rom

Mysterious X-ray signal from space

A mysterious X-ray signal has been found in a detailed study of galaxy clusters using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. One intriguing possibility […]

The post Mysterious X-ray signal from space appeared first on Smithsonian Insider.




rom

Volunteers needed to preserve astronomical history and promote discovery

Before iPhones and laptops there were human computers, some of whom worked at the Harvard College Observatory. Women like Henrietta Swan Leavitt, Williamina Fleming, and […]

The post Volunteers needed to preserve astronomical history and promote discovery appeared first on Smithsonian Insider.




rom

New Poison Dart Frog from Panama

A bright orange poison dart frog with a unique call was discovered in Donoso, Panama, and described by researchers from the Smithsonian Tropical Research Instituteand […]

The post New Poison Dart Frog from Panama appeared first on Smithsonian Insider.




rom

Clouded leopards, from crisis to success: Q&A with Janine Brown

The clouded leopard, a native of Southeast Asia, is among the most charismatic, secretive and least understood cat species in the world. In 2002, the […]

The post Clouded leopards, from crisis to success: Q&A with Janine Brown appeared first on Smithsonian Insider.




rom

Panda Semen from China arrives at Zoo

Caitlin Burrell, research scientist at the Smithsonian Conservation Biology Institute, returned from China last night April 20, with frozen giant panda semen that had been […]

The post Panda Semen from China arrives at Zoo appeared first on Smithsonian Insider.




rom

Video from Solar Dynamics Observatory wows museum visitors

Tucked in the shadow of the towering Skylab exhibit at the Smithsonian’s National Air and Space Museum, there’s an inferno raging. Lucky for all of […]

The post Video from Solar Dynamics Observatory wows museum visitors appeared first on Smithsonian Insider.





rom

VERITAS Detects Gamma Rays from Galaxy Halfway Across the Visible Universe

In April 2015, after traveling for about half the age of the universe, a flood of powerful gamma rays from a distant galaxy slammed into […]

The post VERITAS Detects Gamma Rays from Galaxy Halfway Across the Visible Universe appeared first on Smithsonian Insider.




rom

“Star Wars” Roundup: From Science Fiction to Science Fact

Pulverized planet dust might lie around double stars » A planet like Star War’s Tatooine, which orbits twin suns, would have likely suffered from more […]

The post “Star Wars” Roundup: From Science Fiction to Science Fact appeared first on Smithsonian Insider.



  • Science & Nature
  • Space
  • astronomy
  • astrophysics
  • Center for Astrophysics | Harvard & Smithsonian
  • Smithsonian Astrophysical Observatory

rom

New Montana ant species emerge from 46-million-year-old rock

She was a stunning brown queen; drowned some 46 million years ago in a shallow lake in Montana. Her remains, recently recovered along the Flathead […]

The post New Montana ant species emerge from 46-million-year-old rock appeared first on Smithsonian Insider.




rom

Discovery: Biodiversity shields fish communities from warming

In a recently completed survey of more than 3,000 fish species in 44 countries around the world marine biologists have discovered that communities with a […]

The post Discovery: Biodiversity shields fish communities from warming appeared first on Smithsonian Insider.




rom

Farthest Milky Way stars might be ripped from another galaxy

The 11 farthest known stars in our galaxy are located about 300,000 light-years from Earth, well outside the Milky Way’s spiral disk. New research by […]

The post Farthest Milky Way stars might be ripped from another galaxy appeared first on Smithsonian Insider.



  • Science & Nature
  • Space
  • Center for Astrophysics | Harvard & Smithsonian
  • Milky Way
  • Smithsonian Astrophysical Observatory


rom

Study shows ancient California Indians risked toxins from bitumen-coated bottles

Finding clean ways to store water is a challenge that humans have faced for millennia. In a new paper in Environmental Health, anthropologist Sabrina Sholts […]

The post Study shows ancient California Indians risked toxins from bitumen-coated bottles appeared first on Smithsonian Insider.





rom

Indestructible jaws from ancient, extinct porcupine fish reveal new species

Covered in sharp spines, when harassed the porcupine fish inflates like a balloon. Think of a small soccer ball bristling all over with nails. Most predators […]

The post Indestructible jaws from ancient, extinct porcupine fish reveal new species appeared first on Smithsonian Insider.




rom

DNA on 100-year-old bat from France may help fight deadly fungus in North America

A bat specimen collected in France at the end of World War I, since housed in the collections of the Smithsonian’s National Museum of Natural […]

The post DNA on 100-year-old bat from France may help fight deadly fungus in North America appeared first on Smithsonian Insider.



