zo

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.




zo

2-Cyano-2-iso­nitro­soacetamide–3,4-di­methylpyrazole (1/1): a co-crystal of two mol­ecules with agrochemical activities

In the structure of the title co-crystal, C3H3N3O2·C5H8N2, the components are linked by a set of directional O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds to yield a two-dimensional mono-periodic arrangement. The structure propagates in the third dimension by extensive π–π stacking inter­actions of nearly parallel mol­ecules of the two components, following an alternating sequence. The primary structure-defining inter­action is very strong oxime-OH donor to pyrazole-N acceptor hydrogen bond [O⋯N = 2.587 (2) Å], while the significance of weaker hydrogen bonds and π–π stacking inter­actions is comparable. The distinct structural roles of different kinds of inter­actions agree with the results of a Hirshfeld surface analysis and calculated inter­action energies. The title compound provides insights into co-crystals of active agrochemical mol­ecules and features the rational integration in one structure of a fungicide, C3H3N3O2, and a second active component, C5H8N2, known for alleviation the toxic effects of fungicides on plants. The material appears to be well suited for practical uses, being non-volatile, air-stable, water-soluble, but neither hygroscopic nor efflorescent.




zo

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyl­diazen-1-yl)phen­yl]methyl­idene}amino)penta­noate-κ3O,N,O']copper(II)

The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from l-leucine and azo­benzene-salicyl­aldehyde. One imidazole mol­ecule is additionally coordinated to the copper(II) ion in the equatorial plane. The crystal structure features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.




zo

Crystal structure of (E)-N-(4-bromo­phen­yl)-2-cyano-3-[3-(2-methyl­prop­yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide

The structure of the title compound, C23H21BrN4O, contains two independent mol­ecules connected by hydrogen bonds of the type Namide—H⋯N≡C to form a dimer. The configuration at the exocyclic C=C double bond is E. The mol­ecules are roughly planar except for the isopropyl groups. There are minor differences in the orientations of these groups and the phenyl rings at N1. The dimers are further linked by ‘weak’ hydrogen bonds, two each of the types Hphen­yl⋯O=C (H⋯O = 2.50, 2.51 Å) and Hphen­yl⋯Br (H⋯Br = 2.89, 2.91 Å), to form ribbons parallel to the b and c axes, respectively. The studied crystal was a non-merohedral twin.




zo

Crystal structure and Hirshfeld surface analysis of (Z)-4-({[2-(benzo[b]thio­phen-3-yl)cyclo­pent-1-en-1-yl]meth­yl}(phen­yl)amino)-4-oxobut-2-enoic acid

In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons along the a axis. Inter­molecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0overline{1}1) plane. The mol­ecular packing is strengthened by van der Waals inter­actions between the layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%.




zo

Structure of the five-coordinate CoII complex (1H-imidazole){tris­[(1-benzyl­triazol-4-yl-κN3)meth­yl]amine-κN}cobalt(II) bis­(tetra­fluoro­borate)

The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris­[(1-benzyl­triazol-4-yl)meth­yl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetra­fluoro­borate anions provide charge balance in the crystal.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of 2-[(4-hy­droxy­phen­yl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one

In the title mol­ecule, C21H17N3O2, the five-membered ring is slightly ruffled and dihedral angles between the pendant six-membered rings and the central, five-membered ring vary between 50.78 (4) and 86.78 (10)°. The exocyclic nitro­gen lone pair is involved in conjugated π bonding to the five-membered ring. In the crystal, a layered structure is generated by O—H⋯N and N—H⋯O hydrogen bonds plus C—H⋯π(ring) and weak π-stacking inter­actions.




zo

Crystal structure of bis­{2-[5-(3,4,5-tri­meth­oxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis­(tri­fluoro­acetate) tri­fluoro­acetic acid disolvate

The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic space group Poverline{1} with the asymmetric unit containing half the cation (PdII site symmetry Ci), one tri­fluoro­actetate anion and one co-crystallized tri­fluoro­acetic acid mol­ecule. Two neutral chelating 2-[5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intra­molecular C—H⋯N hydrogen bonds. In the crystal, the π–π-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the tri­fluoro­acetic acid–tri­fluoro­acetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding inter­actions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both tri­fluoro­acetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively.




zo

Crystal structure, Hirshfeld surface analysis, calculations of inter­molecular inter­action energies and energy frameworks and the DFT-optimized mol­ecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(prop-1-en-2-yl)-1H-b

