automotive

Automotive and aerospace quality excellence being transferred to other manufacturing sectors

Manufacturers in the rail, marine, defence and household good sectors can now benefit from more than 25 years of automotive and aerospace quality excellence as G&P is undergoing a proactive diversification drive across adjacent sectors.




automotive

Monitoring and Evaluation of Production Processes An Analysis of the Automotive Industry

Location: Electronic Resource- 





automotive

Dulux Paints maker Akzo Nobel India's Q2 profit rises on automotive sector demand

Akzo Nobel India reported a 14% increase in net profit to Rs 108.7 crore in the fourth quarter, driven by higher demand from the automotive sector. Despite muted retail demand due to higher rainfall and price hikes, the company's revenue from operations rose 3% to Rs 9.82 billion.




automotive

Aspiring Automotive Engineer Terry Charlemagne

[Written by Anya Thompson] At Cedarbridge Academy, some students shine not just in academics but also in practical, hands-on fields. Terry Charlemagne, a dedicated student with a passion for mechanics, is one of them. From turbocharged car projects to mastering vehicle operation, Terry has cultivated a distinctive skill set that distinguishes him from his peers. […]




automotive

Transforming Industrial and Automotive Manufacturing

Divergent Technologies developed a digital production system that can revolutionize automotive and industrial scale manufacturing. Divergent uses new manufacturing solutions and their Divergent Adaptive Production System (DAPS™) software to make […]

The post Transforming Industrial and Automotive Manufacturing appeared first on HPCwire.




automotive

SolidWorks to sponsor elite automotive engineering teams in Formula SAE and Formula Student design competitions

Formula SAE and Formula Student teams increasingly demand SolidWorks software for its ease of use and integrated design analysis




automotive

SolidWorks brings design flexibility, streamlined product development, and system stability to ATW automotive division

Leading assembly automation and testing company to standardize on SolidWorks Office Professional, securely manage design data with PDMWorks




automotive

Navigating Chiplet-Based Automotive Electronics Design with Advanced Tools and Flows

In the rapidly evolving landscape of automotive electronics, traditional monolithic design approaches are giving way to something more flexible and powerful—chiplets. These modular microchips, which are themselves parts of a whole silicon system, offer unparalleled potential for improving system performance, reducing manufacturing costs, and accelerating time-to-market in the automotive sector. However, the transition to working with chiplets in automotive electronics is not without its challenges.

Designers must now grapple with a new set of considerations, such as die-to-die interconnect standards, complex processes, and the integration of diverse IPs. Advanced toolsets and standardized design approaches are required to meet these challenges head-on and elevate the potential of chiplets in automotive innovation. In the following discourse, we will explore in detail the significance of chiplets in the context of automotive electronics, the obstacles designers face when working with this paradigm, and how Cadence comprehensive suite of IPs, tools, and flows is pioneering solutions to streamline the chiplet design process.

Unveiling Chiplets in Automotive Electronics

For automotive electronics, chiplets offer a methodology to modularize complex functionalities, integrate different chiplets into a package, and significantly enhance scalability and manufacturability. By breaking down semiconductor designs into a collection of chiplets, each fulfilling specific functions, automotive manufacturers can mix and match chiplets to rapidly prototype new designs, update existing ones, and specialize for the myriad of use cases found in vehicles today.

The increasing significance of chiplets in automotive electronics comes as a response to several industry-impacting phenomena. The most obvious among these is the physical restriction of Moore's Law, as large die sizes lead to poor yields and escalating production costs. Chiplets with localized process specialization can offer superior functionality at a more digestible cost, maintaining a growth trajectory where monolithic designs cannot. Furthermore, chiplets support the assembly of disparate technologies onto a single subsystem, providing a comprehensive yet adaptive solution to the diverse demands present in modern vehicles, such as central computing units, advanced driver-assistance systems (ADAS), infotainment units, and in-vehicle networks. This chiplet-based approach to functional integration in automotive electronics necessitates intricate design, optimization, and validation strategies across multiple domains.

The Complexity Within Chiplets

Yet, with the promise of chiplets comes a series of intricate design challenges. Chiplets necessitate working across multiple substrates and technologies, rendering the once-familiar 2-dimensional design space into the complex reality of multi-layered, sometimes even three-dimensional domains. The intricacies embedded within this design modality mandate devoting considerable attention to partitioning trade-offs, signal integrity across multiple substrates, thermal behavior of stacked dies, and the emergence of new assembly design kits to complement process design kits (PDKs).