  • Animals
  • Research News
  • Science & Nature
  • bats
  • National Museum of Natural History
  • Smithsonian Conservation Biology Institute


rom

Protecting Puerto Rico’s heritage from another disaster

When a natural disaster strikes, it devastates lives and homes, and can even destroy a culture’s identity and history. After a disaster, humanitarian response is […]

The post Protecting Puerto Rico’s heritage from another disaster appeared first on Smithsonian Insider.



  • Art
  • History & Culture
  • Science & Nature

rom

Five fun turtle and tortoise facts from the Smithsonian’s National Zoo

People often use the words turtle and tortoise interchangeably, but these reptiles have distinct differences: Turtle shells are typically more flattened and not as deeply […]

The post Five fun turtle and tortoise facts from the Smithsonian’s National Zoo appeared first on Smithsonian Insider.




rom

Newly discovered snakes use curved teeth to pry snails from their shells

Five new species of snail-eating snake, from a group of snakes affectionately known to scientists as “goo-eaters,” have been discovered by a team working in […]

The post Newly discovered snakes use curved teeth to pry snails from their shells appeared first on Smithsonian Insider.




rom

Structure–function study of AKR4C14, an aldo-keto reductase from Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105)

Aldo-keto reductases (AKRs) are NADPH/NADP+-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type. The apo structure of indica rice AKR4C14 was also determined in the absence of the cofactor, revealing the stabilized open conformation. This is the first crystal structure in AKR subfamily 4C from rice to be observed in the apo form (without bound NADP+). The refined AKR4C14 structure reveals a stabilized open conformation of loop B, suggesting the initial phase prior to cofactor binding. Based on the X-ray crystal structure, the substrate- and cofactor-binding pockets of AKR4C14 are formed by loops A, B, C and β1α1. Moreover, the residues Ser211 and Asn220 on loop B are proposed as the hinge residues that are responsible for conformational alteration while the cofactor binds. The open conformation of loop B is proposed to involve Phe216 pointing out from the cofactor-binding site and the opening of the safety belt. Structural comparison with other AKRs in subfamily 4C emphasizes the role of the substrate-channel wall, consisting of Trp24, Trp115, Tyr206, Phe216, Leu291 and Phe295, in substrate discrimination. In particular, Leu291 could contribute greatly to substrate selectivity, explaining the preference of AKR4C14 for its straight-chain aldehyde substrate.




rom

Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii

Pullulanase (EC 3.2.1.41) is a well known starch-debranching enzyme that catalyzes the cleavage of α-1,6-glycosidic linkages in α-glucans such as starch and pullulan. Crystal structures of a type I pullulanase from Paenibacillus barengoltzii (PbPulA) and of PbPulA in complex with maltopentaose (G5), maltohexaose (G6)/α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) were determined in order to better understand substrate binding to this enzyme. PbPulA belongs to glycoside hydrolase (GH) family 13 subfamily 14 and is composed of three domains (CBM48, A and C). Three carbohydrate-binding sites identified in PbPulA were located in CBM48, near the active site and in domain C, respectively. The binding site in CBM48 was specific for β-CD, while that in domain C has not been reported for other pullulanases. The domain C binding site had higher affinity for α-CD than for G6; a small motif (FGGEH) seemed to be one of the major determinants for carbohydrate binding in this domain. Structure-based mutations of several surface-exposed aromatic residues in CBM48 and domain C had a debilitating effect on the activity of the enzyme. These results suggest that both CBM48 and domain C play a role in binding substrates. The crystal forms described contribute to the understanding of pullulanase domain–carbohydrate interactions.