The benzimidazole entity of the title mol­ecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual mol­ecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) inter­actions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of (3Z)-4-[(4-amino-1,2,5-oxa­diazol-3-yl)amino]-3-bromo-1,1,1-tri­fluoro­but-3-en-2-one

In the title compound, C6H4BrF3N4O2, the oxa­diazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, mol­ecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10overline{4}) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π inter­actions connect the mol­ecules, forming a three-dimensional network. The F atoms of the tri­fluoro­methyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The inter­molecular inter­actions in the crystal structure were investigated and qu­anti­fied using Hirshfeld surface analysis.




zo

Crystal structure of a three-coordinate lithium complex with monodentate phenyl­oxazoline and hexa­methyl­disilyl­amide ligands

The reaction of lithium hexa­methyl­disilyl­amide, [Li{N(Si(CH3)3)2}] (LiHMDS), with 4,4-dimethyl-2-phenyl-2-oxazoline (Phox, C11H13NO) in hexane produced colourless crystals of bis­(4,4-dimethyl-2-phenyl-2-oxazoline-κN)(hexa­methyl­disilyl­amido-κN)lithium, [Li(C6H18NSi2)(C11H13NO)2] or [Li{N(Si(CH3)3)2}(Phox)2] in high yield (89%). Despite the 1:1 proportion of the starting materials in the reaction mixture, the product formed with a 1:2 amide:oxazoline ratio. In the unit cell of the C2/c space group, the neutral mol­ecules lie on twofold rotation axes coinciding with the Li—N(amide) bonds. The lithium(I) centre adopts a trigonal–planar coordination geometry with three nitro­gen donor atoms, one from the HMDS anion and two from the oxazolines. All ligands are monodentate. In the phenyl­oxazoline units, the dihedral angle defined by the five-membered heterocyclic rings is 35.81 (5)°, while the phenyl substituents are approximately face-to-face, separated by 3.908 (5) Å. In the amide, the methyl groups assume a nearly eclipsed arrangement to minimize steric repulsion with the analogous substituents on the oxazoline rings. The non-covalent inter­actions in the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2] were assessed by Hirshfeld surface analysis and fingerprint plots. This new compound is attractive for catalysis due to its unique structural features.




zo

Synthesis and crystal structure of 2,9-di­amino-5,6,11,12-tetra­hydro­dibenzo[a,e]cyclo­octene

The cis- form of di­amino­dibenzo­cyclo­octane (DADBCO, C16H18N2) is of inter­est as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein.




zo

Crystal structure of 1-(1,3-benzo­thia­zol-2-yl)-3-(4-bromo­benzo­yl)thio­urea

The chemical reaction of 4-bromo­benzoyl­chloride and 2-amino­thia­zole in the presence of potassium thio­cyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromo­benzamido and 2-benzo­thia­zolyl moieties connected by a thio­urea group. The 4-bromo­benzamido and 2-benzo­thia­zolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N—C bond. The dihedral angle between the mean planes of the 4-bromo­phenyl and the 2-benzo­thia­zolyl units is 10.45 (11)°. The thio­urea moiety, —C—NH—C(=S) —NH— fragment forms a dihedral angle of 8.64 (12)° with the 4-bromo­phenyl ring and is almost coplanar with the 2-benzo­thia­zolyl moiety, with a dihedral angle of 1.94 (11)°. The mol­ecular structure is stabilized by intra­molecular N—H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent mol­ecules inter­act via inter­molecular hydrogen bonds of type C—H⋯N, C—H⋯S and N—H⋯S, resulting in mol­ecular layers parallel to the ac plane.




zo

Structural characterization of the supra­molecular complex between a tetra­quinoxaline-based cavitand and benzo­nitrile

The structural characterization is reported of the supra­molecular complex between the tetra­quinoxaline-based cavitand 2,8,14,20-tetra­hexyl-6,10:12,16:18,22:24,4-O,O'-tetra­kis­(quinoxaline-2,3-di­yl)calix[4]resorcinarene (QxCav) with benzo­nitrile. The complex, of general formula C84H80N8O8·2C7H5N, crystallizes in the space group Poverline{1} with two independent mol­ecules in the asymmetric unit, displaying very similar geometrical parameters. For each complex, one of the benzo­nitrile mol­ecules is engulfed inside the cavity, while the other is located among the alkyl legs at the lower rim. The host and the guests mainly inter­act through weak C—H⋯π, C—H⋯N and dispersion inter­actions. These inter­actions help to consolidate the formation of supra­molecular chains running along the crystallographic b-axis direction.




zo

Synthesis and crystal structure of bis­(2-aminobenzimidazolium) catena-[metavanadate(V)]

