it

Detecting Latent Communities in Network Formation Models. (arXiv:2005.03226v1 [econ.EM])

This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets.




it

Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV])

The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems.




it

Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network. (arXiv:2005.03213v1 [stat.ML])

Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance.




it

Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG])

Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.




it

Active Learning with Multiple Kernels. (arXiv:2005.03188v1 [cs.LG])

Online multiple kernel learning (OMKL) has provided an attractive performance in nonlinear function learning tasks. Leveraging a random feature approximation, the major drawback of OMKL, known as the curse of dimensionality, has been recently alleviated. In this paper, we introduce a new research problem, termed (stream-based) active multiple kernel learning (AMKL), in which a learner is allowed to label selected data from an oracle according to a selection criterion. This is necessary in many real-world applications as acquiring true labels is costly or time-consuming. We prove that AMKL achieves an optimal sublinear regret, implying that the proposed selection criterion indeed avoids unuseful label-requests. Furthermore, we propose AMKL with an adaptive kernel selection (AMKL-AKS) in which irrelevant kernels can be excluded from a kernel dictionary 'on the fly'. This approach can improve the efficiency of active learning as well as the accuracy of a function approximation. Via numerical tests with various real datasets, it is demonstrated that AMKL-AKS yields a similar or better performance than the best-known OMKL, with a smaller number of labeled data.




it

On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME])

I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct.




it

A comparison of group testing architectures for COVID-19 testing. (arXiv:2005.03051v1 [stat.ME])

An important component of every country's COVID-19 response is fast and efficient testing -- to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a serious and rapid improvement to this situation. In this note, we compare several well-established group testing schemes in the context of qPCR testing for COVID-19. We include example calculations, where we indicate which testing architectures yield the greatest efficiency gains in various settings. We find that for identification of individuals with COVID-19, array testing is usually the best choice, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing usually provides the most accurate estimates given a fixed and relatively small number of tests. This note is intended as a helpful handbook for labs implementing group testing methods.




it

Entries open for State Library’s $20,000 short film competition

Thursday 21 November 2019

The State Library of NSW is inviting entries for its short film prize Shortstacks, with a total of $20,000 on offer across two categories.




it

State Library creates a new space for Aboriginal communities to connect with their cultural heritage

Thursday 20 February 2020
In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures.




it

Entries open for $40,000 award for female scriptwriters

Friday 6 March 2020
Nominations opened for the 2020 Mona Brand Award for Women Stage and Screen Writers.




it

Shortlists announced for 2020 NSW Premier’s Literary Awards

Friday 20 March 2020
Contemporary works by leading and emerging Australian writers have been shortlisted for the 2020 NSW Premier's Literary Awards, the State Library of NSW announced today.




it

2020 NSW Premier’s Literary Awards announced

Sunday 26 April 2020
A total of $295,000 awarded across 12 prize categories. 




it

Flexible Imputation of Missing Data (2nd Edition)




it

mvord: An R Package for Fitting Multivariate Ordinal Regression Models

The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.




it

Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM

This paper is devoted to the R package JSM which performs joint statistical modeling of survival and longitudinal data. In biomedical studies it has been increasingly common to collect both baseline and longitudinal covariates along with a possibly censored survival time. Instead of analyzing the survival and longitudinal outcomes separately, joint modeling approaches have attracted substantive attention in the recent literature and have been shown to correct biases from separate modeling approaches and enhance information. Most existing approaches adopt a linear mixed effects model for the longitudinal component and the Cox proportional hazards model for the survival component. We extend the Cox model to a more general class of transformation models for the survival process, where the baseline hazard function is completely unspecified leading to semiparametric survival models. We also offer a non-parametric multiplicative random effects model for the longitudinal process in JSM in addition to the linear mixed effects model. In this paper, we present the joint modeling framework that is implemented in JSM, as well as the standard error estimation methods, and illustrate the package with two real data examples: a liver cirrhosis data and a Mayo Clinic primary biliary cirrhosis data.




