cle Can Ukraine build a nuclear bomb in a few weeks? By english.pravda.ru Published On :: Fri, 18 Oct 2024 15:09:00 +0300 Ukraine is considering a possibility of creating nuclear weapons, Bild said citing a high-ranking Ukrainian official. The republic has the resources necessary to restore its nuclear arsenal, the official claimed. A high-ranking Ukrainian official told Bild that Kyiv has the materials and knowledge to build nuclear weapons. It would take Ukraine "only a few weeks" to make an A-bomb if relevant agreements could be reached quickly. Not too long ago, Ukrainian President Volodymyr Zelensky told former US President Donald Trump that Ukraine should have nuclear weapons or become a NATO member. Full Article World
cle Moment of Israel's strike on Iran getting closer. Jericho II nuclear missiles ready By english.pravda.ru Published On :: Fri, 25 Oct 2024 18:09:00 +0300 It appears that the moment when Israel is going to strike Iran is getting closer. Ten US Air Force KC-135R tanker aircraft are heading towards the Middle East with at least 20 F-16 fighters escorting them. French all purpose landing ship L9013 Mistral arrived in Larnaca, Cyprus. US has transferred new combat aircraft to its base in Qatar. A curious event was noticed in the sky over Cambridge: three US tanker aircraft and a C-5M Super Galaxy military transport aircraft were spotted airborne. According to The New York Times, Iranian leader Ali Khamenei ordered the Armed Forces of the Islamic Republic to prepare for a state of war with Israel. Khamenei instructed the army to present several plans of response to Israel's imminent attack on Iran, depending on the scale of the strike. Full Article World
cle Nuclear-powered Admiral Nakhimov missile cruiser to go to sea in late 2024 By english.pravda.ru Published On :: Tue, 13 Aug 2024 14:47:00 +0300 The heavy nuclear-powered missile cruiser Admiral Nakhimov, which is undergoing repairs and extensive modernization at Sevmash shipyard, will begin trials in the upcoming autumn of 2024, the Commander-in-Chief of the Russian Navy, Admiral Alexander Moiseyev told TASS. "The Admiral Nakhimov is to go to sea for factory sea trials in the autumn of 2024. She is to be transferred to the Navy in 2025," he said during the Army-2024 Forum. Admiral Nakhimov of Project 1144.2M has been under repair since 1999, although the works started 2013. During the modernization, the cruiser will receive a universal shipborne firing system 3S14 to carry Kalibr, Onyx, or Zircon cruise missiles. Full Article Russia
cle Putin: Russia is changing nuclear doctrine to make everything clear By english.pravda.ru Published On :: Wed, 25 Sep 2024 20:30:00 +0300 Russian President Vladimir Putin proposed making a number of changes to conditions for the use of nuclear weapons, the Kremlin said. In particular, "Fundamentals of State Policy in the Field of Nuclear Deterrence" expands the category of states and military alliances against which acts of nuclear deterrence will be carried out. "In the updated version of the document, aggression against Russia by any non-nuclear state, but with the participation or support of a nuclear state, is proposed to be considered as their joint attack on the Russian Federation," Putin said at a meeting of the Permanent Conference of the Security Council on Nuclear Deterrence. Full Article Russia
cle Russia puts nuclear triad to the test By english.pravda.ru Published On :: Tue, 29 Oct 2024 19:01:00 +0300 Russian Defence Minister Andrei Belousov informed President Vladimir Putin about practicing nuclear strike tasks. During the meeting with the top leadership of the country, the Defence Minister gave the floor to Chief of the General Staff Valery Gerasimov. Gerasimov serves as the commander of the Russian Armed Forces in the zone of the special military operation. In his report to President Vladimir Putin, Gerasimov said that a strategic missile submarine, a land-based mobile Yars missile system, as well as Tu-95MS strategic missile carriers were involved in the drills. Full Article Russia
cle Putin takes part in ceremony to launch new nuclear icebreaker By english.pravda.ru Published On :: Wed, 06 Nov 2024 17:18:00 +0300 Russian President Vladimir Putin took part in the ceremony to launch the Chukotka nuclear icebreaker built at the Baltic Shipyard in St. Petersburg. Putin participated from Moscow via video link. The footage shows the head of state giving the command "Launch cleared!" A bottle of champagne was traditionally smashed against the side of the vessel before launch. Three best workers of the Baltic Shipyard cut the detent that secured the ship to the land. The multi-ton vessel then slowly slid along the rails into the water. Full Article Russia
cle Cleveron’s newest solution enables DIY and home furnishing retailers to automate their click-and-collect processes By www.retailtechnologyreview.com Published On :: Cleveron, a click-and-collect automation solutions innovator, is proud to launch a modular outdoor parcel locker, Cleveron 355. The newest solution is specially engineered for DIY and home furnishing retailers, enabling the automated handover of extra-large items. Full Article Data Capture Retail Supply Chain EPoS Systems
cle 'Inside the Box' Look at Excited Hadrons Could Help Solve Mystery of Particle X(3872) By www.newswise.com Published On :: Tue, 12 Nov 2024 15:15:32 EST So-called "XYZ states" defy the standard picture of particle behavior and have given rise to several attempts to understand their nature. But researchers with the Center for Theoretical and Computational Physics (Theory Center) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility say there is a simpler way to explain the abundance of exotic charmonium particles using lattice quantum chromodynamics. Full Article
cle N. Korean Leader's Sister Declares to Continue Bolstering Nuclear Capabilities By world.kbs.co.kr Published On :: Sat, 02 Nov 2024 14:06:21 +0900 [Inter-Korea] : Kim Yo-jong, the powerful sister of North Korean leader Kim Jong-un, declared that the regime will continue to bolster its nuclear capabilities in protest of criticisms from the international community. In a statement carried by the North's Korean Central News Agency(KCNA) on Saturday, Kim ...[more...] Full Article Inter-Korea
cle Operator of Japan’s Crippled Fukushima Nuclear Plant Retrieves Sample of Fuel Debris By world.kbs.co.kr Published On :: Thu, 07 Nov 2024 15:32:27 +0900 [International] : The operator of Japan’s Fukushima Daiichi nuclear power plant said it retrieved a small amount of melted fuel from one of the reactors for the first time since a major earthquake and tsunami crippled the nuclear facility in 2011. According to Japanese media outlets on Thursday, the Tokyo Electric Power ...[more...] Full Article International
cle What Is a Hybrid Car? Learn How Hybrid Vehicles Work By auto.howstuffworks.com Published On :: Wed, 27 Mar 2024 14:54:54 -0400 How does a hybrid car improve your gas mileage? And more importantly, does it pollute less just because it gets better gas mileage? Learn how hybrids work, plus get tips on how to drive a hybrid car for maximum efficiency. Full Article
cle How to Clean a Hairbrush (and Why It's Important) By home.howstuffworks.com Published On :: Mon, 29 Jan 2024 17:37:03 -0500 Your hairbrush is full of hair and dust, and you don't know how to clean it. Simply follow these instructions and learn how to clean a hairbrush. Full Article
cle Czech Delegation to Visit S. Korea for Final Contract Negotiations for Nuclear Deal By world.kbs.co.kr Published On :: Mon, 11 Nov 2024 11:27:29 +0900 [Economy] : A large delegation representing Czech power authorities will make a two-week visit to South Korea for working-level negotiations ahead of the conclusion of a final contract for the Czech nuclear power plant project. Korea Hydro and Nuclear Power(KHNP), which was selected in July as the preferred bidder ...[more...] Full Article Economy
