allo Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines By scripts.iucr.org Published On :: 2020-01-31 Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays. Full Article text
allo Towards the spatial resolution of metalloprotein charge states by detailed modeling of XFEL crystallographic diffraction By scripts.iucr.org Published On :: 2020-02-04 Oxidation states of individual metal atoms within a metalloprotein can be assigned by examining X-ray absorption edges, which shift to higher energy for progressively more positive valence numbers. Indeed, X-ray crystallography is well suited for such a measurement, owing to its ability to spatially resolve the scattering contributions of individual metal atoms that have distinct electronic environments contributing to protein function. However, as the magnitude of the shift is quite small, about +2 eV per valence state for iron, it has only been possible to measure the effect when performed with monochromated X-ray sources at synchrotron facilities with energy resolutions in the range 2–3 × 10−4 (ΔE/E). This paper tests whether X-ray free-electron laser (XFEL) pulses, which have a broader bandpass (ΔE/E = 3 × 10−3) when used without a monochromator, might also be useful for such studies. The program nanoBragg is used to simulate serial femtosecond crystallography (SFX) diffraction images with sufficient granularity to model the XFEL spectrum, the crystal mosaicity and the wavelength-dependent anomalous scattering factors contributed by two differently charged iron centers in the 110-amino-acid protein, ferredoxin. Bayesian methods are then used to deduce, from the simulated data, the most likely X-ray absorption curves for each metal atom in the protein, which agree well with the curves chosen for the simulation. The data analysis relies critically on the ability to measure the incident spectrum for each pulse, and also on the nanoBragg simulator to predict the size, shape and intensity profile of Bragg spots based on an underlying physical model that includes the absorption curves, which are then modified to produce the best agreement with the simulated data. This inference methodology potentially enables the use of SFX diffraction for the study of metalloenzyme mechanisms and, in general, offers a more detailed approach to Bragg spot data reduction. Full Article text
allo The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution By scripts.iucr.org Published On :: 2020-02-28 The performance of automated protein model building usually decreases with resolution, mainly owing to the lower information content of the experimental data. This calls for a more elaborate use of the available structural information about macromolecules. Here, a new method is presented that uses structural homologues to improve the quality of protein models automatically constructed using ARP/wARP. The method uses local structural similarity between deposited models and the model being built, and results in longer main-chain fragments that in turn can be more reliably docked to the protein sequence. The application of the homology-based model extension method to the example of a CFA synthase at 2.7 Å resolution resulted in a more complete model with almost all of the residues correctly built and docked to the sequence. The method was also evaluated on 1493 molecular-replacement solutions at a resolution of 4.0 Å and better that were submitted to the ARP/wARP web service for model building. A significant improvement in the completeness and sequence coverage of the built models has been observed. Full Article text
allo The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo By scripts.iucr.org Published On :: 2020-03-25 Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC. Full Article text
allo Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography By journals.iucr.org Published On :: Full Article Still image
allo The TELL automatic sample changer for macromolecular crystallography By scripts.iucr.org Published On :: 2020-03-31 In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL. Full Article text
allo ID30A-3 (MASSIF-3) – a beamline for macromolecular crystallography at the ESRF with a small intense beam By scripts.iucr.org Published On :: 2020-04-29 ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s−1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described. Full Article text
