act

The Carina Nebula, a local supernova factory, is ramping up production

A local supernova factory has recently started production, according to a wealth of new data from NASA's Chandra X-ray Observatory on the Carina Nebula.

The post The Carina Nebula, a local supernova factory, is ramping up production appeared first on Smithsonian Insider.




act

New study reveals desert tortoise is actually two distinct species

A new study shows that the desert tortoise, thought to be a single species for the last 150 years, is in fact two separate and distinct species, based on DNA evidence and biological and geographical distinctions.

The post New study reveals desert tortoise is actually two distinct species appeared first on Smithsonian Insider.




act

Females can place limits on evolution of attractive features in males, research shows

In a new paper appearing this week in Science, a group of biologists have shown that females themselves can also limit the evolution of increased elaboration.

The post Females can place limits on evolution of attractive features in males, research shows appeared first on Smithsonian Insider.




act

From Star Wars to science fact: Tatooine-like planet discovered

Although cold and gaseous rather than a desert world, the newfound planet Kepler-16b is still the closest astronomers have come to discovering Luke Skywalker's home world of Tatooine.

The post From Star Wars to science fact: Tatooine-like planet discovered appeared first on Smithsonian Insider.





act

Rising seas, development are altering prehistoric artifacts in the Chesapeake’s tidal zone

As a coastal archaeologist and expert in prehistoric and historic settlement sites in the Chesapeake Bay region, Darrin Lowery of the Smithsonian’s National Museum of Natural History and University of Deleware, is carefully watching the effects of coastal erosion and rising sea levels on coastal archaeological sites.

The post Rising seas, development are altering prehistoric artifacts in the Chesapeake’s tidal zone appeared first on Smithsonian Insider.




act

The origins of a torus in a galactic nucleus

One problem in unraveling the mystery of quasars is that many (perhaps most) quasar nuclei seem to be surrounded by a torus of obscuring dust that makes them difficult to study.

The post The origins of a torus in a galactic nucleus appeared first on Smithsonian Insider.




act

Planet starship: runaway planets zoom at a fraction of light speed

Seven years ago, astronomers boggled when they found the first runaway star flying out of our Galaxy at a speed of 1.5 million miles per hour. Theorists wondered: Could the same thing happen to planets? New research shows that the answer is yes.

The post Planet starship: runaway planets zoom at a fraction of light speed appeared first on Smithsonian Insider.




act

Report paints a new picture of early human impact on the Amazon River Basin

The newly reported reconstruction of Amazonian prehistory by a Smithsonian scientist, Dolores R. Piperno, and her colleagues suggests that large areas of western Amazonia were sparsely inhabited.

The post Report paints a new picture of early human impact on the Amazon River Basin appeared first on Smithsonian Insider.




act

Coronal mass ejection from July 12 solar flare headed toward Earth; minor geomagnetic storm activity predicted

A July 12 news alert from NASA indicates a X1.4 class solar flare erupted from the center of the Sun, peaking July 12 at 12:52 P.M.

The post Coronal mass ejection from July 12 solar flare headed toward Earth; minor geomagnetic storm activity predicted appeared first on Smithsonian Insider.




act

Planets can form in the galactic center

Hew research by astronomers at the Harvard-Smithsonian Center for Astrophysics shows that planets still can form in the cosmic maelstrom of Milky Way's center.

The post Planets can form in the galactic center appeared first on Smithsonian Insider.




act

Galactic thief: “I would have gotten away with it but for those meddling astronomers!”

One of the closest galaxies to the Milky Way almost got away with theft....

The post Galactic thief: “I would have gotten away with it but for those meddling astronomers!” appeared first on Smithsonian Insider.




act

Active star-forming galaxy M82 in three wavelengths

This image shows the active star-forming galaxy M82 in three wavelengths: UV (blue), near-infrared (green) and far-infrared (red). New research indicates that even in the […]

The post Active star-forming galaxy M82 in three wavelengths appeared first on Smithsonian Insider.




act

New study proves the remora’s sucker disc is in fact a highly modified dorsal fin / Q&A with taxonomist David Johnson

The remora's sucker disc is "one of the most remarkable and most highly modified skeletal structures among vertebrates."