cle Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning By journals.iucr.org Published On :: 2024-02-29 Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data. Full Article text
cle X-ray crystal structure of proliferating cell nuclear antigen 1 from Aeropyrum pernix By journals.iucr.org Published On :: 2024-10-09 Proliferating cell nuclear antigen (PCNA) plays a critical role in DNA replication by enhancing the activity of various proteins involved in replication. In this study, the crystal structure of ApePCNA1, one of three PCNAs from the thermophilic archaeon Aeropyrum pernix, was elucidated. ApePCNA1 was cloned and expressed in Escherichia coli and the protein was purified and crystallized. The resulting crystal structure determined at 2.00 Å resolution revealed that ApePCNA1 does not form a trimeric ring, unlike PCNAs from other domains of life. It has unique structural features, including a long interdomain-connecting loop and a PIP-box-like sequence at the N-terminus, indicating potential interactions with other proteins. These findings provide insights into the functional mechanisms of PCNAs in archaea and their evolutionary conservation across different domains of life. A modified medium and protocol were used to express recombinant protein containing the lac operon. The expression of the target protein increased and the total incubation time decreased when using this system compared with those of previous expression protocols. Full Article text
cle Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) By journals.iucr.org Published On :: In the title compound, [Cu2(L)2]·2CH2Cl2, the CuII ions coordinate two (S,O)-chelating aroylthiourea moieties of doubly deprotonated furan-2,5-dicarbonylbis(N,N-diethylthiourea) (H2L) ligands. The coordination geometry of the metal centers is best described as a flat isosceles trapezoid with a cis arrangement of the donor atoms. Full Article text
cle Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models By journals.iucr.org Published On :: 2024-09-23 Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle characterization. A common approach to analysing nanoparticles in solution by SAXS involves fitting the curve using a parametric model that relates real-space parameters, such as nanoparticle size and electron density, to intensity values in reciprocal space. Selecting the optimal model is a crucial step in terms of analysis quality and can be time-consuming and complex. Several studies have proposed effective methods, based on machine learning, to automate the model selection step. Deploying these methods in software intended for both researchers and industry raises several issues. The diversity of SAXS instrumentation requires assessment of the robustness of these methods on data from various machine configurations, involving significant variations in the q-space ranges and highly variable signal-to-noise ratios (SNR) from one data set to another. In the case of laboratory instrumentation, data acquisition can be time-consuming and there is no universal criterion for defining an optimal acquisition time. This paper presents an approach that revisits the nanoparticle model selection method proposed by Monge et al. [Acta Cryst. (2024), A80, 202–212], evaluating and enhancing its robustness on data from device configurations not seen during training, by expanding the data set used for training. The influence of SNR on predictor robustness is then assessed, improved, and used to propose a stopping criterion for optimizing the trade-off between exposure time and data quality. Full Article text
cle Crystal structure of a solvated dinuclear CuII complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) By journals.iucr.org Published On :: 2024-11-08 Reaction between equimolar amounts of 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) (H2L) and CuCl2·2H2O in methanol in the presence of the supporting base Et3N gave rise to a neutral dinuclear complex bis[μ-3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) dichloromethane disolvate, [Cu2(C16H22N4O3S2)2]·2CH2Cl2 or [Cu2(L)2]·2CH2Cl2. The aroylbis(thioureas) are doubly deprotonated and the resulting anions {L2–} bond to metal ions through (S,O)-chelating moieties. The copper atoms adopt a virtually cis-square-planar environment. In the crystal, adjacent [Cu2(L)2]·2CH2Cl2 units are linked into polymeric chains along the a-axis direction by intermolecular coordinative Cu...S interactions. The co-crystallized solvent molecules play a vital role in the crystal packing. In particular, weak C—Hfuran...Cl and C—Hethyl...Cl contacts consolidate the three-dimensional supramolecular architecture. Full Article text
cle Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack By journals.iucr.org Published On :: 2024-02-02 This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments. Full Article text
cle In situ photodeposition of ultra-small palladium particles on TiO2 By journals.iucr.org Published On :: 2024-07-15 In situ and operando investigation of photocatalysts plays a fundamental role in understanding the processes of active phase formation and the mechanisms of catalytic reactions, which is crucial for the rational design of more efficient materials. Using a custom-made operando photocatalytic cell, an in situ procedure to follow the formation steps of Pd/TiO2 photocatalyst by synchrotron-based X-ray absorption spectroscopy (XAS) is proposed. The procedure resulted in the formation of ∼1 nm Pd particles with a much narrower size distribution and homogeneous spreading over TiO2 support compared with the samples generated in a conventional batch reactor. The combination of in situ XAS spectroscopy with high-angle annular dark-field scanning transmission electron microscopy demonstrated the formation of single-atom Pd(0) sites on TiO2 as the initial step of the photodeposition process. Palladium hydride particles were observed for all investigated samples upon exposure to formic acid solutions. Full Article text
cle A versatile sample-delivery system for X-ray photoelectron spectroscopy of in-flight aerosols and free nanoparticles at MAX IV Laboratory By journals.iucr.org Published On :: 2024-08-07 Aerosol science is of utmost importance for both climate and public health research, and in recent years X-ray techniques have proven effective tools for aerosol-particle characterization. To date, such methods have often involved the study of particles collected onto a substrate, but a high photon flux may cause radiation damage to such deposited particles and volatile components can potentially react with the surrounding environment after sampling. These and many other factors make studies on collected aerosol particles challenging. Therefore, a new aerosol sample-delivery system dedicated to X-ray photoelectron spectroscopy studies of aerosol particles and gas molecules in-flight has been developed at the MAX IV Laboratory. The aerosol particles are brought from atmospheric pressure to vacuum in a continuous flow, ensuring that the sample is constantly renewed, thus avoiding radiation damage, and allowing measurements on the true unsupported aerosol. At the same time, available gas molecules can be used for energy calibration and to study gas-particle partitioning. The design features of the aerosol sample-delivery system and important information on the operation procedures are described in detail here. Furthermore, to demonstrate the experimental range of the aerosol sample-delivery system, results from aerosol particles of different shape, size and composition are presented, including inorganic atmospheric aerosols, secondary organic aerosols and engineered nanoparticles. Full Article text