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.




zo

Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter­molecular inter­action energies and energy frameworks of 1-benzyl-4-(methyl­sulfan­yl)-3a,7a-di­hydro-1H-pyrazolo­[3,4-d]pyrimidine

The pyrazolo­pyrimidine moiety in the title mol­ecule, C13H12N4S, is planar with the methyl­sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol­ecule an approximate L shape. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π inter­actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.




zo

Chiral versus achiral crystal structures of 4-benzyl-1H-pyrazole and its 3,5-di­amino derivative

The crystal structures of 4-benzyl-1H-pyrazole (C10H10N2, 1) and 3,5-di­amino-4-benzyl-1H-pyrazole (C10H12N4, 2) were measured at 150 K. Although its different conformers and atropenanti­omers easily inter­convert in solution by annular tautomerism and/or rotation of the benzyl substituent around the C(pyrazole)—C(CH2) single bond (as revealed by 1H NMR spectroscopy), 1 crystallizes in the non-centrosymmetric space group P21. Within its crystal structure, the pyrazole and phenyl aromatic moieties are organized into alternating bilayers. Both pyrazole and phenyl layers consist of aromatic rings stacked into columns in two orthogonal directions. Within the pyrazole layer, the pyrazole rings form parallel catemers by N—H⋯N hydrogen bonding. Compound 2 adopts a similar bilayer structure, albeit in the centrosymmetric space group P21/c, with pyrazole N—H protons as donors in N—H⋯π hydrogen bonds with neighboring pyrazole rings, and NH2 protons as donors in N—H⋯N hydrogen bonds with adjacent pyrazoles and other NH2 moieties. The crystal structures and supra­molecular features of 1 and 2 are contrasted with the two known structures of their analogs, 3,5-dimethyl-4-benzyl-1H-pyrazole and 3,5-diphenyl-4-benzyl-1H-pyrazole.




zo

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O')thorate(IV)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.




zo

Crystal structure of polymeric bis­(3-amino-1H-pyrazole)­cadmium diiodide

The reaction of cadmium iodide with 3-amino­pyrazole (3-apz) in ethano­lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di­iodido­cadmium(II)]-bis­(μ-3-amino-1H-pyrazole)-κ2N2:N3;κ2N3:N2], [CdI2(C3H5N3)2]n or [CdI2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, an iodide anion and a 3-apz mol­ecule. The Cd2+ cations are coordinated by two iodide anions and two 3-apz ligands, generating trans-CdN4I2 octa­hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol­ecules and iodide anions of neighboring chains are linked through inter­chain hydrogen bonds into a di-periodic network. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu­anti­tative contributions of the weak inter­molecular contacts.




zo

Crystal structure of catena-poly[[methanoldioxidouranium(VI)]-μ-2-[5-(2-oxidophen­yl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O']

In the title complex, [U(C10H7N3O3)O2(CH3OH)]n, the UVI cation has a typical penta­gonal–bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl­ate O atom of the symmetry-related ligand and the O atom of the methanol mol­ecule [U—N/Oeq 2.256 (4)–2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Å for one of the O atoms. The benzene and triazole rings of the tetra­dentate chelating–bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl­ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O—H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N—H⋯N/O hydrogen bonding and π–π inter­actions. Further weak C—H⋯O contacts consolidate the three-dimensional supra­molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.




zo

Crystal and mol­ecular structure of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate)

The aryl diester compound, 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), C21H12Br4O4, was synthesized by esterification of methyl hydro­quinone with 3,5-di­bromo­benzoic acid. A crystalline sample was obtained by cooling a sample of the melt (m.p. = 502 K/DSC) to room temperature. The mol­ecular structure consists of a central benzene ring with anti-3,5-di­bromo­benzoate groups symmetrically attached at the 1 and 4 positions and a methyl group attached at the 2 position of the central ring. In the crystal structure (space group Poverline{1}), mol­ecules of the title aryl diester are located on inversion centers imposing disorder of the methyl group and H atom across the central benzene ring. The crystal structure is consolidated by a network of C—H⋯Br hydrogen bonds in addition to weaker and offset π–π inter­actions involving the central benzene rings as well as the rings of the attached 3,5-di­bromo­benzoate groups.




zo

Synthesis, mol­ecular and crystal structures of 4-amino-3,5-di­fluoro­benzo­nitrile, ethyl 4-amino-3,5-di­fluoro­benzoate, and diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate)