it

Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 7 November. Speaker: Dr Michael Brown (University of Roehampton), ‘Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain’ The historical study of the… Continue reading




it

The archaeology of monastic healing: spirit, mind and body

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 21 November. Speaker: Professor Roberta Gilchrist (University of Reading), ‘The archaeology of monastic healing: spirit, mind and body’ This paper highlights the potential of archaeology to… Continue reading




it

Medieval Ideas about Infertility and Old Age

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 16 January. Speaker: Dr Catherine Rider (University of Exeter) Medieval Ideas about Infertility and Old Age Abstract: When they discussed fertility and reproductive disorders it was common… Continue reading




it

Plague in Italy and Europe during the 17th century

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 30 January. Speaker: Professor Guido Alfani (Bocconi University, Milan) Plague in Italy and Europe during the 17th century: epidemiology and impact Abstract: After many years of relative… Continue reading




it

2020 NSW Premier’s Literary Awards announced

A total of $295,000 awarded across 12 prize categories.




it

Law Week goes digital in 2020

Get involved online in Law Week 2020.




it

Wood microbiology : decay and its prevention

Zabel, R. A. (Robert A.), author
9780128205730 (electronic bk.)




it

Upper extremity injuries in young athletes

9783319566511 (electronic bk.)




it

Trusted computing and information security : 13th Chinese conference, CTCIS 2019, Shanghai, China, October 24-27, 2019

Chinese Conference on Trusted Computing and Information Security (13th : 2019 : Shanghai, China)
9789811534188 (eBook)




it

The unedited : a novel about genome and identity

Rørth, Pernille, author
9783030346249 (electronic bk.)




it

The root canal anatomy in permanent dentition

9783319734446 (electronic bk.)




it

The complexity of bird behaviour : a facet theory approach

Hackett, Paul, 1960- author
9783030121921 (electronic bk.)




it

The citrus genome

3030153088




it

The bitter gourd genome

9783030150624




it

The Genus citrus

9780128122174 (electronic bk.)




it

The Best and Worst Places to be a Woman in Canada 2019 : The Gender Gap in Canada’s 26 Biggest Cities

9781771254434 (print)




it

Terrestrial hermit crab populations in the Maldives : ecology, distribution and anthropogenic impact

Steibl, Sebastian, author
9783658295417 (electronic bk.)




it

Temporomandibular disorders : a translational approach from basic science to clinical applicability

9783319572475 (electronic bk.)




it

Sustainable digital communities : 15th International Conference, iConference 2020, Boras, Sweden, March 23–26, 2020, Proceedings

iConference (Conference) (15th : 2020 : Boras, Sweden)
9783030436872




it

Sustainability of the food system : sovereignty, waste, and nutrients bioavailability

9780128182949 (electronic bk.)




it

Sowing legume seeds, reaping cash : a renaissance within communities in Sub-Saharan Africa

Akpo, Essegbemon, author.
9789811508455 (electronic bk.)




it

Salt, fat and sugar reduction : sensory approaches for nutritional reformulation of foods and beverages

O'Sullivan, Maurice G., author
9780128226124 (electronic bk.)




it

Requirements engineering : 26th International Working Conference, REFSQ 2020, Pisa, Italy, March 24-27, 2020, Proceedings

REFSQ (Conference) (26th : 2020 : Pisa, Italy)
9783030444297




it

Rehabilitation medicine for elderly patients

9783319574066




it

Rediscovery of genetic and genomic resources for future food security

9811501564




it

Radiomics and radiogenomics in neuro-oncology : First International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, proceedings

Radiomics and Radiogenomics in Neuro-oncology using AI Workshop (1st : 2019 : Shenzhen Shi, China)
9783030401245




it

QoS routing algorithms for wireless sensor networks

Venugopal, K. R., Dr., author
9789811527203 (electronic bk.)




it

Prevention of chronic diseases and age-related disability

9783319965291 (electronic bk.)




it

Phytoremediation : in-situ applications

9783030000998 (electronic bk.)




it

Pediatric critical care : current controversies

9783319964997 (electronic bk.)




it

Pediatric allergy : a case-based collection with MCQs.

9783030182823 (electronic bk.)




it

Oral rehabilitation for compromised and elderly patients

3319761293 (electronic book)




it

Nutritional and health aspects of food in South Asian countries

9780128200124 (electronic bk.)




it

Neuroradiological imaging of skin diseases and related conditions

9783319909318 (electronic bk.)




it

Mosquitoes, communities, and public health in Texas

9780128145463 (electronic bk.)