To effectively address these complexities, designers must wield sophisticated tools that facilitate co-design, co-analysis, and the creation of a robust virtual platform for architectural exploration. Standardizations like the Universal Chip Interconnect Express (UCIe) have been influential, providing a die-to-die interconnect foundation for chiplets that is both standardized and automotive-ready. The availability of UCIe PHY and controller IP from Cadence and other leading developers further eases the integration of chiplets in automotive designs.

The Role of Foundries and Packaging in Chiplets

Foundries have also pivoted their services to become a vital part of the chiplet process, providing specialized design kits that cater to the unique requirements of chiplets. In tandem, packaging has morphed from being a mere logistical afterthought to a value-added aspect of chiplets. Organizations now look to packaging to deliver enhanced performance, reduced power consumption, and the integrity required by the diverse range of technologies encompassed in a single chip or package. This shift requires advanced multiscale design and analysis strategies that resonate across a spectrum of design domains.

Tooling Up for Chiplets with Cadence

Cadence exemplifies the rise of comprehensive tooling and workflows to facilitate chiplet-based automotive electronics design. Their integrations address the challenges that chiplet-based SoCs present, ensuring a seamless design process from the initial concept to production. The Cadence suite of tools is tailored to work across design domains, ensuring coherence and efficiency at every step of the chiplet integration process.

For instance, Cadence Virtuoso RF subflows have become critical in navigating radio frequency (RF) challenges within the chiplets, while tools such as the Integrity 3D-IC Platform and the Allegro Advanced Multi-Die Package Design Solution have surfaced to enable comprehensive multi-die package designs. The Integrity Signal Planner extends its capabilities into the chiplet ecosystem, providing a centralized platform where system-wide signal integrity can be proactively managed. Sigrity and Celsius, on the other hand, offer universally applicable solutions that take on the challenges of chiplets in signal integrity and thermal considerations, irrespective of the design domain. Each of these integrated analysis solutions underscores the intricate symphony between technology, design, and packaging essential in unlocking the potential of chiplets for automotive electronics.

Cadence portfolio includes solutions for system analysis, optimization, and signoff to complement these domain-specific tools, ensuring that the challenges of chiplet designs don't halt progress toward innovative automotive electronics. Cadence enables designers to engage in power- and thermal-aware design practices through their toolset, a necessity as automotive systems become increasingly sophisticated and power-efficient.

A Standardized Approach to Success with Chiplets

Cadence’s support for UCIe underscores the criticality of standardized approaches for heterogeneous integration by conforming to UCIe standards, which numerous industry stakeholders back. By co-chairing the UCIe Automotive working group, Cadence ensures that automotive designs have a universal and standardized Die-to-Die (D2D) high-speed interface through which chiplets can intercommunicate, unleashing the true potential of modular design.

Furthermore, Cadence champions the utilization of virtual platforms by providing transaction-level models (TLMs) for their UCIe D2D IP to simulate the interaction between chiplets at a higher level of abstraction. Moreover, individual chiplets can be simulated within a chiplet-based SoC context leveraging virtual platforms. Utilizing UVM or SCE-MI methodologies, TLMs, and virtual platforms serve as first lines of defense in identifying and addressing issues early in the design process before physical silicon even enters the picture.

Navigating With the Right Tools

The road to chiplet-driven automotive electronics is one paved with complexity, but with a commitment to standards, it is a path that promises significant rewards. By leveraging Cadence UCIe Design and Verification IP, tools, and methodologies, automotive designers are empowered to chart a course toward chiplets and help to establish a chiplet ecosystem. With challenges ranging from die-to-die interconnect to standardization, heterogeneous integration, and advanced packaging, the need for a seamless integrated flow and highly automated design approaches has never been more apparent. Companies like Cadence are tackling these challenges, providing the key technology for automotive designers seeking to utilize chiplets for the next-generation E/E architecture of vehicular technology.

In summary, chiplets have the potential to revolutionize the automotive electronics industry, breathing new life into the way vehicles are designed, manufactured, and operated. By understanding the significance of chiplets and addressing the challenges they present, automotive electronics is poised for a paradigm shift—one that combines the art of human ingenuity with the power of modular and scalable microchips to shape a future that is not only efficient but truly intelligent.