The post New study proves the remora’s sucker disc is in fact a highly modified dorsal fin / Q&A with taxonomist David Johnson appeared first on Smithsonian Insider.




act

Scientists find impact of open-ocean industrial fishing within centuries of bird bones

The impact of industrial fishing on coastal ecosystems has been studied for many years. But how it affects food webs in the open ocean―a vast […]

The post Scientists find impact of open-ocean industrial fishing within centuries of bird bones appeared first on Smithsonian Insider.




act

Effects of human impact are long lasting for forests in Northeast U.S.

Grow fast, die young is not a lifestyle normally associated with trees. But in the forests of the Northeastern United States the red maple follows […]

The post Effects of human impact are long lasting for forests in Northeast U.S. appeared first on Smithsonian Insider.




act

Toxicity of mercury hot spots can be reduced with application of activated carbon, researchers discover

Hot spots of mercury pollution in aquatic sediments and soils can contaminate local food webs and threaten ecosystems, but cleaning them up can be expensive […]

The post Toxicity of mercury hot spots can be reduced with application of activated carbon, researchers discover appeared first on Smithsonian Insider.




act

Vultures remarkably tolerant to deadly bacteria, study reveals

A new study of microorganisms living on the skin and in the intestines of North America vultures (black and turkey vultures) has turned up a […]

The post Vultures remarkably tolerant to deadly bacteria, study reveals appeared first on Smithsonian Insider.





act

RADIO TELESCOPES COULD SPOT STARS HIDDEN IN THE GALACTIC CENTER

The center of our Milky Way galaxy is a mysterious place. Not only is it thousands of light-years away, it’s also cloaked in so much […]

The post RADIO TELESCOPES COULD SPOT STARS HIDDEN IN THE GALACTIC CENTER appeared first on Smithsonian Insider.




act

“Star Wars” Roundup: From Science Fiction to Science Fact

Pulverized planet dust might lie around double stars » A planet like Star War’s Tatooine, which orbits twin suns, would have likely suffered from more […]

The post “Star Wars” Roundup: From Science Fiction to Science Fact appeared first on Smithsonian Insider.



  • Science & Nature
  • Space
  • astronomy
  • astrophysics
  • Center for Astrophysics | Harvard & Smithsonian
  • Smithsonian Astrophysical Observatory

act

Smithsonian Scientists Trace Anthropocene Roots to Early Human Activity

A new analysis of the fossil record by scientists at the Smithsonian’s National Museum of Natural History has revealed that the structure of plant and […]

The post Smithsonian Scientists Trace Anthropocene Roots to Early Human Activity appeared first on Smithsonian Insider.





act

Tiny ocean crustaceans wear invisibility cloak of living bacteria

Crustaceans that thrive in the vastness of the open ocean have no place to hide from their predators. Consequently, many creatures that live at depths […]

The post Tiny ocean crustaceans wear invisibility cloak of living bacteria appeared first on Smithsonian Insider.




act

Peacock bass invasion Had devastating, long-term impact on Panama’s Fish

In 1969, 60 to 100 peacock bass imported from Buga, Colombia, were introduced into a pond in Panama for sport fishing. Several individuals escaped. By […]

The post Peacock bass invasion Had devastating, long-term impact on Panama’s Fish appeared first on Smithsonian Insider.




act

Astronomers propose cell phone search for galactic radio bursts

Fast radio bursts (FRBs) are brief spurts of radio emission, lasting just one-thousandth of a second, whose origins are mysterious. Fewer than two dozen have […]

The post Astronomers propose cell phone search for galactic radio bursts appeared first on Smithsonian Insider.




act

Scientists discover common sea nettle jellyfish is actually two distinct species

Chances are, if you’ve been stung by a jellyfish along the Chesapeake Bay it was by a sea nettle jellyfish–one of the most common and […]

The post Scientists discover common sea nettle jellyfish is actually two distinct species appeared first on Smithsonian Insider.