allo ClickX: a visualization-based program for preprocessing of serial crystallography data By scripts.iucr.org Published On :: 2019-05-28 Serial crystallography is a powerful technique in structure determination using many small crystals at X-ray free-electron laser or synchrotron radiation facilities. The large diffraction data volumes require high-throughput software to preprocess the raw images for subsequent analysis. ClickX is a program designated for serial crystallography data preprocessing, capable of rapid data sorting for online feedback and peak-finding refinement by parameter optimization. The graphical user interface (GUI) provides convenient access to various operations such as pattern visualization, statistics plotting and parameter tuning. A batch job module is implemented to facilitate large-data-volume processing. A two-step geometry calibration for single-panel detectors is also integrated into the GUI, where the beam center and detector tilting angles are optimized using an ellipse center shifting method first, then all six parameters, including the photon energy and detector distance, are refined together using a residual minimization method. Implemented in Python, ClickX has good portability and extensibility, so that it can be installed, configured and used on any computing platform that provides a Python interface or common data file format. ClickX has been tested in online analysis at the Pohang Accelerator Laboratory X-ray Free-Electron Laser, Korea, and the Linac Coherent Light Source, USA. It has also been applied in post-experimental data analysis. The source code is available via https://github.com/LiuLab-CSRC/ClickX under a GNU General Public License. Full Article text
allo Protein crystal structure determination with the crystallophore, a nucleating and phasing agent By scripts.iucr.org Published On :: 2019-06-28 Obtaining crystals and solving the phase problem remain major hurdles encountered by bio-crystallographers in their race to obtain new high-quality structures. Both issues can be overcome by the crystallophore, Tb-Xo4, a lanthanide-based molecular complex with unique nucleating and phasing properties. This article presents examples of new crystallization conditions induced by the presence of Tb-Xo4. These new crystalline forms bypass crystal defects often encountered by crystallographers, such as low-resolution diffracting samples or crystals with twinning. Thanks to Tb-Xo4's high phasing power, the structure determination process is greatly facilitated and can be extended to serial crystallography approaches. Full Article text
allo High-performance Python for crystallographic computing By scripts.iucr.org Published On :: 2019-07-24 The Python programming language, combined with the numerical computing library NumPy and the scientific computing library SciPy, has become the de facto standard for scientific computing in a variety of fields. This popularity is mainly due to the ease with which a Python program can be written and executed (easy syntax, dynamical typing, no compilation etc.), coupled with the existence of a large number of specialized third-party libraries that aim to lift all the limitations of the raw Python language. NumPy introduces vector programming, improving execution speeds, whereas SciPy brings a wealth of highly optimized and reliable scientific functions. There are cases, however, where vector programming alone is not sufficient to reach optimal performance. This issue is addressed with dedicated compilers that aim to translate Python code into native and statically typed code with support for the multi-core architectures of modern processors. In the present article it is shown how these approaches can be efficiently used to tackle different problems, with increasing complexity, that are relevant to crystallography: the 2D Laue function, scattering from a strained 2D crystal, scattering from 3D nanocrystals and, finally, diffraction from films and multilayers. For each case, detailed implementations and explanations of the functioning of the algorithms are provided. Different Python compilers (namely NumExpr, Numba, Pythran and Cython) are used to improve performance and are benchmarked against state-of-the-art NumPy implementations. All examples are also provided as commented and didactic Python (Jupyter) notebooks that can be used as starting points for crystallographers curious to enter the Python ecosystem or wishing to accelerate their existing codes. Full Article text
allo Crystallography at the nanoscale: planar defects in ZnO nanospikes By scripts.iucr.org Published On :: 2019-08-29 The examination of anisotropic nanostructures, such as wires, platelets or spikes, inside a transmission electron microscope is normally performed only in plan view. However, intrinsic defects such as growth twin interfaces could occasionally be concealed from direct observation for geometric reasons, leading to superposition. This article presents the shadow-focused ion-beam technique to prepare multiple electron-beam-transparent cross-section specimens of ZnO nanospikes, via a procedure which could be readily extended to other anisotropic structures. In contrast with plan-view data of the same nanospikes, here the viewing direction allows the examination of defects without superposition. By this method, the coexistence of two twin configurations inside the wurtzite-type structure is observed, namely [2 {overline 1} {overline 1} 0]^{ m W}/(0 1 {overline 1} 1) and [2 {overline 1} {overline 1} 0]^{ m W}/(0 1 {overline 1} 3), which were not identified during the plan-view observations owing to superposition of the domains. The defect arrangement could be the result of coalescence twinning of crystalline nuclei formed on the partially molten Zn substrate during the flame-transport synthesis. Three-dimensional defect models of the twin interface structures have been derived and are correlated with the plan-view investigations by simulation. Full Article text