The crystal structures of two inter­mediates, 4-amino-3,5-di­fluoro­benzo­nitrile, C7H4F2N2 (I), and ethyl 4-amino-3,5-di­fluoro­benzoate, C9H9F2NO2 (II), along with a visible-light-responsive azo­benzene derivative, diethyl 4,4'-(diazene-1,2-di­yl)bis­(3,5-di­fluoro­benzoate), C18H14F4N2O4 (III), obtained by four-step synthetic procedure, were studied using single-crystal X-ray diffraction. The mol­ecules of I and II demonstrate the quinoid character of phenyl rings accompanied by the distortion of bond angles related to the presence of fluorine substituents in the 3 and 5 (ortho) positions. In the crystals of I and II, the mol­ecules are connected by N—H⋯N, N—H⋯F and N—H⋯O hydrogen bonds, C—H⋯F short contacts, and π-stacking inter­actions. In crystal of III, only stacking inter­actions between the mol­ecules are found.




zo

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




zo

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].




zo

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




zo

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




zo

Synthesis, characterization, and crystal structure of hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate

The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl­imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




zo

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




zo

Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-di­amine monohydrate

The title compound, a hydrate of 3,5-di­amino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water mol­ecule in the asymmetric unit. The water mol­ecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the inter­molecular inter­actions originate from H⋯O contacts derived from the incorporation of the water mol­ecules.




zo

Structure of 2,3,5-tri­phenyl­tetra­zol-3-ium chloride hemi­penta­hydrate

The title hydrated mol­ecular salt, C19H15N4+·Cl−·2.5H2O, has two tri­phenyl­tetra­zolium cations, two chloride anions and five water mol­ecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water mol­ecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water mol­ecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π inter­action and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed.




zo

Triclinic polymorph of bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­chloridocadmium(II)

The crystal structure of the title organic–inorganic hybrid salt, (C13H12N3)2[CdCl4], (I), has been reported with four mol­ecules in the asymmetric unit in a monoclinic cell [Vassilyeva et al. (2021). RSC Advances, 11, 7713–7722]. While using two different aldehydes in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in space group P1 and a unit cell with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetra­hedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetra­chloro­cadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state.




zo

Synthesis, crystal structure and absolute configuration of (3aS,4R,5S,7aR)-7-(but-3-en-1-yn-1-yl)-2,2-dimethyl-3a,4,5,7a-tetra­hydro-2H-1,3-benzodioxole-4,5-diol

The absolute configuration of the title compound, C13H16O4, determined as 1S,2R,3S,4R based on the synthetic pathway, was confirmed by single-crystal X-ray diffraction. The mol­ecule is a relevant inter­mediary for the synthesis of speciosins, ep­oxy­quinoides or their analogues. The mol­ecule contains fused five- and six-membered rings with two free hydroxyl groups and two protected as an iso­propyl­idenedioxo ring. The packing is directed by hydrogen bonds that define double planes of mol­ecules laying along the ab plane and van der Waals inter­actions between aliphatic chains that point outwards of the planes.




zo

Crystal structure of catena-poly[[di­aqua­di­imida­zole­cobalt(II)]-μ2-2,3,5,6-tetra­bromo­benzene-1,4-di­carboxyl­ato]

The asymmetric unit of the title compound, [Co(C8Br4O4)(C3H4N2)2(H2O)2]n or [Co(Br4bdc)(im)2(H2O)2]n, comprises half of CoII ion, tetra­bromo­benzene­dicarboxylate (Br4bdc2−), imidazole (im) and a water mol­ecule. The CoII ion exhibits a six-coordinated octa­hedral geometry with two oxygen atoms of the Br4bdc2− ligand, two oxygen atoms of the water mol­ecules, and two nitro­gen atoms of the im ligands. The carboxyl­ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the Br4bdc2− ligand, forming a one-dimensional chain. The carboxyl­ate group acts as an inter­molecular hydrogen-bond acceptor toward the im ligand and a coordinated water mol­ecule. The chains are connected by inter­chain N—H⋯O(carboxyl­ate) and O—H(water)⋯O(carboxyl­ate) hydrogen-bonding inter­actions and are not arranged in parallel but cross each other via inter­chain hydrogen bonding and π–π inter­actions, yielding a three-dimensional network.




zo

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two π–π stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.




zo

Synthesis and crystal structure of 1,3,5-tris­[(1H-benzotriazol-1-yl)meth­yl]-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C33H33N9, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The three benzotriazolyl moieties are inclined at angles of 88.3 (1), 85.7 (1) and 82.1 (1)° with respect to the mean plane of the benzene ring. In the crystal, only weak mol­ecular cross-linking involving C—H⋯N hydrogen bonds is observed.