Learn more about how Cadence can help to enable automakers and OEMs with various aspects of automotive design.




automotive

How Cadence Is Revolutionizing Automotive Sensor Fusion

The automotive industry is currently on the cusp of a radical evolution, steering towards a future where cars are not just vehicles but sophisticated, software-defined vehicles (SDV). This shift is marked by an increased reliance on automation and a significant increase in the use of sensors to improve safety and reliability. However, the increasing number of sensors has led to higher compute demands and poses challenges in managing a wide variety of data. The traditional method of using separate processors to manage each sensor's data is becoming obsolete. The current trends necessitate a unified processing system that can deal with multimodal sensor data, utilizing traditional Digital Signal Processing (DSP) and AI-driven algorithms. This approach allows for more efficient and reliable sensor fusion, significantly enhancing vehicle perception. Developers often face difficulties adhering to stringent power, performance, area, and cost (PPAC) and timing constraints while designing automotive SoCs.

Cadence, with its groundbreaking products and AI-powered processors, is enabling designers and automotive manufacturers to meet the future sensor fusion demands within the automotive sector. At the recent CadenceLive Silicon Valley 2024, Amol Borkar, product marketing director at Cadence, showcased the company's dedication and forward-thinking solutions in a captivating presentation titled "Addressing Tomorrow’s Sensor Fusion Needs in Automotive Computing with Cadence." This blog aims to encapsulate the pivotal takeaways from the presentation. If you missed the chance to watch this presentation live, please click here to watch it.

Significant Trends in the Automotive Market – Industry Landscape

We are witnessing a revolution in automotive technology. Innovations like occupant and driver monitoring systems (OMS, DMS), 4D radar imaging, LiDAR technology, and 360-degree view are pushing the boundaries of what's possible, leading us into an era of remarkable autonomy levels—ranging from no feet or hands required to eventually no eyes needed on the road.

Sensor Fusion and Increasing Processing Demands—Sensor fusion effectively integrates data from different sensors to help vehicles understand their surroundings better. Its main benefit is in overcoming the limitations of individual sensors. For example, cameras provide detailed visual information but struggle in low-light or lousy weather. On the other hand, radar is excellent at detecting objects in these conditions but lacks the detail that cameras provide. By combining the data from multiple sensors, automotive computing can take advantage of their strengths while compensating for their weaknesses, resulting in a more reliable and robust system overall.

 

One thing to note is that the increased number of sensors produces various data types, leading to more pre-processing.

On-Device Processing—As the industry moves towards autonomy, there is an increasing need for on-device data processing instead of cloud computing to enable vehicles to make informed decisions. Embracing on-device processing is a significant advancement for facilitating real-time decisions and avoiding round-trip latency.

AI Adoption—AI has become integral to automotive applications, driving safety, efficiency, and user experience advancements. AI models offer superior performance and adaptability, making future-proofing a crucial consideration for automotive manufacturers. AI significantly enhances sensor fusion algorithms, offering scalability and adaptability beyond traditional rule-based approaches. Neural networks enable various fusion techniques, such as early fusion, late fusion, and mid-fusion, to optimize the integration and processing of sensor data.

Future Sensor Fusion Needs

Automotive architectures are continually evolving. With current trends and AI integration into radar and sensor fusion applications, SoCs should be modular, flexible, and programmable to meet market demands.

Heterogeneous Architecture- Today's vehicles are loaded with various sensors, each with a unique processing requirement. Running the application on the most suitable processor is essential to achieve the best PPA. To meet such requirements, modern automotive solutions require a heterogeneous compute approach, integrating domain-specific digital signal processors (DSPs), neural processing units (NPUs), central processing unit (CPU) clusters, graphics processing unit (GPU) clusters, and hardware accelerator blocks. A balanced heterogeneous architecture gives the best PPA solution.

Flexibility and Programmability- The industry has come a long way from using computer vision algorithms such as HOG (Histogram Oriented Gradient) to detect people and objects, HAR classifier to detect faces, etc., to CNN and LSTM-based AI to Transformer models and graphical neural networks (GNN). AI has evolved tremendously over the last ten years and continues to evolve. To keep up with the evolving rate of AI, SoC design must be flexible and programmable for updates if needed in the future.

Addressing the Sensor Fusion Needs with Cadence

Cadence offers a complete suite of hardware and software products to address the increasing compute requirements in automotive. The comprehensive portfolio of Tensilica products built on the robust 32-bit RISC architecture caters to various automotive CPU and AI needs. What makes them particularly appealing is their scalability, flexibility, and configurability, offering many options to meet diverse needs.