cle MuscleX: data analysis software for fiber diffraction patterns from muscle By journals.iucr.org Published On :: 2024-07-30 MuscleX is an integrated, open-source computer software suite for data reduction of X-ray fiber diffraction patterns from striated muscle and other fibrous systems. It is written in Python and runs on Linux, Microsoft Windows or macOS. Most modules can be run either from a graphical user interface or in a `headless mode' from the command line, suitable for incorporation into beamline control systems. Here, we provide an overview of the general structure of the MuscleX software package and describe the specific features of the individual modules as well as examples of applications. Full Article text
cle Electrochemical cell for synchrotron nuclear resonance techniques By journals.iucr.org Published On :: 2024-08-16 Developing new materials for Li-ion and Na-ion batteries is a high priority in materials science. Such development always includes performance tests and scientific research. Synchrotron radiation techniques provide unique abilities to study batteries. Electrochemical cell design should be optimized for synchrotron studies without losing electrochemical performance. Such design should also be compatible with operando measurement, which is the most appropriate approach to study batteries and provides the most reliable results. The more experimental setups a cell can be adjusted for, the easier and faster the experiments are to carry out and the more reliable the results will be. This requires optimization of window materials and sizes, cell topology, pressure distribution on electrodes etc. to reach a higher efficiency of measurement without losing stability and reproducibility in electrochemical cycling. Here, we present a cell design optimized for nuclear resonance techniques, tested using nuclear forward scattering, synchrotron Mössbauer source and nuclear inelastic scattering. Full Article text
cle α-d-2'-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-01-22 α-d-2'-Deoxyribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-deoxyadenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydrogen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydrogen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydrogen bonds formed by the conformers. The formation of the supramolecular assembly of α-dA is controlled by hydrogen bonding and stacking interactions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydrogen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydrogen bonds involving the sugar moieties to form a sheet. A comparison of the solid-state structures of the anomeric 2'-deoxyadenosines revealed significant differences of their conformational parameters. Full Article text
cle Rebuttal to the article Pathological crystal structures By journals.iucr.org Published On :: 2024-07-14 A section in the Acta Crystallographica Section C article by Raymond & Girolami [Acta Cryst. (2023), C79, 445–455] stated that the product of the reaction of [(Cp*Rh)2(μ-OH)3]+ (Cp* is 1,2,3,4,5-pentamethylcyclopentadiene) with 1-methylthymine (1-MT) at pH 10 and 60 °C, to synthesize the anionic component [RhI(η1-N3-1-MT)2]−, was not an RhI complex, but rather an AgI complex, due to the use of silver triflate (AgOTf) to remove Cl− from [Cp*RhCl2]2 to synthesize [Cp*Rh(H2O)3](OTf)2, a water-soluble crystalline complex. We will clearly show that this premise, as stated, is invalid, while the authors have simply avoided several important facts, including that Cp*OH, a reductive elimination product, at pH 10 and 60 °C, was unequivocally identified, thus leading to the RhI anionic component [RhI(η1-N3-1-MT)2]−. More importantly, AgOH, from the reaction of NaOH at pH 10 with any potentially remaining AgOTf, after the AgCl was filtered off, would be insoluble in water. Furthermore, a control experiment with the inorganic complex Rh(OH)3, reacting with 1-methylthymine at pH 10, provided no product, and this bodes well for a similar fate with AgOTf and 1-methylthymine, i.e. at pH 10, AgOTf would again be converted to the water-insoluble AgOH; therefore, no reaction would occur! Finally, a 1H NMR spectroscopy experiment was carried out with synthesized and crystallized [Cp*Rh(H2O)3](OTf)2 in D2O at various pD values; at pD 8.65 no reaction took place, while at pD 13.6, and at 60 °C for 2 h, a reductive elimination reaction caused the precipitation of Cp*OH. The subsequent 1H NMR spectrum clearly demonstrated, in the absence of any AgI complexes, that the solution structure and the X-ray crystals in D2O were similar. A postulated mechanism for this novel anionic component structure, as published previously [Smith et al. (2014). Organometallics, 33, 2389–2404], will be presented, along with the experimental data, to insure the credibility of our results. We will also answer the comments in the response of Drs Raymond and Girolami to this rebuttal. Full Article text
cle Response to the rebuttal of the article Pathological crystal structures By journals.iucr.org Published On :: 2024-07-14 We stand fully behind our earlier suggestion [Raymond & Girolami (2023). Acta Cryst. C79, 445–455] that the claim by Fish and co-workers [Chen et al. (1995). J. Am. Chem. Soc. 117, 9097–9098; Smith et al. (2014). Organometallics, 33, 2389–2404] of a linear two-coordinate rhodium(I) species is incorrect, and that the putative rhodium atom is in fact silver. Full Article text
cle Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex By journals.iucr.org Published On :: 2024-07-10 The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)–dimethyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K. Full Article text
cle Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-07-25 A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four compounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K confirmed the formation of a mononuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O interaction. The Sn and O atoms are surrounded by hydrophobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent interactions. The pairwise interaction energies showed that the cohesion between the heterocycles are mainly due to dispersion forces. Full Article text
cle Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors By journals.iucr.org Published On :: 2024-10-31 Full Article text
cle Structural flexibility of Toscana virus nucleoprotein in the presence of a single-chain camelid antibody By journals.iucr.org Published On :: 2024-01-24 Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex. Full Article text
cle Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase By journals.iucr.org Published On :: 2024-03-21 Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity. Full Article text
cle Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly By journals.iucr.org Published On :: 2024-09-04 Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies unidirectionally. Full Article text
cle Structure determination using high-order spatial correlations in single-particle X-ray scattering By journals.iucr.org Published On :: 2024-01-01 Single-particle imaging using X-ray free-electron lasers (XFELs) is a promising technique for observing nanoscale biological samples under near-physiological conditions. However, as the sample's orientation in each diffraction pattern is unknown, advanced algorithms are required to reconstruct the 3D diffraction intensity volume and subsequently the sample's density model. While most approaches perform 3D reconstruction via determining the orientation of each diffraction pattern, a correlation-based approach utilizes the averaged spatial correlations of diffraction intensities over all patterns, making it well suited for processing experimental data with a poor signal-to-noise ratio of individual patterns. Here, a method is proposed to determine the 3D structure of a sample by analyzing the double, triple and quadruple spatial correlations in diffraction patterns. This ab initio method can reconstruct the basic shape of an irregular unsymmetric 3D sample without requiring any prior knowledge of the sample. The impact of background and noise on correlations is investigated and corrected to ensure the success of reconstruction under simulated experimental conditions. Additionally, the feasibility of using the correlation-based approach to process incomplete partial diffraction patterns is demonstrated. The proposed method is a variable addition to existing algorithms for 3D reconstruction and will further promote the development and adoption of XFEL single-particle imaging techniques. Full Article text
