencing. Bacterial load was low at birth and quickly increased with time, but was associated with predominant operational taxonomic units (OTUs) in all sample types. There was dissimilarity in bacterial communities between the upper and lower airways and the gut, with a separate dysbiotic inflammatory process occurring in the lower airways of infants. Individual OTUs were associated with increased inflammatory markers. Conclusions Taken together, these findings suggest that targeted treatment of the predominant organisms, including those not routinely treated, such as Ureaplasma spp., may decrease the development of CLD in preterm-born infants. Full Article
pr Forced oscillation technique for optimising PEEP in ventilated extremely preterm infants By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 Ventilatory settings are critical in mechanically ventilated extremely preterm newborn infants due to the risk of ventilation-induced lung injury (VILI) and the subsequent development of bronchopulmonary dysplasia (BPD) [1]. Positive end-expiratory pressure (PEEP) settings usually rely on blood gases, oxygen requirement, lung auscultation, evaluation of chest radiograph and assessment of the pressure/volume curves provided by ventilators. Studies of optimal PEEP settings in the surfactant-treated preterm infant in need of mechanical ventilation are limited and evidence-based clinical guidelines are sparse [2, 3]. A bedside method identifying the PEEP value that comprises maximal lung volume recruitment and minimising tissue overdistension could improve real-time optimisation of PEEP and potentially minimise the risk of VILI and BPD [4, 5]. Full Article
pr Immediate reactions with glatiramer acetate: Diagnosis of allergy and desensitization protocols By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Purpose of review Diverse adverse events have been associated with administration of glatiramer acetate (GA), mainly local reactions at the injection site. Other, less frequent generalized reactions include isolated postinjection reactions and anaphylaxis, which may lead to discontinuation of GA. Recent findings Close collaboration between the allergy and neurology departments is needed to study adverse reactions to GA. The allergy study should include a detailed history and skin prick and intradermal tests with GA and, if possible, determination of specific IgE levels. Furthermore, the implication of other drugs should be ruled out. Summary An accurate diagnosis of reactions to GA is essential if we are to confirm or rule out allergy to GA. When an allergy diagnosis is confirmed or firmly suspected based on clinical evidence, desensitization protocols are increasingly seen as safe methods for reintroduction of GA. Full Article
pr Apraxia of speech involves lesions of dorsal arcuate fasciculus and insula in patients with aphasia By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To determine the contributions of apraxia of speech (AOS) and anomia to conversational dysfluency. Methods In this observational study of 52 patients with chronic aphasia, 47 with concomitant AOS, fluency was quantified using correct information units per minute (CIUs/min) from propositional speech tasks. Videos of patients performing conversational, how-to and picture-description tasks, word and sentence repetition, and diadochokinetic tasks were used to diagnose AOS using the Apraxia of Speech Rating Scale (ASRS). Anomia was quantified by patients' scores on the 30 even-numbered items from the Boston Naming Test (BNT). Results Together, ASRS and BNT scores accounted for 51.4% of the total variance in CIUs/min; the ASRS score accounted for the majority of that variance. The BNT score was associated with lesions in the left superior temporal gyrus, left inferior frontal gyrus, and large parts of the insula. The global ASRS score was associated with lesions in the left dorsal arcuate fasciculus (AF), pre- and post-central gyri, and both banks of the central sulcus of the insula. The ASRS score for the primary distinguishing features of AOS (no overlap with features of aphasia) was associated with less AF and more insular involvement. Only ~27% of this apraxia-specific lesion overlapped with lesions associated with the BNT score. Lesions associated with AOS had minimal overlap with the frontal aslant tract (FAT) (<1%) or the extreme capsule fiber tract (1.4%). Finally, ASRS scores correlated significantly with damage to the insula but not to the AF, extreme capsule, or FAT. Conclusions Results are consistent with previous findings identifying lesions of the insula and AF in patients with AOS, damage to both of which may create dysfluency in patients with aphasia. Full Article
pr Worldwide survey of neurologists on approach to autoimmune encephalitis By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To explore practice differences in the diagnosis and management of autoimmune encephalitis (AE), which is complicated by issues with sensitivity/specificity of antibody testing, nonspecific MRI/EEG/CSF findings, and competing differential diagnoses. Methods We used a worldwide electronic survey with practice-related demographic questions and clinical questions about 2 cases: (1) a 20-year-old woman with a neuropsychiatric presentation strongly suspicious of AE and (2) a 40-year-old man with new temporal lobe seizures and cognitive impairment. Responses among different groups were compared using multivariable logistic regression. Results We received 1,333 responses from 94 countries; 12.0% identified as neuroimmunologists. Case 1: those treating >5 AE cases per year were more likely to send antibodies in both serum and CSF (adjusted odds ratio [aOR] vs 0 per year: 3.29, 95% CI 1.31–8.28, p = 0.011), pursue empiric immunotherapy (aOR: 2.42, 95% CI 1.33–4.40, p = 0.004), and continue immunotherapy despite no response and negative antibodies at 2 weeks (aOR: 1.65, 95% CI 1.02–2.69, p = 0.043). Case 2: neuroimmunologists were more likely to send antibodies in both serum and CSF (aOR: 1.80, 95% CI 1.12–2.90, p = 0.015). Those seeing >5 AE cases per year (aOR: 1.86, 95% CI 1.22–2.86, p = 0.004) were more likely to start immunotherapy without waiting for antibody results. Conclusions Our results highlight the heterogeneous management of AE. Neuroimmunologists and those treating more AE cases generally take a more proactive approach to testing and immunotherapy than peers. Results highlight the need for higher-quality cohorts and trials to guide empiric immunotherapy, and evidence-based guidelines aimed at both experts and nonexperts. Because the average AE patient is unlikely to be first seen by a neuroimmunologist, ensuring greater uniformity in our approach to suspected cases is essential to ensure that patients are appropriately managed. Full Article