allo Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys By scripts.iucr.org Published On :: 2019-09-20 Single-crystal elastic constants have been derived by lattice strain measurements using neutron diffraction on polycrystalline Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo and Ti-3Al-8V-6Cr-4Zr-4Mo alloy samples. A variety of model approximations for the grain-to-grain interactions, namely approaches by Voigt, Reuss, Hill, Kroener, de Wit and Matthies, including texture weightings, have been applied and compared. A load-transfer approach for multiphase alloys was also implemented and the results are compared with single-phase data. For the materials under investigation, the results for multiphase alloys agree well with the results for single-phase materials in the corresponding phases. In this respect, all eight elastic constants in the dual-phase Ti-6Al-2Sn-4Zr-6Mo alloy have been derived for the first time. Full Article text
allo The site-symmetry induced representations of layer groups on the Bilbao Crystallographic Server By scripts.iucr.org Published On :: 2019-10-04 The section of the Bilbao Crystallographic Server (http://www.cryst.ehu.es) dedicated to subperiodic groups includes a new tool called LSITESYM for the study of materials with layer and multilayer symmetry. This new program, based on the site-symmetry approach, establishes the symmetry relations between localized and extended crystal states using representations of layer groups. The efficiency and utility of the program LSITESYM is demonstrated by illustrative examples, which include the analysis of phonon symmetry in Aurivillius compounds and in van der Waals layered crystals MoS2 and WS2. Full Article text
allo DatView: a graphical user interface for visualizing and querying large data sets in serial femtosecond crystallography By scripts.iucr.org Published On :: 2019-10-31 DatView is a new graphical user interface (GUI) for plotting parameters to explore correlations, identify outliers and export subsets of data. It was designed to simplify and expedite analysis of very large unmerged serial femtosecond crystallography (SFX) data sets composed of indexing results from hundreds of thousands of microcrystal diffraction patterns. However, DatView works with any tabulated data, offering its functionality to many applications outside serial crystallography. In DatView's user-friendly GUI, selections are drawn onto plots and synchronized across all other plots, so correlations between multiple parameters in large multi-parameter data sets can be rapidly identified. It also includes an item viewer for displaying images in the current selection alongside the associated metadata. For serial crystallography data processed by indexamajig from CrystFEL [White, Kirian, Martin, Aquila, Nass, Barty & Chapman (2012). J. Appl. Cryst. 45, 335–341], DatView generates a table of parameters and metadata from stream files and, optionally, the associated HDF5 files. By combining the functionality of several commonly needed tools for SFX in a single GUI that operates on tabulated data, the time needed to load and calculate statistics from large data sets is reduced. This paper describes how DatView facilitates (i) efficient feedback during data collection by examining trends in time, sample position or any parameter, (ii) determination of optimal indexing and integration parameters via the comparison mode, (iii) identification of systematic errors in unmerged SFX data sets, and (iv) sorting and highly flexible data filtering (plot selections, Boolean filters and more), including direct export of subset CrystFEL stream files for further processing. Full Article text