act

Scientists in awe of huge olfactory bulb found in turkey vulture brain

With its homely featherless head, undertaker’s charcoal coloring and association with death and decay, the turkey vulture (Cathartes aura) tops few lists as a favorite […]

The post Scientists in awe of huge olfactory bulb found in turkey vulture brain appeared first on Smithsonian Insider.




act

This Squirrel Appreciation Day we have a few surprising squirrely facts for you

Flying through the air? Check. Surviving snake bites? Check. One of the most adorable creatures on earth? Absolutely! Do you think you know everything about […]

The post This Squirrel Appreciation Day we have a few surprising squirrely facts for you appeared first on Smithsonian Insider.



  • Animals
  • Science & Nature
  • National Museum of Natural History
  • Smithsonian's National Zoo

act

Five fun turtle and tortoise facts from the Smithsonian’s National Zoo

People often use the words turtle and tortoise interchangeably, but these reptiles have distinct differences: Turtle shells are typically more flattened and not as deeply […]

The post Five fun turtle and tortoise facts from the Smithsonian’s National Zoo appeared first on Smithsonian Insider.




act

Study of bacteria inside guts of wild Canada geese shows greater danger than earlier studies exposed

In the early 20th century, Canada geese were considered endangered in the U.S. So in the 1950s and 1960s, birds from the Midwest were released […]

The post Study of bacteria inside guts of wild Canada geese shows greater danger than earlier studies exposed appeared first on Smithsonian Insider.




act

Sbcglobal customer helpline number 18882468183 You have to contact us




act

Sbcglobal customer helpline phone number 18882468183 You have to contact us




act

Sbcglobal customer support phone number 18882468183 You have to contact us




act

Sbcglobal technical support number 18882468183 You have to contact us




act

Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions

The biological processes related to protein homeostasis in Mycobacterium tuberculosis, the etiologic agent of tuberculosis, have recently been established as critical pathways for therapeutic intervention. Proteins of particular interest are ClpC1 and the ClpC1–ClpP1–ClpP2 proteasome complex. The structure of the potent antituberculosis macrocyclic depsipeptide ecumicin complexed with the N-terminal domain of ClpC1 (ClpC1-NTD) is presented here. Crystals of the ClpC1-NTD–ecumicin complex were monoclinic (unit-cell parameters a = 80.0, b = 130.0, c = 112.0 Å, β = 90.07°; space group P21; 12 complexes per asymmetric unit) and diffracted to 2.5 Å resolution. The structure was solved by molecular replacement using the self-rotation function to resolve space-group ambiguities. The new structure of the ecumicin complex showed a unique 1:2 (target:ligand) stoichiometry exploiting the intramolecular dyad in the α-helical fold of the target N-terminal domain. The structure of the ecumicin complex unveiled extensive interactions in the uniquely extended N-terminus, a critical binding site for the known cyclopeptide complexes. This structure, in comparison with the previously reported rufomycin I complex, revealed unique features that could be relevant for understanding the mechanism of action of these potential antituberculosis drug leads. Comparison of the ecumicin complex and the ClpC1-NTD-L92S/L96P double-mutant structure with the available structures of rufomycin I and cyclomarin A complexes revealed a range of conformational changes available to this small N-terminal helical domain and the minor helical alterations involved in the antibiotic-resistance mechanism. The different modes of binding and structural alterations could be related to distinct modes of action.




act

Structural and thermodynamic analyses of interactions between death-associated protein kinase 1 and anthraquinones

Death-associated protein kinase 1 (DAPK1) is a serine/threonine protein kinase that regulates apoptosis and autophagy. DAPK1 is considered to be a therapeutic target for amyloid-β deposition, endometrial adenocarcinomas and acute ischemic stroke. Here, the potent inhibitory activity of the natural anthraquinone purpurin against DAPK1 phosphorylation is shown. Thermodynamic analysis revealed that while the binding affinity of purpurin is similar to that of CPR005231, which is a DAPK1 inhibitor with an imidazopyridazine moiety, the binding of purpurin was more enthalpically favorable. In addition, the inhibition potencies were correlated with the enthalpic changes but not with the binding affinities. Crystallographic analysis of the DAPK1–purpurin complex revealed that the formation of a hydrogen-bond network is likely to contribute to the favorable enthalpic changes and that stabilization of the glycine-rich loop may cause less favorable entropic changes. The present findings indicate that purpurin may be a good lead compound for the discovery of inhibitors of DAPK1, and the observation of enthalpic changes could provide important clues for drug development.