 

The Xtensa family of products offers high-quality, power-efficient CPUs. Tensilica family also includes AI processors like Neo NPUs for the best power, performance, and area (PPA) for AI inference on devices or more extensive applications. Cadence also offers domain-specific products for DSPs such as HIFI DSPs, specialized DSPs and accelerators for radar and vision-based processing, and a general-purpose family of products for floating point applications.

The ConnX family offers a wide range of DSPs, from compact and low-power to high-performance, optimized for radar, lidar, and communications applications in ADAS, autonomous driving, V2X, 5G/LTE/4G, wireless communications, drones, and robotics. Tensilica's ISO26262 certification ensures compliance with automotive safety standards, making it a trusted partner for advanced automotive solutions. The Cadence NeuroWeave Software Development Kit (SDK) provides customers with a uniform, scalable, and configurable ML interface and tooling that significantly improves time to market and better prepares them for a continuously evolving AI market. Cadence Tensilica offers an entire ecosystem of software frameworks and compilers for all programming styles.

Tensilica's comprehensive software stack supports programming for DSPs, NPUs, and accelerators using C++, OpenCL, Halide, and various neural network approaches. Middleware libraries facilitate applications such as SLAM, radar processing, and Eigen libraries, providing robust support for automotive software development.

Conclusion

Cadence’s Tensilica products offer a development toolchain and various IPs tailored for the automotive industry, covering audio, vision, radar, unified DSPs, and NPUs. With ISO certification and a robust partner ecosystem, Tensilica solutions are designed to meet the future needs of automotive computing, ensuring safety, efficiency, and innovation.

Learn More

 

 




automotive

Automotive Revolution with Ethernet Base-T1

The automotive industry revolutionized the definition of a vehicle in terms of safety, comfort, enhanced autonomy, and internet connectivity. With this trend, the automotive industry rapidly adopted automotive Ethernet such as 10Base-T1, 100Base-T1, and in some cases, 1000Base-T1. 

Faster Speed (than CAN-FD), Scalability, embedded security protocols (like MacSec), cost and energy efficiency, and simple yet redundant network made Ethernet an obvious choice over CAN(FD) and FlexRay.  

      

Ethernet 10Base-T1 

10BASE-T1S is defined under IEEE with 802.3cg. The S in 10BASE-T1S stands for a short distance. 10BASE-T1S uses a multidrop topology, where each node connects to a single cable. Multidrop topology eliminates the need for switches and, as a result, fewer cables/less cost. The primary goal of 10BASE-T1S is a deterministic transmission on a collision-free multidrop network. 10BASE-T1S cables use a pair of twisted wires. As per IEEE, at least eight nodes can connect to each, but more connections are feasible.   

The Physical Layer Collision Avoidance [PLCA] protocol ensures that it uses the entire 10 Mbps bandwidth. In 10BaseTs, Reconciliation Sublayer provides optional Physical Layer Collision Avoidance (PLCA) capabilities among participating stations. Using PLCA-enabled Physical Layers in CSMA/CD half-duplex shared-medium networks can provide enhanced bandwidth and improved access latency under heavily loaded traffic conditions. The working principle of PLCA is that transmit opportunities on a mixing segment are granted in sequence based on a node ID unique to the local collision domain (set by the management entity). 10BASE-T1S also supports an arbitration scheme that guarantees consistent node access to the media within a predefined time.  

The 10BASE-T1S PHY is intended to cover the low-speed/low-cost applications in the industrial and automotive environment. A large number of pins (16) required by the MII interface is one of the significant cost factors that must be addressed to fulfill this objective. The 10BASE-T1S "Transceiver" solution is suited for embedded systems where the digital portion of the PHY is fully integrated, e.g., into an MCU or an Ethernet switch core, leaving only the analog portion (the transceiver) into a separate IC. 

Ethernet 100Base-T1/1000Base-T1 

100Base-T1 and 1000Base-T1 can be used for audio/video information. With Higher bandwidth capacity, 100Base-T1/ 1000Base-T1 paired with AVB (Audio video bridging) can be used for car infotainment systems. 100Base-T1/1000Base-T1 paired with time-sensitive networking [TSN] protocol can be used to fulfill the automotive industry's mission-critical, time-sensitive, and deterministic latency needs. 