allo High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure By scripts.iucr.org Published On :: 2019-10-17 A sample-injection device has been developed at SPring-8 Angstrom Compact Free-Electron Laser (SACLA) for serial femtosecond crystallography (SFX) at atmospheric pressure. Microcrystals embedded in a highly viscous carrier are stably delivered from a capillary nozzle with the aid of a coaxial gas flow and a suction device. The cartridge-type sample reservoir is easily replaceable and facilitates sample reloading or exchange. The reservoir is positioned in a cooling jacket with a temperature-regulated water flow, which is useful to prevent drastic changes in the sample temperature during data collection. This work demonstrates that the injector successfully worked in SFX of the human A2A adenosine receptor complexed with an antagonist, ZM241385, in lipidic cubic phase and for hen egg-white lysozyme microcrystals in a grease carrier. The injection device has also been applied to many kinds of proteins, not only for static structural analyses but also for dynamics studies using pump–probe techniques. Full Article text
allo Successful sample preparation for serial crystallography experiments By scripts.iucr.org Published On :: 2019-11-14 Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers. Full Article text
allo Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations By scripts.iucr.org Published On :: 2020-02-01 Crystallographic textures, as they develop for example during cold forming, can have a significant influence on the mechanical properties of metals, such as plastic anisotropy. Textures are typically characterized by a non-uniform distribution of crystallographic orientations that can be measured by diffraction experiments like electron backscatter diffraction (EBSD). Such experimental data usually contain a large number of data points, which must be significantly reduced to be used for numerical modeling. However, the challenge in such data reduction is to preserve the important characteristics of the experimental data, while reducing the volume and preserving the computational efficiency of the numerical model. For example, in micromechanical modeling, representative volume elements (RVEs) of the real microstructure are generated and the mechanical properties of these RVEs are studied by the crystal plasticity finite element method. In this work, a new method is developed for extracting a reduced set of orientations from EBSD data containing a large number of orientations. This approach is based on the established integer approximation method and it minimizes its shortcomings. Furthermore, the L1 norm is applied as an error function; this is commonly used in texture analysis for quantitative assessment of the degree of approximation and can be used to control the convergence behavior. The method is tested on four experimental data sets to demonstrate its capabilities. This new method for the purposeful reduction of a set of orientations into equally weighted orientations is not only suitable for numerical simulation but also shows improvement in results in comparison with other available methods. Full Article text
allo In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin By scripts.iucr.org Published On :: 2020-03-25 Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis. Full Article text
allo Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography By scripts.iucr.org Published On :: 2020-03-25 Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Å resolution. Full Article text
allo Protein crystal structure determination with the crystallophore, a nucleating and phasing agent By journals.iucr.org Published On :: The unique nucleating and phasing capabilities of the crystallophore, Tb-Xo4, are illustrated through challenging cases. Full Article text
allo 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography By journals.iucr.org Published On :: The design and assembly of two 3D-printed holders for high-throughput in meso in situ fixed-target crystallographic data collection are described. Full Article text
allo Pattern matching indexing of Laue and monochromatic serial crystallography data for applications in Materials Science By journals.iucr.org Published On :: An algorithm, based on the matching of q-vectors pairs, is combined with three-dimensional pattern matching using a nearest-neighbors approach to index Laue and monochromatic serial crystallography data recorded on small unit cell samples. Full Article text
allo Forthcoming article in Journal of Applied Crystallography By journals.iucr.org Published On :: Full Article Still image
allo Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography By scripts.iucr.org Published On :: 2020-04-16 This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination. Full Article text
allo Synthesis and crystallographic, spectroscopic and computational characterization of the effects of O—R substituents on the torsional[torsion] angle of 3,3',4,4'-substituted biphenyls By journals.iucr.org Published On :: The synthesis, characterization and study of structures from a series of biphenyls substituted at positions 3, 3', 4 and 4' with groups connected to the biphenyl core through oxygen atoms are presented here. The molecular conformation is extensively studied both in the solid as well as in the liquid state, and the effect of different actors (such as packing and chain length) on the torsion angle between aromatic rings is analyzed. Full Article text