rom

Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody

Mycoplasma hyopneumoniae is a prokaryotic pathogen that colonizes the respiratory ciliated epithelial cells in swine. Infected animals suffer respiratory lesions, causing major economic losses in the porcine industry. Characterization of the immunodominant membrane-associated proteins from M. hyopneumoniae may be instrumental in the development of new therapeutic approaches. Here, the crystal structure of P46, one of the main surface-antigen proteins, from M. hyopneumoniae is presented and shows N- and C-terminal α/β domains connected by a hinge. The structures solved in this work include a ligand-free open form of P46 (3.1 Å resolution) and two ligand-bound structures of P46 with maltose (2.5 Å resolution) and xylose (3.5 Å resolution) in open and closed conformations, respectively. The ligand-binding site is buried in the cleft between the domains at the hinge region. The two domains of P46 can rotate with respect to each other, giving open or closed alternative conformations. In agreement with this structural information, sequence analyses show similarities to substrate-binding members of the ABC transporter superfamily, with P46 facing the extracellular side as a functional subunit. In the structure with xylose, P46 was also bound to a high-affinity (Kd = 29 nM) Fab fragment from a monoclonal antibody, allowing the characterization of a structural epitope in P46 that exclusively involves residues from the C-terminal domain. The Fab structure in the complex with P46 shows only small conformational rearrangements in the six complementarity-determining regions (CDRs) with respect to the unbound Fab (the structure of which is also determined in this work at 1.95 Å resolution). The structural information that is now available should contribute to a better understanding of sugar nutrient intake by M. hyopneumoniae. This information will also allow the design of protocols and strategies for the generation of new vaccines against this important swine pathogen.




rom

Macromolecular X-ray crystallography: soon to be a road less travelled?

The number of new X-ray crystallography-based submissions to the Protein Data Bank appears to be at the beginning of a decline, perhaps signalling an end to the era of the dominance of X-ray crystallography within structural biology. This letter, from the viewpoint of a young structural biologist, applies the Copernican method to the life expectancy of crystallography and asks whether the technique is still the mainstay of structural biology. A study of the rate of Protein Data Bank depositions allows a more nuanced analysis of the fortunes of macromolecular X-ray crystallography and shows that cryo-electron microscopy might now be outcompeting crystallography for new labour and talent, perhaps heralding a change in the landscape of the field.




rom

New Book: “Sweet Stuff: An American History of Sweeteners from Sugar to Sucralose”

Warner’s narrative covers the major natural sweeteners, including sugar, molasses from cane, beet sugar, corn syrup, honey and maple, as well as artificial sweeteners such as saccharin, cyclamate, aspartame and sucralose.

The post New Book: “Sweet Stuff: An American History of Sweeteners from Sugar to Sucralose” appeared first on Smithsonian Insider.




rom

New book reveals Ice Age mariners from Europe were America’s first inhabitants

Some of the earliest humans to inhabit America came from Europe according to a new book "Across Atlantic Ice: The Origin of America's Clovis Culture."

The post New book reveals Ice Age mariners from Europe were America’s first inhabitants appeared first on Smithsonian Insider.





rom

‘The Wrong Wrights’: A Graphic Novel from Smithsonian Books

In the first volume of the Secret Smithsonian Adventures graphic-novel series from Smithsonian Books, The Wrong Wrights, four middle-school kids visit the Smithsonian’s National Air […]

The post ‘The Wrong Wrights’: A Graphic Novel from Smithsonian Books appeared first on Smithsonian Insider.




rom

Configure "Award Medallion BIOS v6.0" To Boot From USB




rom

EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7 [RESEARCH ARTICLE]

Laura O'Regan, Giancarlo Barone, Rozita Adib, Chang Gok Woo, Hui Jeong Jeong, Emily L. Richardson, Mark W. Richards, Patricia A.J. Muller, Spencer J. Collis, Dean A. Fennell, Jene Choi, Richard Bayliss, and Andrew M. Fry