cle Orientational ordering and assembly of silica–nickel Janus particles in a magnetic field By journals.iucr.org Published On :: 2024-01-01 The orientation ordering and assembly behavior of silica–nickel Janus particles in a static external magnetic field were probed by ultra small-angle X-ray scattering (USAXS). Even in a weak applied field, the net magnetic moments of the individual particles aligned in the direction of the field, as indicated by the anisotropy in the recorded USAXS patterns. X-ray photon correlation spectroscopy (XPCS) measurements on these suspensions revealed that the corresponding particle dynamics are primarily Brownian diffusion [Zinn, Sharpnack & Narayanan (2023). Soft Matter, 19, 2311–2318]. At higher fields, the magnetic forces led to chain-like configurations of particles, as indicated by an additional feature in the USAXS pattern. A theoretical framework is provided for the quantitative interpretation of the observed anisotropic scattering diagrams and the corresponding degree of orientation. No anisotropy was detected when the magnetic field was applied along the beam direction, which is also replicated by the model. The method presented here could be useful for the interpretation of oriented scattering patterns from a wide variety of particulate systems. The combination of USAXS and XPCS is a powerful approach for investigating asymmetric colloidal particles in external fields. Full Article text
cle Biophysical and structural study of La Crosse virus endonuclease inhibition for the development of new antiviral options By journals.iucr.org Published On :: 2024-04-24 The large Bunyavirales order includes several families of viruses with a segmented ambisense (−) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors. Full Article text
cle Photoinduced bidirectional mesophase transition in vesicles containing azobenzene amphiphiles By journals.iucr.org Published On :: 2024-05-28 The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles. We observed reversible and reproducible transitions between the lamellar and Pn3m cubic phase after illuminating the sample for 5 min with light of 365 and 455 nm wavelengths, respectively, to switch between the cis and trans states of the azobenzene N=N double bond. These light-controlled mesophase transitions were found for mixed complexes with up to 20% content of the photosensitive molecule and at temperatures below the gel-to-liquid crystalline phase transition temperature of 33°C. Our results demonstrate the potential to design bespoke model systems to study the response of membrane lipids and proteins upon changes in mesophase without altering the environment and thus provide a possible basis for drug delivery systems. Full Article text
cle A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging By journals.iucr.org Published On :: 2024-06-21 Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction. Full Article text
cle A predicted model-aided one-step classification–multireconstruction algorithm for X-ray free-electron laser single-particle imaging By journals.iucr.org Published On :: 2024-08-28 Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification–multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction. Full Article text
cle An octanuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives By journals.iucr.org Published On :: 2023-11-30 The molecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-octyl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-dichloroethane solvent molecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetrabutylazanium tetramethylazanium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexahedro-octanickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-methylpyrazolato)-hexahedro-octanickel 1,2-dichloroethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis(tetrabutylazanium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexahedro-octanickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns. Full Article text
cle Synthesis, crystal structure and thermal properties of the dinuclear complex bis(μ-4-methylpyridine N-oxide-κ2O:O)bis[(methanol-κO)(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II)] By journals.iucr.org Published On :: 2024-04-18 Reaction of Co(NCS)2 with 4-methylpyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methylpyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thiocyanate anions, two 4-methylpyridine N-oxide coligands and one methanol molecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octahedrally coordinate two terminal N-bonded thiocyanate anions, three 4-methylpyridine N-oxide coligands and one methanol molecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methylpyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-methylpyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol molecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methylpyridine N-oxide), which has been reported in the literature and which is of poor crystallinity. Full Article text
cle The crystal structure of a mononuclear PrIII complex with cucurbit[6]uril By journals.iucr.org Published On :: 2024-06-25 A new mononuclear complex, pentaaqua(cucurbit[6]uril-κ2O,O')(nitrato-κ2O,O')praseodymium(III) dinitrate 9.56-hydrate, [Pr(NO3)(CB6)(H2O)5](NO3)2·9.56H2O (1), was obtained as outcome of the hydrothermal reaction between the macrocyclic ligand cucurbit[6]uril (CB6, C36H36N24O12) with a tenfold excess of Pr(NO3)3·6H2O. Complex 1 crystallizes in the P21/n space group with two crystallographically independent but chemically identical [Pr(CB6)(NO3)(H2O)5]2+ complex cations, four nitrate counter-anions and 19.12 interstitial water molecules per asymmetric unit. The nonacoordinated PrIII in 1 are located in the PrO9 coordination environment formed by two carbonyl O atoms from bidentate cucurbit[6]uril units, two oxygen atoms from the bidentate nitrate anion and five water molecules. Considering the differences in Pr—O bond distances and O—Pr—O angles in the coordination spheres, the coordination polyhedrons of the two PrIII atoms can be described as distorted spherical capped square antiprismatic and muffin polyhedral. Full Article text
cle Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline By journals.iucr.org Published On :: 2024-06-28 A new quinoline derivative, namely, 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water molecule, resulting in a distorted octahedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent molecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and quantity of solvent molecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 molecules of ethanol in the unit cell. These ethanol molecules are not considered in the given chemical formula and other crystal data. Full Article text
cle Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by triethylammonium By journals.iucr.org Published On :: 2024-10-24 Two new zinc(II) complexes, triethylammonium dichlorido[2-(4-nitrophenyl)-4-phenylquinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis(triethylammonium) {2,2'-[1,4-phenylenebis(nitrilomethylidyne)]diphenolato}bis[dichloridozinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitrophenyl)-4-phenylquinolin-8-ol (HOQ) and N,N'-bis(2-hydroxybenzylidene)benzene-1,4-diamine (H2BS) were deprotonated by triethyl-amine, forming the counter-ion Et3NH+, which interacts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetrahedral (ZnBS) geometries with a coordination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitrogen for the HOQ ligand, while for the H2BS ligand, it is the nitrogen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π interactions, while that of ZnBS by C—H⋯Cl interactions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence. Full Article text