act

Bond-valence analyses of the crystal structures of FeMo/V cofactors in FeMo/V proteins

The bond-valence method has been used for valence calculations of FeMo/V cofactors in FeMo/V proteins using 51 crystallographic data sets of FeMo/V proteins from the Protein Data Bank. The calculations show molybdenum(III) to be present in MoFe7S9C(Cys)(HHis)[R-(H)homocit] (where H4homocit is homocitric acid, HCys is cysteine and HHis is histidine) in FeMo cofactors, while vanadium(III) with a more reduced iron complement is obtained for FeV cofactors. Using an error analysis of the calculated valences, it was found that in FeMo cofactors Fe1, Fe6 and Fe7 can be unambiguously assigned as iron(III), while Fe2, Fe3, Fe4 and Fe5 show different degrees of mixed valences for the individual Fe atoms. For the FeV cofactors in PDB entry 5n6y, Fe4, Fe5 and Fe6 correspond to iron(II), iron(II) and iron(III), respectively, while Fe1, Fe2, Fe3 and Fe7 exhibit strongly mixed valences. Special situations such as CO-bound and selenium-substituted FeMo cofactors and O(N)H-bridged FeV cofactors are also discussed and suggest rearrangement of the electron configuration on the substitution of the bridging S atoms.




act

Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody

Mycoplasma hyopneumoniae is a prokaryotic pathogen that colonizes the respiratory ciliated epithelial cells in swine. Infected animals suffer respiratory lesions, causing major economic losses in the porcine industry. Characterization of the immunodominant membrane-associated proteins from M. hyopneumoniae may be instrumental in the development of new therapeutic approaches. Here, the crystal structure of P46, one of the main surface-antigen proteins, from M. hyopneumoniae is presented and shows N- and C-terminal α/β domains connected by a hinge. The structures solved in this work include a ligand-free open form of P46 (3.1 Å resolution) and two ligand-bound structures of P46 with maltose (2.5 Å resolution) and xylose (3.5 Å resolution) in open and closed conformations, respectively. The ligand-binding site is buried in the cleft between the domains at the hinge region. The two domains of P46 can rotate with respect to each other, giving open or closed alternative conformations. In agreement with this structural information, sequence analyses show similarities to substrate-binding members of the ABC transporter superfamily, with P46 facing the extracellular side as a functional subunit. In the structure with xylose, P46 was also bound to a high-affinity (Kd = 29 nM) Fab fragment from a monoclonal antibody, allowing the characterization of a structural epitope in P46 that exclusively involves residues from the C-terminal domain. The Fab structure in the complex with P46 shows only small conformational rearrangements in the six complementarity-determining regions (CDRs) with respect to the unbound Fab (the structure of which is also determined in this work at 1.95 Å resolution). The structural information that is now available should contribute to a better understanding of sugar nutrient intake by M. hyopneumoniae. This information will also allow the design of protocols and strategies for the generation of new vaccines against this important swine pathogen.






act

New Book: “Recreating First Contact: Expeditions, Anthropology, and Popular Culture”

Between the world wars of the early Twentieth Century, an age of adventure travel and cultural exploration flourished when newly developed transport and recording technologies–particularly […]

The post New Book: “Recreating First Contact: Expeditions, Anthropology, and Popular Culture” appeared first on Smithsonian Insider.





act

Actin waves transport RanGTP to the neurite tip to regulate non-centrosomal microtubules in neurons [RESEARCH ARTICLE]

Yung-An Huang, Chih-Hsuan Hsu, Ho-Chieh Chiu, Pei-Yu Hsi, Chris T. Ho, Wei-Lun Lo, and Eric Hwang