EML4-ALK is an oncogenic fusion present in ~5% non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants with different patient outcomes. Here, we show in cell models that EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. It also recruits the NEK9 and NEK7 kinase to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4 as well as constitutive activation of NEK9 also perturb cell morphology and accelerate migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but not ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7 leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer.




rom

{beta}1 integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumour cell invasion [RESEARCH ARTICLE]

Olivia R. Grafinger, Genya Gorshtein, Tyler Stirling, Megan I. Brasher, and Marc G. Coppolino

Malignant cancer cells can invade extracellular matrix (ECM) through the formation of F-actin-rich subcellular structures termed invadopodia. ECM degradation at invadopodia is mediated by matrix metalloproteinases (MMPs), and recent findings indicate that membrane-anchored membrane type 1-matrix metalloproteinase (MT1-MMP) has a primary role in this process. Maintenance of an invasive phenotype is dependent on internalization of MT1-MMP from the plasma membrane and its recycling to sites of ECM remodeling. Internalization of MT1-MMP is dependent on its phosphorylation, and here we examine the role of β1 integrin-mediated signaling in this process. Activation of β1 integrin using the antibody P4G11 induced phosphorylation and internalization of MT1-MMP and resulted in increased cellular invasiveness and invadopodium formation in vitro. We also observed phosphorylation of Src and epidermal growth factor receptor (EGFR) and an increase in their association in response to β1 integrin activation, and determined that Src and EGFR promote phosphorylation of MT1-MMP on Thr567. These results suggest that MT1-MMP phosphorylation is regulated by a β1 integrin-Src-EGFR signaling pathway that promotes recycling of MT1-MMP to sites of invadopodia formation during cancer cell invasion.




rom

LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells [RESEARCH ARTICLE]

Victor J. F. Kitano, Yoko Ohyama, Chiyomi Hayashida, Junta Ito, Mari Okayasu, Takuya Sato, Toru Ogasawara, Maki Tsujita, Akemi Kakino, Jun Shimada, Tatsuya Sawamura, and Yoshiyuki Hakeda

Osteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO pre-OCLs, while the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR~ABCG1~PE translocation to cell surface~cell-cell fusion) in multinucleation of OCLs.




rom

A genetic interaction map centered on cohesin reveals auxiliary factors in sister chromatid cohesion [RESEARCH ARTICLE]

Su Ming Sun, Amandine Batte, Mireille Tittel-Elmer, Sophie van der Horst, Tibor van Welsem, Gordon Bean, Trey Ideker, Fred van Leeuwen, and Haico van Attikum

Eukaryotic chromosomes are replicated in interphase and the two newly duplicated sister chromatids are held together by the cohesin complex and several cohesin auxiliary factors. Sister chromatid cohesion is essential for accurate chromosome segregation during mitosis, yet has also been implicated in other processes, including DNA damage repair, transcription and DNA replication. To assess how cohesin and associated factors functionally interconnect and coordinate with other cellular processes, we systematically mapped genetic interactions of 17 cohesin genes centered on quantitative growth measurements of >52,000 gene pairs in budding yeast. Integration of synthetic genetic interactions unveiled a cohesin functional map that constitutes 373 genetic interactions, revealing novel functional connections with post-replication repair, microtubule organization and protein folding. Accordingly, we show that the microtubule-associated protein Irc15 and the prefoldin complex members Gim3, Gim4 and Yke2 are new factors involved in sister chromatid cohesion. Our genetic interaction map thus provides a unique resource for further identification and functional interrogation of cohesin proteins. Since mutations in cohesin proteins have been associated with cohesinopathies and cancer, it may also identify cohesin interactions relevant in disease etiology.




rom

Translesion synthesis polymerases contribute to meiotic chromosome segregation and cohesin dynamics in S. pombe [RESEARCH ARTICLE]