cle An electropneumatic cleaning device for piezo-actuator-driven picolitre-droplet dispensers By journals.iucr.org Published On :: 2024-02-01 Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows. Full Article text
cle A workflow for single-particle structure determination via iterative phasing of rotational invariants in fluctuation X-ray scattering By journals.iucr.org Published On :: 2024-03-15 Fluctuation X-ray scattering (FXS) offers a complementary approach for nano- and bioparticle imaging with an X-ray free-electron laser (XFEL), by extracting structural information from correlations in scattered XFEL pulses. Here a workflow is presented for single-particle structure determination using FXS. The workflow includes procedures for extracting the rotational invariants from FXS patterns, performing structure reconstructions via iterative phasing of the invariants, and aligning and averaging multiple reconstructions. The reconstruction pipeline is implemented in the open-source software xFrame and its functionality is demonstrated on several simulated structures. Full Article text
cle Implications of size dispersion on X-ray scattering of crystalline nanoparticles: CeO2 as a case study By journals.iucr.org Published On :: 2024-05-31 Controlling the shape and size dispersivity and crystallinity of nanoparticles (NPs) has been a challenge in identifying these parameters' role in the physical and chemical properties of NPs. The need for reliable quantitative tools for analyzing the dispersivity and crystallinity of NPs is a considerable problem in optimizing scalable synthesis routes capable of controlling NP properties. The most common tools are electron microscopy (EM) and X-ray scattering techniques. However, each technique has different susceptibility to these parameters, implying that more than one technique is necessary to characterize NP systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is mandatory to access information on crystallinity. In contrast, EM or small-angle X-ray scattering (SAXS) is required to access information on whole NP sizes. EM provides average values on relatively small ensembles in contrast to the bulk values accessed by X-ray techniques. Besides the fact that the SAXS and WAXS techniques have different susceptibilities to size distributions, SAXS is easily affected by NP–NP interaction distances. Because of all the variables involved, there have yet to be proposed methodologies for cross-analyzing data from two techniques that can provide reliable quantitative results of dispersivity and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed for simultaneously quantifying size distribution and degree of crystallinity of NPs. The most reliable easy-to-access size result for each technique is demonstrated by computer simulation. Strategies on how to compare these results and how to identify NP–NP interaction effects underneath the SAXS intensity curve are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS size results from two analytical procedures are compared, line-profile fitting of individual diffraction peaks in opposition to whole pattern fitting. The impact of shape dispersivity is also evaluated. Extension of the proposed methodology for cross-analyzing EM and WAXS data is possible. Full Article text
cle Coherent X-ray diffraction imaging of single particles: background impact on 3D reconstruction By journals.iucr.org Published On :: 2024-08-30 Coherent diffractive imaging with X-ray free-electron lasers could enable structural studies of macromolecules at room temperature. This type of experiment could provide a means to study structural dynamics on the femtosecond timescale. However, the diffraction from a single protein is weak compared with the incoherent scattering from background sources, which negatively affects the reconstruction analysis. This work evaluates the effects of the presence of background on the analysis pipeline. Background measurements from the European X-ray Free-Electron Laser were combined with simulated diffraction patterns and treated by a standard reconstruction procedure, including orientation recovery with the expand, maximize and compress algorithm and 3D phase retrieval. Background scattering did have an adverse effect on the estimated resolution of the reconstructed density maps. Still, the reconstructions generally worked when the signal-to-background ratio was 0.6 or better, in the momentum transfer shell of the highest reconstructed resolution. The results also suggest that the signal-to-background requirement increases at higher resolution. This study gives an indication of what is possible at current setups at X-ray free-electron lasers with regards to expected background strength and establishes a target for experimental optimization of the background. Full Article text
cle Measurable structure factors of dense dispersions containing polydisperse optically inhomogeneous particles By journals.iucr.org Published On :: 2024-09-25 Here, it is investigated how optical properties of single scatterers in interacting multi-particle systems influence measurable structure factors. Both particles with linear gradients of their scattering length density and core–shell structures evoke characteristic deviations between the weighted sum 〈S(Q)〉 of partial structure factors in a multi-component system and experimentally accessible measurable structure factors SM(Q). While 〈S(Q)〉 contains only the structural information of self-organizing systems, SM(Q) is additionally influenced by the optical properties of their constituents, resulting in features such as changing amplitudes, additional peaks in the low-wavevector region or splitting of higher-order maxima, which are not related to structural reasons. It is shown that these effects can be systematically categorized according to the qualitative behaviour of the form factor in the Guinier region, which enables assessing the suitability of experimentally obtained structure factors to genuinely represent the microstructure of complex systems free from any particular model assumption. Hence, a careful data analysis regarding size distribution and optical properties of single scatterers is mandatory to avoid a misinterpretation of measurable structure factors. Full Article text
cle Americana Awards: Jason Isbell cleans up By www.scpr.org Published On :: Thu, 18 Sep 2014 08:22:03 -0700 Jason Isbell and Amanda Shires perform onstage at the 13th annual Americana Music Association Honors and Awards Show at the Ryman Auditorium on September 17, 2014 in Nashville, Tennessee. ; Credit: Rick Diamond/Getty Images for Americana Music Singer-songwriter Jason Isbell swept the major awards Wednesday night at the Americana Honors & Awards, creating another special moment with his wife, Amanda Shires. Isbell won artist, album and song of the year during the 13th annual awards show Wednesday night at Ryman Auditorium in Nashville, Tennessee. Though surprisingly ignored by Grammy Awards voters, Isbell's album of the year winner "Southeastern" reverberated through the Americana community and made many of 2013's best-of lists. He performed song of the year "Cover Me Up" with Shires, a significant figure on the album as muse and collaborator. "I wrote this song for my wife," Isbell said. "I've had a lot of people ask me to dedicate it to their wives, girlfriends or cousin's wife or something strange like that. This was probably the hardest song I ever had to write because I wrote it for her and then I played it for her. It was very difficult. Do the things that scare you. That's the good stuff." Isbell