 PTP Over MacSec  

With today's automotive network, all the Electronic Control Units connected require timing accuracy and network synchronization, Precision Time Protocol (PTP), defined in IEEE 1588, provides synchronized clocks throughout a network.  While maintaining the timing accuracy for mission-critical applications, protecting the vehicle network from vulnerable threats is mandatory, and PTP over MacSec provides the consolidated solution.  

With the availability of the Cadence Verification IP for 10/100/1000BaseT1 and TSN, adopters can start working with these specifications immediately, ensuring compliance with the standard and achieving the fastest path to IP and SoC verification closure. The 10/100/1000GBaseT1 and TSN provide a full-stack solution, including support to the PHY, MAC, and TSN layers with a comprehensive coverage model and protocol checkers. Ethernet BaseT1 and TSN VIP covers all features required for complete coverage verification closure. More details are available in the Ethernet Verification IP portfolio. 

Krunal 




automotive

X-FAB's Innovative Communication and Automotive Designs: Powered by Cadence EMX Planar 3D Solver

Using the EMX solver, X-FAB design engineers can efficiently develop next-generation RF technology for the latest communication standards (including sub-6GHz 5G, mmWave, UWB, etc.), which are enabling technologies for communications and electric vehicle (EV) wireless applications. (read more)




automotive

Serbia's automotive companies drive inward investment

Foreign investment into Serbia is growing at a healthy pace thanks to its attractive automotive manufacturing industry and highly regarded free zones.




automotive

CEE ‘key for automotive R&D’

Western European carmakers should consider an R&D footprint in CEE, says McKinsey.




automotive

New Technologies and New Modes of Production Disrupt China's Automotive Industry

New Technologies and New Modes of Production Disrupt China's Automotive Industry New Technologies and New Modes of Production Disrupt China's Automotive Industry
Anonymous (not verified) Thu, 04/02/2020 - 10:25

East-West Wire

Tagline
News, Commentary, and Analysis
East-West Wire

The East-West Wire is a news, commentary, and analysis service provided by the East-West Center in Honolulu. Any part or all of the Wire content may be used by media with attribution to the East-West Center or the person quoted. To receive East-West Center Wire media releases via email, subscribe here.

For links to all East-West Center media programs, fellowships and services, see www.eastwestcenter.org/journalists.

Explore

East-West Wire

Tagline
News, Commentary, and Analysis
East-West Wire

The East-West Wire is a news, commentary, and analysis service provided by the East-West Center in Honolulu. Any part or all of the Wire content may be used by media with attribution to the East-West Center or the person quoted. To receive East-West Center Wire media releases via email, subscribe here.

For links to all East-West Center media programs, fellowships and services, see www.eastwestcenter.org/journalists.

Explore





automotive

Automotive Paint Solutions

We all love our cars. Of course the kind of convenience that it offers is something that we take for granted in our busy lives. A routine service and an occasional wash is usually our way to pamper our car. An accident or damage due to...




automotive

How to Make Use of Automotive Seat Covers

Automotive Seat Covers is one of the most outstanding ways to keep your vehicle's interior in good condition. Seat Covers of your car are an excellent asset once you want to maintain the value of your vehicle and...




automotive

Qualcomm bullish on India’s automotive growth, eyes major expansion in auto tech

At the recent Snapdragon Summit, Qualcomm launched the Snapdragon Cockpit Elite and Ride Elite platforms, designed to enhance in-car entertainment and automated driving experiences




automotive

DENSO, T-Hub tie up to promote automotive start-ups

DENSO would support T-Hub in conducting hackathons and innovation challenges targeting automotive technologies




automotive

Electronics, Robotics and Automotive Mechanics Conference [electronic journal].

IEEE Computer Society




automotive

Can 3D printing reduce environmental impacts in the automotive industry?