Tara L. Mastro, Vishnu P. Tripathi, and Susan L. Forsburg

Translesion synthesis polymerases (TLSPs) are non-essential error-prone enzymes that ensure cell survival by facilitating DNA replication in the presence of DNA damage. In addition to their role in bypassing lesions, TLSPs have been implicated in meiotic double strand break repair in several systems. Here we examine the joint contribution of four TLS polymerases to meiotic progression in the fission yeast S. pombe. We observed the dramatic loss of spore viability in fission yeast lacking all four TLSPs which is accompanied by disruptions in chromosome segregation during meiosis I and II. Rec8 cohesin dynamics are altered in the absence of the TLSPs. These data suggest that the TLSPs contribute to multiple aspects of meiotic chromosome dynamics.




rom

A stable core of GCPs 4, 5 and 6 promotes the assembly of {gamma}-tubulin ring complexes [RESEARCH ARTICLE]

Laurence Haren, Dorian Farache, Laurent Emorine, and Andreas Merdes

-tubulin is a major protein involved in the nucleation of microtubules in all eukaryotes. It forms two different complexes with proteins of the GCP family (gamma-tubulin complex proteins): -tubulin small complexes (TuSCs), containing -tubulin and GCPs 2 and 3, and -tubulin ring complexes (TuRCs), containing multiple TuSCs, in addition to GCPs 4, 5, and 6. Whereas the structure and assembly properties of TuSCs have been intensively studied, little is known about the assembly of TuRCs, and about the specific roles of GCPs 4, 5, and 6. Here, we demonstrate that two copies of GCP4 and one copy each of GCP5 and GCP6 form a salt-resistant sub-complex within the TuRC that assembles independently of the presence of TuSCs. Incubation of this sub-complex with cytoplasmic extracts containing TuSCs leads to the reconstitution of TuRCs that are competent to nucleate microtubules. In addition, we investigate sequence extensions and insertions that are specifically found at the amino-terminus of GCP6, and between the GCP6 grip1 and grip2 motifs, and we demonstrate that these are involved in the assembly or stabilization of the TuRC.




rom

The PRR14 heterochromatin tether encodes modular domains that mediate and regulate nuclear lamina targeting [RESEARCH ARTICLE]

Kelly L. Dunlevy, Valentina Medvedeva, Jade E. Wilson, Mohammed Hoque, Trinity Pellegrin, Adam Maynard, Madison M. Kremp, Jason S. Wasserman, Andrey Poleshko, and Richard A. Katz

A large fraction of epigenetically silent heterochromatin is anchored to the nuclear periphery via "tethering proteins" that function to bridge heterochromatin and the nuclear membrane or nuclear lamina. We identified previously a human tethering protein, PRR14, that binds heterochromatin through an N-terminal domain, but the mechanism and regulation of nuclear lamina association remained to be investigated. Here we identify an evolutionarily conserved PRR14 nuclear lamina binding domain (LBD) that is both necessary and sufficient for positioning of PRR14 at the nuclear lamina. We also show that PRR14 associates dynamically with the nuclear lamina, and provide evidence that such dynamics are regulated through phosphorylation-dephosphorylation of the LBD. Furthermore, we identified a PP2A phosphatase recognition motif within the evolutionarily conserved PRR14 C-terminal Tantalus domain. Disruption of this motif affected PRR14 localization to the nuclear lamina. The overall findings demonstrate a heterochromatin anchoring mechanism whereby the PRR14 tether simultaneously binds heterochromatin and the nuclear lamina through two separable, modular domains. The findings also describe an optimal PRR14 LBD fragment that could be used for efficient targeting of fusion proteins to the nuclear lamina.




rom

BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via Id1 [RESEARCH ARTICLE]

Ganlu Deng, Yihong Chen, Cao Guo, Ling Yin, Ying Han, Yiyi Li, Yaojie Fu, Changjing Cai, Hong Shen, and Shan Zeng