was one of this year's top nominees along with Rosanne Cash and Robert Ellis. Each had three nominations and all were up for artist, album and song of the year. Many of the top nominees and honors recipients performed, including all five emerging artist nominees. Former couple Patty Griffin and Robert Plant made a surprise appearance and sang their collaboration "Ohio." Sturgill Simpson, something of a modern cosmic cowboy, earned emerging artist of the year and the Milk Carton Kids took group/duo of the year. And Buddy Miller, now executive music producer for the television show "Nashville" and theAmericana's winningest performer, won his fifth instrumentalist of the year award. The Americana Music Association also honored several pioneering musicians. Loretta Lynn received the lifetime achievement award for songwriting from Kacey Musgraves and Angaleena Presley. "The truth is we both might cry giving out this award," Musgraves said. Lynn, writer of some of country music's most important female empowerment songs, accepted the award in a sparkly lavender dress and her usual humble manner. "When they told me I was going to get this award," she told the crowd, "I said, 'Naw, you got the wrong one.'" Jackson Browne received the Spirit of Americana-Free Speech in Music award, Flaco Jimenez received the lifetime achievement award for instrumentalist and Taj Mahal earned the lifetime achievement award for performance. "I was affected deeply by American music, near and far — my mother's interest in Southern music and my dad's interest in jazz and bebop and classical, all that kind of stuff," Mahal said in an interview. "But this music here, if you get this music, you can go anywhere in the world with it. For me, I play for the goddess of music. People ask me what I do and I go, deep Americana." Full Article
cle Investing to Take Advantage of the Uranium and Nuclear Renaissance By www.streetwisereports.com Published On :: Tue, 22 Oct 2024 00:00:00 PST Source: Streetwise Reports 10/22/2024 The growth of artificial intelligence, the need for more computer data centers, the eventual adoption of electric vehicles (EVs), and the need for more net-zero power means nuclear power, and the uranium needed to fuel it, is seeing a resurgence. Here are some options to make the situation work for your portfolio.The growth of artificial intelligence, the need for more computer data centers, the eventual adoption of electric vehicles (EVs), and the need for more net-zero power means a renaissance in nuclear power is underway. Just last month, Microsoft Corp. (MSFT:NASDAQ) announced a deal with Constellation Energy Group (CEG:NYSE) to restart and buy all of the power from one of the shut-down reactors at its infamous Three Mile Island plant in Pennsylvania and the Biden administration also announced a plan to restart the Palisades plant in Michigan. "Biden has called for a tripling of U.S. nuclear power capacity to fuel energy demand that is accelerating in part due to expansion of power-hungry technologies like artificial intelligence and cloud computing," Valerie Volcovici wrote for Reuters on Oct. 8. The administration also wants to develop small nuclear reactors (SMRs) for certain applications. All of this is putting the metal needed to power nuclear energy, uranium, front and center. Prices for the element have started rising, with nuclear fuel trading at US$83.30 per pound last Thursday, a level not seen since 2007, according to a report by Daily Finland on Friday. Uranium prices are expected to move higher by the end of this quarter, when Trading Economics' global macro models and analyses forecast uranium to trade at US$84.15 per pound, Nuclear Newswire reported on Oct. 3. In another year, the site estimates that the metal will trade at US$91.80 per pound. The Catalyst: Surging Demand The engine driving the prices is a "fundamental global shortage" of uranium driven by surging demand, said Andre Leibenberg, chief executive officer of Yellow Cake, which is focused on providing exposure to uranium's spot price. The demand is stemming not only from a growing recognition of nuclear power's role in the future energy mix, but also from its critical importance in supporting the AI boom and the development of data centers, he wrote in a company update last week, according to Mining Weekly. According to the report, Liebenberg noted that the primary mine supply of 140 million pounds was significantly trailing behind global demand of more than 180 million pounds a year. In the European Union, a "lack of clarity" about Russian uranium imports is holding back investment in new enrichment plants, according to Reuters. Russia supplied more than 25% of European and American enriched uranium before the start of the Ukraine war in February 2022, the report said. Since then, "the U.S. implemented a ban on imports of enriched uranium from Russia in August, with some exemptions, but in Europe, different countries have taken different approaches," muddying the waters. Complicating matters is a hint in September that Russian President Vladimir Putin might embargo exports of the vital element to the west. Citi, in a note to clients, said utilities have been stockpiling Russian uranium, but an embargo would make it "hard to replace" supplies of the metal in the next two years. "Russia supplies close to 12% of U3O8 (known as yellow cake), 25% of UF6 (uranium hexafluoride) and 35% of EUP (enriched uranium product) to international markets," the bank said, according to Forbes. "While the largest share of these supplies goes to China and in supplying nuclear reactors that were built by Russia's Rosatom, we believe that at-risk supplies are exports to the U.S. or Western Europe." The consequences of what could happen without more nuclear power can be seen in the U.K., where the number of reactors is shrinking. Four of five of them are expected to close in the next couple of years, which could "stretch the grid to the limit." "As Britain's reactor fleet shrivels, the amount of nuclear capacity will fall from six gigawatts (GW) today to just 1.2 GW by 2028 or soon after," Jonathan Leake and Matt Oliver wrote for The Telegraph last week. "Along with rising demand from power-hungry data centers and technologies of the future, it will make it even harder to keep the lights on when wind and solar generation is low." Small Nuclear Reactors (SMRs) SMRs are another possible solution for some medium-sized energy needs. They have been operational for dozens of years in submarines and other long-distance ocean-going craft. "They can be manufactured in factories and then rapidly erected on-site," Dominic Frisby wrote for his newsletter, The Flying Frisby, on Oct. 13. They are scalable, and that flexibility "aids manufacture, transportation, and installation while reducing construction time and costs." A 440-megawatt (MW) SMR would produce about 3.5 terawatt hours (TWh) of electricity per year, enough for 1.2 million homes, Frisby noted. SMRs produce electricity that can easily be adjusted to meet the constant, everyday needs of the grid (baseload), and they can also ramp up or down to follow changes in demand throughout the day, the author wrote. They spin in sync with the grid, so they help keep everything stable. "When they're running, they act like a steady hand, providing momentum that makes it easier to manage sudden changes in electricity supply or demand," he wrote. 