As 3D printing, also known as additive manufacturing (AM), begins to replace conventional manufacturing, the environmental impacts of its implementation must be assessed. This study conducted a life cycle assessment (LCA) to investigate the environmental and resource implications of using AM to manufacture the metal parts of an engine in a light distribution truck. In the LCA, the impacts of both present and possible future states of AM technology were compared with current conventional manufacturing. The results suggest that there are potential environmental and resource benefits1 to AM technologies, but that these benefits rely on the achievement of a clean energy source and further technological development.




automotive

A new approach: Assessing the vulnerability of critical raw materials in the automotive industry

In the automobile industry, the development and manufacture of increasingly complex technological components — catalytic converters, LEDs, electric motors, batteries — requires increasingly complex and diverse raw materials with specific qualities. The technological and economic importance of these materials, combined with their vulnerability to supply shortages and likelihood of supply interruptions, indicates their ‘criticality’. This study uses a new methodology to explore the criticality of 27 key metals used in the automotive industry and other sectors, and highlights six that are especially vulnerable: rhodium, dysprosium, neodymium, terbium, europium and praseodymium. The researchers found there was limited recycling and substitution of these metals and a high possibility of restrictions to their supply.




automotive

Close encounters of the automotive kind

The nine lives of an auto journalist. I was nearly a goner on several continents. Believe me, these stories weren't as amusing then as they are now.




automotive

10 women who made automotive history

In honor of Women’s History Month, we’re taking a look at the leaders, racers and innovators in the world of cars.




automotive

Connected Driving Report for OEMs and Tier 1 Vendors in Automotive Industry

How Tier 1 vendors can meet consumer demands and industry offers by becoming value-adding service providers for OEMs




automotive

Japan's Daily Automotive News Launches English Website

Third newspaper partner to join Japan Industry News Network




automotive

Delta Auto Protect - Tips On Choosing The Right Automotive Mechanic

The feeling of uncertainty about which auto repair mechanic to use is very common. The following points will assist you in making the right decision.




automotive

Alsco Partners with Hope Haven and Sonic Automotive to Support Addiction Recovery

Partnership helps revitalize and empower local community




automotive

New Automotive Website to Sell Auto Parts and Tools for New and Classic Cars

It can be hard to find great parts for cars online, but a fresh-faced online store is aiming to change that. VehicleParts4You.com is a new automotive website that sells quality auto parts and tools for both new and classic cars.




automotive

Eligio Marquez Celebrated for Dedication to the Field of Automotive Education

Mr. Marquez channels decades of automotive knowledge as a program director at Palm Beach State College




automotive

Automotive Review Co. Releases a Randomized Survey of the Supreme Performance Chip 4.0

Automotive Review Co. has conducted a randomized and unedited survey which asked over 800 randomly selected customers about the experience they have had with the Supreme Performance Chip 4.0 as well as the company Great Lakes Auto




automotive

ASA Automotive Announces Strategic Partnership with Openbay

Partnership to provide Artificial Intelligence (AI)-Powered Customer Engagement Tools in TireMaster family of products




automotive

Lectrifi Planning to Debut Automotive WPT System in Silicon Valley Experiment

Lectrifi to test viability of cordless charging pads at corporate HQ car parks in Silicon Valley.




automotive

More Driving Means More Automotive Repair and Service: The Top 20 Automotive Services Requested in 2019

Data Reveals the Top Vehicle Make/Models and Automotive Services Requested on the Openbay marketplace




automotive

The Coronavirus Effect: How it's Impacting Automotive Industries Around the World

Automobile, travel and transport industries at-large have taken a hit in recent weeks around the world.




automotive

2019 in the Automotive Industry

The most popular automotive trends, car makes or technologies of 2019 in a nutshell




automotive

Increasing Demand for T&X Starter Solenoid Switch in the Global Automotive Aftermarket Growth

The global automotive aftermarket is rapidly evolving, with demand for starter solenoids being higher than before. T&X Starter Solenoid Manufacturers moved in supply the growing market, and their products have gained popularity the world over.




automotive

Under the Hood of the Automotive Industry

Pankaj Ghemawat, Harvard Business School professor.




automotive

Automotive retail chains crawl back to work

About 20% of the auto retail network, or 3,500 outlets, opened for business this week, with one-third staff to comply with social-distancing norms. As of Wednesday evening, some 50,000-60,000 employees were back at work, industry insiders said.




automotive

Automotive timing chain system component and method thereof

One embodiment may include an automotive timing chain system component (10, 12) such as a tensioner arm (10) or a chain guide (12) that, during use, bears directly or indirectly against a chain (22) of an automotive timing chain system (14). The component (10, 12) may have an elongated body (16, 116) made into a generally hollow shape by a hydroforming process. The body may have a first open free end (26, 126) and a second open free end (28, 128).




automotive

Universal synthetic lubricant additive with micro lubrication technology to be used with synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam

It is known by the inventor that a universal synthetic lubricant additive that can greatly enhance the performance standards of existing lubricants, petroleum based or synthetic, imparts a new and desirable property not originally present in the existing oil or it reinforces a desirable property already possessed in some degree can greatly benefit the consumer. Although additives of many diverse types have been developed to meet special lubrication needs, their principal functions are relatively few in number. This universal synthetic lubricant additive (invention) with micro lubrication technology, when used as directed will reduce the oxidative or thermal degradation of the host oil, substantially reduce the deposition of harmful deposits in lubricated parts, minimize rust and corrosion, control frictional properties, reduce wear, temperature, sludge, varnishes and prevent destructive metal-to-metal contact, reduce fuel consumption and harmful emissions while improving performance through increased horsepower and torque.




automotive

Lightweight audio system for automotive applications and method

A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The PCB architecture is bifurcated into a first board carrying common circuit components in a surface mount configuration suitable for high volume production, and a second board carrying application specific circuit components in a wave soldered stick mount configuration. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The radio architecture includes improved push buttons employing 4-bar living hinge linkage and front loaded decorative trim buttons.




automotive

Lightweight audio system for automotive applications and method

A lightweight radio/CD player for vehicular application includes a case and frontal interface formed of polymer based material molded to provide details to accept audio devices and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips.




automotive

Method and device to measure temperature of a prismatic cell of automotive battery

Apparatuses and methods of use are provided that include a battery cell comprising a flexible resistive thermal device. The resistive thermal device includes a flexible conductive circuit that is positioned on or adjacent to the surface of the battery cell. Resistance measured in the conductive circuit is correlated with a temperature of the battery cell thereby allowing control of a cooling system and/or the charging/discharging rates of the battery cell to be adjusted in response to temperature. Flexibility of the resistive thermal device also accommodates dimensional changes in the battery cell.




automotive

Automotive construction machine, as well as lifting column for a construction machine

Disclosed is an automotive road construction machine, particularly a recycler or a cold stripping machine, comprising an engine frame that is supported by a chassis, a working roller which is stationarily or pivotally mounted on the engine frame and is used for machining a ground surface or road surface. The chassis is provided with wheels or tracked running gears which are connected to the engine frame via lifting column and are vertically adjustable relative to the engine frame. Each individually vertically adjustable lifting column is equipped with a device for measuring the actual vertical state of the lifting column.




automotive

Lightweight electronic device for automotive applications and method

A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The major components and subassemblies self-ground by establishing an interference fit with exposed, resilient, embossed portions of wire mesh.




automotive

Apparatus driven by compressed air and equipped with dual piston function for use in body construction in the automotive industry

The invention relates to an energy-efficient apparatus driven by compressed air and equipped with a dual piston function for tensioning, or clamping, or centering, or punching, or welding, or clinching, for use in body construction in the automotive industry. The apparatus is driven by a pressurized fluid, in particular by compressed air. It is shown how a significant amount of operating costs can be saved while, at the same time, conserving the environment and consuming a low amount of pressurized fluid, in particular compressed air. In addition, the pivoting angle of a toggle joint assembly and thus of an apparatus connected thereto, for example, a tensioning arm of a toggle tensioning apparatus, can be continuously adjusted in both directions while, at the same time, adjusting a sampling device using sensors, for example, microswitches, or inductive switches, or pneumatic switches, or limit switches.




automotive

Brake booster for an automotive brake system and corresponding automotive brake system

A brake booster with regenerative brake force generation comprising a force input element coupled to a brake pedal. A chamber arrangement having a vacuum chamber and a working chamber that are separated from one another by a movable wall. A control valve actuated in accordance with a displacement of the force input element. The working chamber is connectable selectively to the vacuum chamber and the atmosphere to generate and reduce a differential pressure at the movable wall. The control valve has a control valve housing that is connected for joint movement to the movable wall. In a first actuation phase of the brake booster from its rest position, the force input element is displaceable relative to the control valve housing by an idle travel, in which the control valve remains non-actuated to suppress a build-up of a differential pressure at the movable wall.




automotive

Airflow control device for an automotive vehicle

An airflow control device is mounted to the front end of an automotive vehicle and includes an upper air scoop section having a scoop channel disposed rearward of a bumper assembly and oriented to direct airflow entering a bumper intake opening toward an air-receiving powertrain component. A lower air dam section extends downwardly from the upper section to be positioned below a lower extent of the bumper assembly to deflect airflow away from an underside of the vehicle.