Microtubule (MT) is the most abundant cytoskeleton in neurons and controls multiple facets of their development. While the MT-organizing center (MTOC) in mitotic cells is typically located at the centrosome, MTOC in neurons switches to non-centrosomal sites. A handful of cellular components have been shown to promote non-centrosomal MT (ncMT) formation in neurons, yet the regulation mechanism remains unknown. Here we demonstrate that the small GTPase Ran is a key regulator of ncMTs in neurons. Using an optogenetic tool that enables light-induced local production of RanGTP, we demonstrate that RanGTP promotes ncMT plus-end growth along the neurite. Additionally, we discovered that actin waves drive the anterograde transport of RanGTP. Pharmacological disruption of actin waves abolishes the enrichment of RanGTP and reduces growing ncMT plus-ends at the neurite tip. These observations identify a novel regulation mechanism of ncMTs and pinpoint an indirect connection between the actin and MT cytoskeletons in neurons.




act

Mitochondrial-nuclear heme trafficking is regulated by GTPases in control of mitochondrial dynamics and ER contact sites [RESEARCH ARTICLE]

Osiris Martinez-Guzman, Mathilda M. Willoughby, Arushi Saini, Jonathan V. Dietz, Iryna Bohovych, Amy E. Medlock, Oleh Khalimonchuk, and Amit R. Reddi

Heme is a cofactor and signaling molecule that is essential for much of aerobic life. All heme-dependent processes in eukaryotes require that heme is trafficked from its site of synthesis in the mitochondria to hemoproteins located throughout the cell. However, the mechanisms governing the mobilization of heme out of the mitochondria, and the spatio-temporal dynamics of these processes, are poorly understood. Herein, using genetically encoded fluorescent heme sensors, we developed a live cell assay to monitor heme distribution dynamics between the mitochondrial inner-membrane, where heme is synthesized, and the mitochondrial matrix, cytosol, and nucleus. Surprisingly, heme trafficking to the nucleus is ~25% faster than to the cytosol or mitochondrial matrix, which are nearly identical, potentially supporting a role for heme as a mitochondrial-nuclear retrograde signal. Moreover, we discovered that the heme synthetic enzyme, 5-aminolevulinic acid synthase (ALAS), and GTPases in control of the mitochondrial dynamics machinery, Mgm1 and Dnm1, and ER contact sites, Gem1, regulate the flow of heme between the mitochondria and nucleus. Overall, our results indicate that there are parallel pathways for the distribution of bioavailable heme.




act

A genetic interaction map centered on cohesin reveals auxiliary factors in sister chromatid cohesion [RESEARCH ARTICLE]

Su Ming Sun, Amandine Batte, Mireille Tittel-Elmer, Sophie van der Horst, Tibor van Welsem, Gordon Bean, Trey Ideker, Fred van Leeuwen, and Haico van Attikum

Eukaryotic chromosomes are replicated in interphase and the two newly duplicated sister chromatids are held together by the cohesin complex and several cohesin auxiliary factors. Sister chromatid cohesion is essential for accurate chromosome segregation during mitosis, yet has also been implicated in other processes, including DNA damage repair, transcription and DNA replication. To assess how cohesin and associated factors functionally interconnect and coordinate with other cellular processes, we systematically mapped genetic interactions of 17 cohesin genes centered on quantitative growth measurements of >52,000 gene pairs in budding yeast. Integration of synthetic genetic interactions unveiled a cohesin functional map that constitutes 373 genetic interactions, revealing novel functional connections with post-replication repair, microtubule organization and protein folding. Accordingly, we show that the microtubule-associated protein Irc15 and the prefoldin complex members Gim3, Gim4 and Yke2 are new factors involved in sister chromatid cohesion. Our genetic interaction map thus provides a unique resource for further identification and functional interrogation of cohesin proteins. Since mutations in cohesin proteins have been associated with cohesinopathies and cancer, it may also identify cohesin interactions relevant in disease etiology.