'Bucket Loads of Power' Needed All of this equates for a bright future for the metal, he said. "Guess what? AI requires bucket loads of power," Frisby wrote. "That's why Microsoft recently agreed to pay Constellation Energy, the new owner of America's infamous nuclear power station, Three Mile Island, a sizeable premium for its energy. There is cheaper wind and solar power to be had in Pennsylvania, but it isn't as reliable as nuclear 24 hours a day. It's not just AI. The widespread political desire to rid ourselves of fossil fuels means the world needs electricity, and fast." Chris Temple, publisher of The National Investor, recently noted that with the Three Mile Island deal, "uranium/nuclear power is BACK!" "I've watched as the news has continued to point to uranium being in the early innings of this new bull market," Temple wrote. "Yet the markets have been yawning . . . until now." What follows are several uranium explorers and producers that could benefit from this upswing for investors looking to take advantage. Baselode Energy Corp. Baselode Energy Corp. (FIND:TSX.V; BSENF:OTCQB) controls 100% of about 273,000 hectares for exploration in the Athabasca Basin area in northern Saskatchewan, Canada.[OWNERSHIP_CHART-10321] The company said it discovered the ACKIO near-surface, high-grade uranium deposit in September 2021. ACKIO measures greater than 375 meters along strike, greater than 150 meters wide, and is comprised of at least 11 separate zones. Mineralization starts as shallow as 28 meters beneath the surface and continues down to about 300 meters depth beneath the surface, with the bulk of mineralization occurring in the upper 120 meters, Baselode said. ACKIO remains open to the west and south and along the Athabasca sandstone unconformity to the east and south. Earlier this month, the company reported positive uranium assay results from three drill holes of its 2024 drill program at ACKIO. Notably, drill hole AK24-119 intersected 0.28% U3O8 over 21.0 meters, including a high-grade section of 1.55% U3O8 over 1.5 meters at a depth of 141 meters. While drill hole AK24-118 returned 0.59% U3O8 over 8.5 meters, including 1.25% U3O8 over 1.5 meters at a depth of 153 meters. "These results strengthen our confidence in ACKIO," Chief Executive Officer James Sykes said in a release. "It's remarkable that, just over three years after discovering ACKIO, we're still achieving better-than-expected grades and widths." Baselode expects further assay results from the remaining 40 drill holes to be released after quality review and approval. David Talbot, Managing Director at Red Cloud Securities, noted in a September 17 report that drilling at ACKIO "continued to expand the mineralized footprint at Pods 1, 6, and 7," highlighting that "thirteen holes reported composite intervals of anomalous radioactivity between 11m and 42m in thickness." In his report, Talbot rated the stock as a Buy and further projected the potential for "8-10-12 million pounds of U3O8 at a grade of ~0.3% U3O8," which aligns with typical grades found in the southeastern part of the Athabasca Basin. According to Refinitiv, Baselode has institutions holding 23.26% with Alps Advisors holding the bulk of it with 17.94%, followed by Vident Investment Advisory LLC at 2.97%. Management and Insiders hold 1.59%. The rest is retail. The company has a market cap of CA$20.05 million, with 131.51 free float shares. It trades in the 52-week range between CA$0.10 and CA$0.61. Uranium Energy Corp. According to its website, Uranium Energy Corp. (UEC:NYSE AMERICAN) is America's "largest and fastest growing supplier of uranium."[OWNERSHIP_CHART-402] The company said it is advancing the next generation of low-cost, environmentally friendly in-situ recovery (ISR) mining uranium projects in the United States and high-grade conventional projects in Canada. It has two production-ready ISR hub and spoke platforms in South Texas and Wyoming. Additionally, Uranium Energy Corp. said it has diversified uranium holdings with one of the largest physical uranium portfolios of U.S. warehoused U3O8; a major equity stake in Uranium Royalty Corp., the only royalty company in the sector; and a Western Hemisphere pipeline of resource stage uranium projects. Most recently, the company announced it was expanding its U.S. uranium production capacity by acquiring Rio Tinto Plc.'s Sweetwater Plant and a portfolio of Wyoming uranium assets. On September 25, Temple of The National Investor noted that UEC was "upgraded back to Buy" following recent uranium market news. He pointed to UEC's acquisition of the Wyoming uranium assets as a catalyst, emphasizing that uranium is "in the early innings of this new bull market." Jeff Clark of The Gold Advisor, in his September 26 update, called the acquisition a "significant move," noting that it consolidated a large portfolio of uranium assets under UEC's control, positioning the company for rapid growth. He also highlighted the company's strategic advantage with "53,000 additional acres for exploration," reinforcing UEC's potential to ramp up production. According to Reuters, Uranium Energy has a market cap of US$3.48 billion and 411.41 million shares outstanding. It trades in a 52-week range of US$4.06 and US$8.66. About 2% of UE is help by management and insiders, Reuters noted. The largest portion, 77.58%, is held by institutional investors. The rest is in retail. Terra Clean Energy Corp. Formerly Tisdale Clean Energy Corp., Terra Clean Energy Corp. (TCEC:CSE; TCEFF:OTC; T1KC:FSE), a Canadian-based uranium exploration and development company, is currently developing the South Falcon East uranium project, which holds a 6.96-million-pound inferred uranium resource within the Fraser Lakes Zone B uranium/thorium deposit, located in the Athabasca Basin region of Saskatchewan.[OWNERSHIP_CHART-10935] Representing a portion of Skyharbour Resources Ltd.'s existing South Falcon Project, Terra Clean Energy's project covers approximately 12,464 hectares and lies 18 kilometers outside the Athabasca Basin, approximately 50 kilometers east of the Key Lake Mine. Recently, the company announced a comprehensive exploration program set for Winter 2025 at its South Falcon East Uranium Project. The work will focus on extending the mineralized footprint at the Fraser Lakes B Uranium Deposit and includes about 2,000 meters of infill and step-out drilling designed to verify existing mineralized zones and identify additional targets. In a release, Chief Executive Officer Alex Klenman described the initiative as "a unique setup for a Canadian microcap, offering multiple paths to significant value creation." This US$1.5 million project will involve TerraLogic Exploration Inc., operating out of SkyHarbour's McGowan Lake Camp with helicopter support. According to Reuters, management and insiders hold 4.62% of Terra Clean Energy. Of those, Alex Klenman holds the most, with 4.37%. Strategic Investors hold 12.03%, with Planet Ventures Inc holding the most at 7.40%. The rest is retail. Terra Clean Energy has a market cap of CA$2.98 million and a 52-week range of CA$0.05 to CA$0.22. North Shore Uranium Ltd. North Shore Uranium Ltd. (NSU:TSX) said it is working to become a major force in exploration for economic uranium deposits at the eastern margin of the Athabasca Basin.