allo A new ZnII metallocryptand with unprecedented diflexure helix induced by V-shaped diimidazole building blocks By journals.iucr.org Published On :: A new ZnII metallocryptand is presented, with an unprecedented diflexure helix. Full Article text
allo Forthcoming article in Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials By journals.iucr.org Published On :: Full Article Still image
allo Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport By journals.iucr.org Published On :: This article reports conformational polymorphisms of the EF-hand protein MCFD2 which is involved in glycoprotein transport.. Full Article text
allo Open-access and free articles in Acta Crystallographica Section F: Structural Biology and Crystallization Communications By journals.iucr.org Published On :: Full Article Still image
allo “Death Star” Shreds, Swallows Dwarf Planet By insider.si.edu Published On :: Tue, 22 Jun 2010 11:23:55 +0000 It seems the stuff of science fiction, but astronomers have found a real-life “Death Star” that shredded a rocky planet and is swallowing the dusty remains. The post “Death Star” Shreds, Swallows Dwarf Planet appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics planets Smithsonian Astrophysical Observatory
allo A Halloween roundup featuring recent articles on spiders, bats and rats By insider.si.edu Published On :: Tue, 26 Oct 2010 14:38:34 +0000 A roundup of recent articles featuring spiders, bats and rats.... The post A Halloween roundup featuring recent articles on spiders, bats and rats appeared first on Smithsonian Insider. Full Article Animals Science & Nature bats biodiversity endangered species insects mammals National Museum of Natural History Smithsonian Environmental Research Center Smithsonian's National Zoo spiders
allo Varied diet has allowed gray whales to survive millions of years, study reveals By insider.si.edu Published On :: Thu, 07 Jul 2011 05:46:03 +0000 Gray whales survived many cycles of global cooling and warming over the past few million years, likely by exploiting a more varied diet than they do today, according to a new study by University of California, Berkeley, and Smithsonian Institution paleontologists. The post Varied diet has allowed gray whales to survive millions of years, study reveals appeared first on Smithsonian Insider. Full Article Animals Dinosaurs & Fossils Marine Science Research News Science & Nature climate change endangered species extinction mammals National Museum of Natural History prehistoric whales
allo Digital technology allows Alexander Graham Bell’s 1880s disc recordings to be played again By insider.si.edu Published On :: Wed, 14 Dec 2011 13:44:56 +0000 In 2011, scholars from three institutions—National Museum of American History Curators Carlene Stephens and Shari Stout, Library of Congress Digital Conversion Specialist Peter Alyea and Lawrence Berkeley National Laboratory Scientists Carl Haber and Earl Cornell—came together in a newly designed preservation laboratory at the Library of Congress to recover sound from those recordings made more than 100 years ago. The post Digital technology allows Alexander Graham Bell’s 1880s disc recordings to be played again appeared first on Smithsonian Insider. Full Article History & Culture Science & Nature bees conservation materials science National Museum of American History technology
allo Unseen planet’s gravity allows Kepler Telescope to “see” it By insider.si.edu Published On :: Wed, 16 May 2012 19:20:19 +0000 Researchers led by David Nesvorny of Southwest Research Institute and David Kipping of the Harvard-Smithsonian Center for Astrophysics has inferred an unseen planet, this time orbiting a distant star, marking the first success of this technique outside the solar system. The post Unseen planet’s gravity allows Kepler Telescope to “see” it appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian planets Smithsonian Astrophysical Observatory
allo Unlocking secrets–technology allows scientists to peer inside great apes By insider.si.edu Published On :: Thu, 13 Mar 2014 11:00:18 +0000 The largest fully preserved great ape collection in the world is about to make its online debut. The post Unlocking secrets–technology allows scientists to peer inside great apes appeared first on Smithsonian Insider. Full Article Animals Anthropology Research News Science & Nature technology
allo Star set to swallow two planets By insider.si.edu Published On :: Tue, 03 Jun 2014 12:04:13 +0000 Two worlds orbiting a distant star are about to become a snack of cosmic proportions. Astronomers have announced that the planets Kepler-56b and Kepler-56c will […] The post Star set to swallow two planets appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian planets Smithsonian Astrophysical Observatory