zo

Crystal structure of bis­{5-(4-chloro­phen­yl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate

The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol mol­ecules. In the complex, the two tridentate 2-(3-(4-chloro­phen­yl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo­octa­hedral coordination sphere. Neighbouring tapered mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into monoperiodic chains, which are further linked through weak C—H⋯N/C inter­actions into diperiodic layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.




zo

Crystal structure and Hirshfeld surface analysis of bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI)

A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis­(benzoyl­acetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is penta­gonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Inter­actions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing.




zo

An electropneumatic cleaning device for piezo-actuator-driven picolitre-droplet dispensers

Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows.




zo

Observations of specimen morphology effects on near-zone-axis convergent-beam electron diffraction patterns

This work presents observations of symmetry breakages in the intensity distributions of near-zone-axis convergent-beam electron diffraction (CBED) patterns that can only be explained by the symmetry of the specimen and not the symmetry of the unit cell describing the atomic structure of the material. The specimen is an aluminium–copper–tin alloy containing voids many tens of nanometres in size within continuous single crystals of the aluminium host matrix. Several CBED patterns where the incident beam enters and exits parallel void facets without the incident beam being perpendicular to these facets are examined. The symmetries in their intensity distributions are explained by the specimen morphology alone using a geometric argument based on the multislice theory. This work shows that it is possible to deduce nanoscale morphological information about the specimen in the direction of the electron beam – the elusive third dimension in transmission electron microscopy – from the inspection of CBED patterns.




zo

A simple protocol for determining the zone axis direction from selected-area electron diffraction spot patterns of cubic materials

Using the well known Rn ratio method, a protocol has been elaborated for determining the lattice direction for the 15 most common cubic zone axis spot patterns. The method makes use of the lengths of the three shortest reciprocal-lattice vectors in each pattern and the angles between them. No prior pattern calibration is required for the method to work, as the Rn ratio method is based entirely on geometric relationships. In the first step the pattern is assigned to one of three possible pattern types according to the angles that are measured between the three reciprocal-lattice vectors. The lattice direction [uvw] and possible Bravais type(s) and Laue indices of the corresponding reflections can then be determined by using lookup tables. In addition to determining the lattice direction, this simple geometric analysis allows one to distinguish between the P, I and F Bravais lattices for spot patterns aligned along [013], [112], [114] and [233]. Moreover, the F lattice can always be uniquely identified from the [011] and [123] patterns.




zo

A study of structural effects on the focusing and imaging performance of hard X-rays with 20–30 nm zone plates

Hard X-ray microscopes with 20–30 nm spatial resolution ranges are an advanced tool for the inspection of materials at the nanoscale. However, the limited efficiency of the focusing optics, for example, a Fresnel zone plate (ZP) lens, can significantly reduce the power of a nanoprobe. Despite several reports on ZP lenses that focus hard X-rays with 20 nm resolution – mainly constructed by zone-doubling techniques – a systematic investigation into the limiting factors has not been reported. We report the structural effects on the focusing and imaging efficiency of 20–30 nm-resolution ZPs, employing a modified beam-propagation method. The zone width and the duty cycle (zone width/ring pitch) were optimized to achieve maximum efficiency, and a comparative analysis of the zone materials was conducted. The optimized zone structures were used in the fabrication of Pt-hydrogen silsesquioxane (HSQ) ZPs. The highest focusing efficiency of the Pt-HSQ-ZP with a resolution of 30 nm was 10% at 7 keV and >5% in the range 6–10 keV, whereas the highest efficiency of the Pt-HSQ-ZP with a resolution of 20 nm was realized at 7 keV with an efficiency of 7.6%. Optical characterization conducted at X-ray beamlines demonstrated significant enhancement of the focusing and imaging efficiency in a broader range of hard X-rays from 5 keV to 10 keV, demonstrating the potential application in hard X-ray focusing and imaging.




zo

FilmWeek: ‘F9:The Fast Saga,’ ‘Summer Of Soul,’ ‘Zola’ And More

Sung Kang (L) and Vin Diesel (R) in the film “F9: The Fast Saga"; Credit: Giles Keyte/Universal Pictures

FilmWeek Marquee

Larry Mantle and KPCC film critics Amy Nicholson and Christy Lemire review this weekend’s new movie releases on streaming and on-demand platforms.

This content is from Southern California Public Radio. View the original story at SCPR.org.




zo

Genome introduces SEPA Instant Transfers for Eurozone payments

Lithuania-based Genome has launched SEPA Instant Transfers,...