Epithelial-mesenchymal transition (EMT) is a crucial process for cancer cells to acquire metastatic potential, which primarily causes death in gastric cancer (GC) patients. Bone morphogenetic protein 4 (BMP4) is a member of the TGF-β family that plays an indispensable role in human cancers. However, little is known about its roles in GC metastasis. In this study, BMP4 was found to be frequently overexpressed in GC tissues and was correlated with patient's poor prognosis. BMP4 was upregulated in GC cell lines and promoted EMT and metastasis of GC cells both in vitro and in vivo, while knockdown of BMP4 significantly inhibited EMT and metastasis of GC cells. Meanwhile, the inhibitor of DNA binding 1 (Id1) was identified as a downstream target of BMP4 by PCR arrays and upregulated via Smad1/5/8 phosphorylation. Id1 knockdown attenuated BMP4-induced EMT and invasion in GC cells. Moreover, Id1 overexpression in BMP4 knockdown cells restored the promotion of EMT and cell invasion. In summary, BMP4 induced EMT to promote GC metastasis by upregulating Id1 expression. Antagonizing BMP4 may be a potential therapeutic strategy in GC metastasis.




rom

Smithsonian’s National Gem Collection acquires a yellow fluorite from Tanzania

Fluorite is well known and prized for its rich variety of colors, most commonly pale green, purple, yellow, orange, blue, pink and colorless. “We acquired this specimen because it is a very nice quality fluorite with an attractive color and it is large enough to be exhibited,” Curator Jeff Post says.

The post Smithsonian’s National Gem Collection acquires a yellow fluorite from Tanzania appeared first on Smithsonian Insider.




rom

Earth’s gold came from colliding dead stars

We value gold for many reasons: its beauty, its usefulness as jewelry, and its rarity. Gold is rare on Earth in part because it’s also […]

The post Earth’s gold came from colliding dead stars appeared first on Smithsonian Insider.




rom

Is Earthly Life Premature From a Cosmic Perspective?

The universe is 13.8 billion years old, while our planet formed just 4.5 billion years ago. Some scientists think this time gap means that life […]

The post Is Earthly Life Premature From a Cosmic Perspective? appeared first on Smithsonian Insider.




rom

X-ray interference fringes from a weakly bent plane-parallel crystal with negative strain gradient

Under the anomalous transmission condition in the Bragg mode, X-ray interference fringes were observed between two beams with different hyperbolic trajectories in a very weakly bent plane-parallel perfect crystal with negative strain gradient. The origin of the fringes was analysed based on the dynamical theory of diffraction for a distorted crystal. In the reflected beam from the entrance surface, the interference fringes were observed between once- and twice-reflected beams from the back surface. In the transmitted beam from the back surface, the interference fringes were observed between the direct beam and once-reflected beam from the entrance surface. In the emitted beam from the lateral surface, the interference fringes were observed between the beams after different numbers of reflections in the crystal. The multiply reflected beams were formed by a combined result of long propagation length along the beam direction with large divergence of the refracted beams when the strain gradient was negative. The period of these interference fringes was sensitive to very weak strain, of the order of 10−7.




rom

Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles.




rom

X-ray diffraction from strongly bent crystals and spectroscopy of X-ray free-electron laser pulses

The use of strongly bent crystals in spectrometers for pulses of a hard X-ray free-electron laser is explored theoretically. Diffraction is calculated in both dynamical and kinematical theories. It is shown that diffraction can be treated kinematically when the bending radius is small compared with the critical radius given by the ratio of the Bragg-case extinction length for the actual reflection to the Darwin width of this reflection. As a result, the spectral resolution is limited by the crystal thickness, rather than the extinction length, and can become better than the resolution of a planar dynamically diffracting crystal. As an example, it is demonstrated that spectra of the 12 keV pulses can be resolved in the 440 reflection from a 20 µm-thick diamond crystal bent to a radius of 10 cm.




rom

How To Quickly Transfer Contacts From Outlook Express




rom

How to block program from starting.




rom

How to import Bookmarks and other things from other browsers




rom

how to recover deleted photos from nokia lumia 535




rom

Smithsonian team examines African remains from a colonial burial site in Maryland

Forensic anthropologists from the Smithsonian's National Museum of Natural History discover African remains at a Colonial burial site in Maryland. Follow them as they study the remains, reconstruct the face and body, and share what they learn about the African experience in the Chesapeake in the 1600s.

The post Smithsonian team examines African remains from a colonial burial site in Maryland appeared first on Smithsonian Insider.