allo Biological fallout of shale-gas production still largely unknown By insider.si.edu Published On :: Fri, 01 Aug 2014 13:07:37 +0000 In the United States, natural-gas production from shale rock has increased by more than 700 percent since 2007. Yet scientists still do not fully understand […] The post Biological fallout of shale-gas production still largely unknown appeared first on Smithsonian Insider. Full Article Research News Science & Nature conservation conservation biology materials science pollution Smithsonian Conservation Biology Institute technology
allo Miniaturized GPS Tags Allow Tracking of Small Songbirds for first time By insider.si.edu Published On :: Mon, 15 Jun 2015 12:10:02 +0000 For the first time, researchers at the Smithsonian Conservation Biology Institute’s Migratory Bird Center have accurately tracked small migratory ovenbirds (Seiurus aurocapilla) to their tropical […] The post Miniaturized GPS Tags Allow Tracking of Small Songbirds for first time appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature birds Migratory Bird Center migratory birds technology
allo Odd anatomy: flexible joint between skull and spine allow dragonfish to open wide By insider.si.edu Published On :: Wed, 01 Feb 2017 22:09:39 +0000 Food is scarce in the deep, dark regions of the ocean where barbeled dragonfishes and their relatives dwell. Known as the Stomiidae, some of these […] The post Odd anatomy: flexible joint between skull and spine allow dragonfish to open wide appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature fishes National Museum of Natural History
allo Macromolecular X-ray crystallography: soon to be a road less travelled? By scripts.iucr.org Published On :: 2020-04-30 The number of new X-ray crystallography-based submissions to the Protein Data Bank appears to be at the beginning of a decline, perhaps signalling an end to the era of the dominance of X-ray crystallography within structural biology. This letter, from the viewpoint of a young structural biologist, applies the Copernican method to the life expectancy of crystallography and asks whether the technique is still the mainstay of structural biology. A study of the rate of Protein Data Bank depositions allows a more nuanced analysis of the fortunes of macromolecular X-ray crystallography and shows that cryo-electron microscopy might now be outcompeting crystallography for new labour and talent, perhaps heralding a change in the landscape of the field. Full Article text
allo Remove the Press Allow to watch the video Notification Page By www.bleepingcomputer.com Published On :: Wed, 11 Mar 2020 08:24:11 EDT If you see a web site that states "Press <> to watch the video" and then prompts you to allow browser notifications, do not click on the allow button. These sites are just trying to trick you into subscribing to their browser notifications so that they can send notification spam directly to your desktop. This article was published first at Remove the Press Allow to watch the video Notification Page Full Article Spyware Removal Virus Removal Malware Removal Security Press Allow to watch the video Notification Page Adware
allo New invasive species database allows public to ID marine invaders with a home computer By insider.si.edu Published On :: Mon, 12 Mar 2012 14:53:42 +0000 The Smithsonian Environmental Research Center has created NEMESIS--National Estuarine and Marine Exotic Species Information System--an online public database that provides key information about the non-native marine species throughout the United States. The post New invasive species database allows public to ID marine invaders with a home computer appeared first on Smithsonian Insider. Full Article Marine Science Plants Science & Nature climate change conservation biology endangered species invasive species new species Smithsonian Environmental Research Center technology
allo Forthcoming article in Acta Crystallographica Section E Crystallographic Communications By journals.iucr.org Published On :: Full Article Still image
allo Gjønnes Medal in Electron Crystallography – call for nominations By scripts.iucr.org Published On :: 2019-01-01 Full Article text
allo Selling reduction versus Niggli reduction for crystallographic lattices By scripts.iucr.org Published On :: 2019-01-01 The unit-cell reduction described by Selling and used by Delone (whose early publications were under the spelling Delaunay) is explained in a simple form. The transformations needed to implement the reduction are listed. The simplicity of this reduction contrasts with the complexity of Niggli reduction. Full Article text
allo My Chrome Browser is not allowing me to access YouTube???? By www.bleepingcomputer.com Published On :: 2020-05-02T10:11:43-05:00 Full Article