[OWNERSHIP_CHART-10945] The company said it is running exploration programs at its Falcon and West Bear properties and evaluating opportunities to complement its portfolio of uranium properties. Falcon consists of 15 mineral claims, the company said. Four of them comprise 12,791 hectares and are 100%-owned by the company. The remaining 11 claims totaling 2,908 hectares are subject to an option agreement with Skyharbour Resources Ltd. Under the terms of the option agreement, North Shore has the option to earn up to 100% interest in the 11 claims by completing certain payments. Earlier this month, the company announced details of its target generation efforts at its Falcon uranium project at the eastern margin of Saskatchewan's Athabasca Basin. The company said it has identified 36 uranium targets across three zones. "We have a great pipeline of targets to choose from for our next drill program at Falcon," said President and Chief Executive Officer Brooke Clements. "Our Zone 2 has attracted the interest of uranium explorers in the past, and we believe there is potential to make a significant uranium discovery using new data and interpretation." Earlier this month, North Shore announced it had received a Crown Land Work permit for the full 55,700-hectare Falcon project. Issued by the Saskatchewan Ministry of Environment, it authorizes the company to conduct mineral exploration activities, including prospecting and ground geophysics, trail and drill site clearing, line cutting, the drilling of up to 75 exploration drill holes, and the storage of drill core. The permit expires in July 2027. Insiders and founding investors own approximately 45% of the issued and outstanding shares. Clements himself owns 3.6% or 1.33M shares, Director Doris Meyer has 2.11% or 0.78M shares, and Director James Arthur holds 1.58% or 0.58M shares. According to North Shore, 14.92M shares (40.5%) held by six founding investors are subject to a voluntary pooling agreement that restricts the disposition of these shares before October 19, 2026. Most of the rest is with retail, as the institutional holdings are minor. North Shore has 36.84M outstanding shares and currently has a market cap of CA$1.47 million. It has traded in the past 52 weeks between CA$0.04 and CA$0.30 per share. Skyharbour Resources Ltd. Skyharbour Resources Ltd. (SYH:TSX.V; SYHBF:OTCQX; SC1P:FSE) has an extensive portfolio of uranium exploration projects in Canada's Athabasca Basin, with 29 projects, 10 of which are drill-ready, covering over 1.4 million acres of mineral claims. In addition to being a high-grade uranium exploration company, Skyharbour utilizes a prospect generator strategy by bringing in partner companies to advance its secondary assets.[OWNERSHIP_CHART-6026] In an updated research note on July 24, Analyst Sid Rajeev of Fundamental Research Corp. wrote that Skyharbour "owns one of the largest portfolios among uranium juniors in the Athabasca Basin." "Given the highly vulnerable uranium supply chain, we anticipate continued consolidation within the sector," wrote Rajeev, who reiterated the firm's Buy rating and adjusted its fair value estimate from CA$1.16 to CA$1.21 per share. "Additionally, the rapidly growing demand for energy from the AI industry is likely to accelerate the adoption of nuclear power, which should, in turn, spotlight uranium juniors in the coming months." Skyharbour acquired from Denison Mines, a large strategic shareholder of the company, a 100% interest in the Moore Uranium Project, which is located 15 kilometers east of Denison's Wheeler River project and 39 kilometers south of Cameco's McArthur River uranium mine. Moore is an advanced-stage uranium exploration property with high-grade uranium mineralization at the Maverick Zone, including highlight drill results of 6.0% U3O8 over 5.9 meters, including 20.8% U3O8 over 1.5 meters at a vertical depth of 265 meters. Adjacent to the Moore Uranium Project is Skyharbour's Russell Lake Uranium Project optioned from Rio Tinto, which hosts historical high-grade drill intercepts over a large property area with robust exploration upside potential. The 73,294-ha Russell Lake Uranium Property is strategically located in the central core of the Eastern Athabasca Basin of northern Saskatchewan. Skyharbour has recently discovered high-grade uranium mineralization in a new zone at Russell and is carrying out an additional 7-8,000-meter drill campaign across both Russell and Moore. Management, insiders, and close business associates own approximately 5% of Skyharbour. According to Reuters, President and CEO Trimble owns 1.6%, and Director David Cates owns 0.70%. Institutional, corporate, and strategic investors own approximately 55% of the company. Denison Mines owns 6.3%, Rio Tinto owns 2.0%, Extract Advisors LLC owns 9%, Alps Advisors Inc. owns 9.91%, Mirae Asset Global Investments (U.S.A) L.L.C. owns 6.29%, Sprott Asset Management L.P. owns 1.5%, and Incrementum AG owns 1.18%, Reuters reported. There are 182.53 million shares outstanding with 178 million free float traded shares, while the company has a market cap of CA$89.44 million and trades in a 52-week range of CA$0.31 and CA$0.64. ATHA Energy Corp. Atha Energy Corp. (SASK:TSX.V; SASKF:OTCMKTS) is a Canadian mineral company engaged in the acquisition, exploration, and development of uranium assets with a portfolio including three 100%-owned post-discovery uranium projects (the Angilak Project located in Nunavut, and CMB Discoveries in Labrador hosting historical resource estimates of 43.3 million pounds and 14.5 million pounds U3O8 respectively, and the newly discovered basement-hosted GMZ high-grade uranium discovery located in the Athabasca Basin).[OWNERSHIP_CHART-11007] In addition, the company said it holds the largest cumulative prospective exploration land package (more than 8.5 million acres) in two of the world's most prominent basins for uranium discoveries. ATHA also holds a 10% carried interest in key Athabasca Basin exploration projects operated by NexGen Energy Ltd. and IsoEnergy Ltd. Technical Analyst Maund considers Atha Energy to be "THE top play in the uranium sector" and has an Immediate Strong Buy rating on it, he wrote in the previously mentioned Oct. 17 report. The company's 3-, 13- and 26-month charts indicate its stock price had been in a bear market since trading began until September, when it had an upwave or preliminary breakout. This, along with other indicators, including positive accumulation-distribution convergence and high volume, suggest another upleg is expected soon, he said. "Given the outlook for the uranium price and what Atha Energy has going for it, its stock is astoundingly cheap after its persistent downtrend this year," Maund wrote. According to Refinitiv, 10 management and insiders own 16.44% of Atha Energy. The Top 5 are Timothy Young with 6.32%, Matthew Mason with 5.8%, Atha Chairman Michael Castanho with 1.16%, and Atha Director Sean Kallir with 0.9%. Seven institutional investors together hold 9.38%. The Top 3 are Alps Advisors Inc. with 6.26%, Sprott Asset Management LP with 1.3%, and Vident Investment Advisory LLC with 0.8%. The remaining 74.18% of Atha is in retail. According to the company, it has 277.9M shares outstanding, 14M options, 4M restricted stock units/performance rights, and 10.2M warrants. Reuters reports Atha's market cap is CA$208.42 million, and its 52-week range is CA$0.46−$1.42 per share. Sign up for our FREE newsletter at: www.streetwisereports.com/get-newsImportant Disclosures: Skyharbour Resources Ltd. and Terra Clean Energy Corp. are billboard sponsors of Streetwise Reports and pay SWR a monthly sponsorship fee between US$4,000 and US$5,000. In addition, Terra Clean Energy has a consulting relationship with Street Smart an affiliate of Streetwise Reports. Street Smart Clients pay a monthly consulting fee between US$8,000 and US$20,000. As of the date of this article, officers and/or employees of Streetwise Reports LLC (including members of their household) own securities of North Shore Uranium Ltd., Uranium Energy Corp., and Terra Clean Energy. Steve Sobek wrote this article for Streetwise Reports LLC and provides services to Streetwise Reports as an employee. This article does not constitute investment advice and is not a solicitation for any investment. Streetwise Reports does not render general or specific investment advice and the information on Streetwise Reports should not be considered a recommendation to buy or sell any security. Each reader is encouraged to consult with his or her personal financial adviser and perform their own comprehensive investment research. By opening this page, each reader accepts and agrees to Streetwise Reports' terms of use and full legal disclaimer. Streetwise Reports does not endorse or recommend the business, products, services or securities of any company. For additional disclosures, please click here. ( Companies Mentioned: SASK:TSX.V; SASKF:OTCMKTS, FIND:TSX.V; BSENF:OTCQB, NSU:TSX, SYH:TSX.V; SYHBF:OTCQX; SC1P:FSE, TCEC:CSE; TCEFF:OTC; T1KC:FSE, UEC:NYSE AMERICAN, ) Full Article