act

F-BAR domain protein Syndapin regulates actomyosin dynamics during apical cap remodeling in syncytial Drosophila embryos [SHORT REPORT]

Aparna Sherlekar, Gayatri Mundhe, Prachi Richa, Bipasha Dey, Swati Sharma, and Richa Rikhy

Branched actin networks driven by Arp2/3 collaborate with actomyosin filaments in processes such as cell migration. The syncytial Drosophila blastoderm embryo also shows expansion of apical caps by Arp2/3 driven actin polymerization in interphase and buckling at contact edges by MyosinII to form furrows in metaphase. Here we study the role of Syndapin (Synd), an F-BAR domain containing protein in apical cap remodelling prior to furrow extension. synd depletion showed larger apical caps. STED super-resolution and TIRF microscopy showed long apical actin protrusions in caps in interphase and short protrusions in metaphase in control embryos. synd depletion led to sustained long protrusions even in metaphase. Loss of Arp2/3 function in synd mutants partly reverted defects in apical cap expansion and protrusion remodelling. MyosinII levels were decreased in synd mutants and MyosinII mutant embryos have been previously reported to have expanded caps. We propose that Syndapin function limits branching activity during cap expansion and affects MyosinII distribution in order to shift actin remodeling from apical cap expansion to favor lateral furrow extension.




act

A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity [RESEARCH ARTICLE]

Javad Fahanik-babaei, Bahareh Rezaee, Maryam Nazari, Nihad Torabi, Reza Saghiri, Remy Sauve, and Afsaneh Eliassi

We have determined the electropharmacological properties of a new potassium channel from brain mitochondrial membrane by planar lipid bilayer method. Our results showed the presence of a channel with a conductance of 150 pS at potentials between 0 and –60 mV in 200 cis/50 trans mM KCl solutions.

The channel was voltage-independent, with an open probability value ~0.6 at different voltages. ATP did not affect current amplitude and Po at positive and negative voltages. Notably, adding iberiotoxin, charybdotoxin, lidocaine, and margatoxin had no effect on the channel behavior. Similarly, no changes were observed by decreasing the cis-pH to 6. Interestingly, the channel was inhibited by adding sodium in a dose dependent manner. Our results also indicated a significant increase in mitochondrial complex IV activity and membrane potential and decrease in complex I activity and mitochondrial ROS production in the presence of sodium ions.

We propose that inhibition of mitochondrial K+ transport by Na ions on K+ channel opening may be important for cell protection and ATP synthesis.




act

Osh6 requires Ist2 for localization to the ER-PM contacts and efficient phosphatidylserine transport [RESEARCH ARTICLE]

Juan Martin D'Ambrosio, Veronique Albanese, Nicolas-Frederic Lipp, Lucile Fleuriot, Delphine Debayle, Guillaume Drin, and Alenka Copic

Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS level at the PM is key for many cellular functions. Intriguingly, Osh6/7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homologue of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6 osh7 deletion: they decrease cellular PS levels, and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.




act

Cdc24 interacts with the septins to create a positive feedback during bud site assembly in yeast [RESEARCH ARTICLE]

Julian Chollet, Alexander Dünkler, Anne Bäuerle, Laura Vivero-Pol, Medhanie A. Mulaw, Thomas Gronemeyer, and Nils Johnsson

Yeast cells select the position of their new bud at the beginning of each cell cycle. The recruitment of the septins to this prospective bud site is one of the critical events in a complex assembly pathway that culminates in the outgrowth of a new daughter cell. Hereby, the septin-rods follow the high concentration of Cdc42GTP that is generated by the focused localization of its GEF Cdc24. We show that shortly before budding Cdc24 not only activates Cdc42 but also transiently interacts with Cdc11, the septin subunit that caps both ends of the septin rods. Mutations in Cdc24 reducing the affinity to Cdc11 impair septin recruitment and decrease the stability of the polarity patch. The interaction between septins and Cdc24 thus reinforces bud assembly at sites where septin structures are formed. Once the septins polymerize into the ring, Cdc24 is found at the cortex of the bud and directs its further outgrowth from this position.