pr Progressive supranuclear palsy and pawpaw By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Consider consumption of annonacin-containing plant products, including pawpaw, as a possible environmental risk factor for atypical parkinsonism. Full Article
pr Optimizing Resources in Childrens Surgical Care: An Update on the American College of Surgeons' Verification Program By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Surgical procedures are performed in the United States in a wide variety of clinical settings and with variation in clinical outcomes. In May 2012, the Task Force for Children’s Surgical Care, an ad hoc multidisciplinary group comprising physicians representing specialties relevant to pediatric perioperative care, was convened to generate recommendations to optimize the delivery of children’s surgical care. This group generated a white paper detailing the consensus opinions of the involved experts. Following these initial recommendations, the American College of Surgeons (ACS), Children’s Hospital Association, and Task Force for Children’s Surgical Care, with input from all related perioperative specialties, developed and published specific and detailed resource and quality standards designed to improve children’s surgical care (https://www.facs.org/quality-programs/childrens-surgery/childrens-surgery-verification). In 2015, with the endorsement of the American Academy of Pediatrics (https://pediatrics.aappublications.org/content/135/6/e1538), the ACS established a pilot verification program. In January 2017, after completion of the pilot program, the ACS Children’s Surgery Verification Quality Improvement Program was officially launched. Verified sites are listed on the program Web site at https://www.facs.org/quality-programs/childrens-surgery/childrens-surgery-verification/centers, and more than 150 are interested in verification. This report provides an update on the ACS Children’s Surgery Verification Quality Improvement Program as it continues to evolve. Full Article
pr Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Nickel is a ubiquitous metal added to jewelry and metallic substances for its hardening properties and because it is inexpensive. Estimates suggest that at least 1.1 million children in the United States are sensitized to nickel. Nickel allergic contact dermatitis (Ni-ACD) is the most common cutaneous delayed-type hypersensitivity reaction worldwide. The incidence among children tested has almost quadrupled over the past 3 decades. The associated morbidities include itch, discomfort, school absence, and reduced quality of life. In adulthood, individuals with Ni-ACD may have severe disabling hand eczema. The increasing rate of Ni-ACD in children has been postulated to result from early and frequent exposure to metals with high amounts of nickel release (eg, as occurs with ear piercing or with products used daily in childhood such as toys, belt buckles, and electronics). To reduce exposure to metal sources with high nickel release by prolonged and direct contact with human skin, Denmark and the European Union legislated a directive several decades ago with the goal of reducing high nickel release and the incidence of Ni-ACD. Since then, there has been a global reduction in incidence of Ni-ACD in population-based studies of adults and studies of children and young adults being tested for allergic contact dermatitis. These data point to nickel exposure as a trigger for elicitation of Ni-ACD and, further, provide evidence that legislation can have a favorable effect on the economic and medical health of a population. This policy statement reviews the epidemiology, history, and appearances of Ni-ACD. Examples of sources of high nickel release are discussed to highlight how difficult it is to avoid this metal in modern daily lives. Treatments are outlined, and avoidance strategies are presented. Long-term epidemiological interventions are addressed. Advocacy for smarter nickel use is reviewed. The American Academy of Pediatrics supports US legislation that advances safety standards (as modeled by the European Union) that protect children from early and prolonged skin exposure to high–nickel-releasing items. Our final aim for this article is to aid the pediatric community in developing nickel-avoidance strategies on both individual and global levels. Full Article
pr Emerging Issues in Male Adolescent Sexual and Reproductive Health Care By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Pediatricians are encouraged to address male adolescent sexual and reproductive health on a regular basis, including taking a sexual history, discussing healthy sexuality, performing an appropriate physical examination, providing patient-centered and age-appropriate anticipatory guidance, and administering appropriate vaccinations. These services can be provided to male adolescent patients in a confidential and culturally appropriate manner, can promote healthy sexual relationships and responsibility, can and involve parents in age-appropriate discussions about sexual health. Full Article
pr Providing Care for Infants Born at Home By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 The American Academy of Pediatrics (AAP) believes that current data show that hospitals and accredited birth centers are the safest settings for birth in the United States. The AAP does not recommend planned home birth, which has been reported to be associated with a twofold to threefold increase in infant mortality in the United States. The AAP recognizes that women may choose to plan a home birth. This statement is intended to help pediatricians provide constructive, informed counsel to women considering home birth while retaining their role as child advocates and to summarize appropriate care for newborn infants born at home that is consistent with care provided for infants born in a medical care facility. Regardless of the circumstances of his or her birth, including location, every newborn infant deserves health care consistent with that highlighted in this statement, which is more completely described in other publications from the AAP, including Guidelines for Perinatal Care and the Textbook of Neonatal Resuscitation. All health care clinicians and institutions should promote communications and understanding on the basis of professional interaction and mutual respect. Full Article
pr Early and Often: The Need for Comprehensive Discussion of Treatment-Induced Cancer Late Effects By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
pr Providing the Evidence for Managing Depression in Pregnancy By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article