tal

Digital, the way forward

The ongoing coronavirus-led lockdown has given rise to a plethora of possibilities in online higher education, post the pandemic




tal

Restore funds under MPLADS, Stalin says

The works for this year under MPLADS have already started, he said and demanded withdrawal of the circular of the Union Ministry of Statistics and Policy Implementation suspending the funds.




tal

Infant mortality rate drops by one point in Tamil Nadu

The State’s IMR has been on the decreasing trend.




tal

Start-up comes up with multi-purpose hospital solution

assistplus will be rolled out at a health care centre in Malappuram by June




tal

Ban on entry of unregistered Keralites through Talapady

Surge in number of returnees without registration




tal

Coronavirus | West Bengal govt forms teams for surveillance support, monitoring of treatment at hospitals

The team members will pay regular visits to these hospitals and send reports to the department, the state government said in an order.




tal

Over 4,000 released from Italian hospitals

Another 1,083 people tested positive, half of them in hard-hit Lombardy, bringing Italy’s confirmed number of cases to 218,268.




tal

Delhi govt. reports less COVID-19 deaths than hospitals

Administration denies allegations, says there is an audit panel of doctors that probes and reports every death




tal

Fire hits Moscow hospital housing virus victims

A fire at a Moscow hospital treating people infected by the new coronavirus killed one patient and forced the evacuation of about 200 others.Also rea




tal

Coronavirus | Fatalities dog Andhra Pradesh, Telangana battle against virus

Two expatriates test positive in Kerala; Karnataka focuses on Bengaluru cases




tal

At least 2 died in separate avalanches in Italy

The Trento Alpine Rescue service said the body of one man was found late Saturday on the Folgaria plateau after an avalanche separated him from his dog.




tal

COVID-19: Odisha tally shoots up sharply by 58 to reach 352

According to the State govt., 29 new cases were reported from Ganjam district followed by Balasore and Angul with 15 and 13 cases.




tal

The competition between dehydrogenation and dehydration reactions for primary and secondary alcohols over gallia: unravelling the effects of molecular and electronic structure via a two-pronged theoretical/experimental approach

Catal. Sci. Technol., 2020, Advance Article
DOI: 10.1039/C9CY02603G, Paper
Lorella Izzo, Tommaso Tabanelli, Fabrizio Cavani, Paola Blair Vàsquez, Carlo Lucarelli, Massimo Mella
The relative dehydrogenation/dehydration reactivity imparted by nanostructured gallium(III) oxide on alcohols was investigated via electronic structure calculations, reactivity tests and DRIFT-IR spectroscopy.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




tal

Eye hospitals in Kolkata resume surgeries

Services are crawling back to normal at eye hospitals across the city that had been forced to suspend emergency surgeries and outpatient (OPD) services since the lockdown started. While some have resumed elective surgeries in a restricted way following screening of patients, others are on the way to reviving OPD services even as they continue telephone consultations and online advice.




tal

Audit companies exploring digital options to clear lockdown hurdle

While many companies are sharing documents digitally, some have also opened their servers to auditors to access the data they require




tal

Stimulus package likely next week; Guaranteed higher working capital limit for MSME on cards

Centre plans to raise the total borrowings to ₹12 lakh crore this fiscal




tal

Should rental income earners shift to the new tax regime?

Be wise when it comes to opting for the tax regime from this year




tal

Coronavirus Outbreak: COVID-19 tally in India nears 63,000-mark; death toll tops 2,000-mark

Maharashtra has the highest number of cases with around 20,228 positive cases of infection and 779 deaths.




tal

Now total lockdown in Gandhinagar from Sunday

To curb the increasing number of corona positive cases and the spread of virus infection, the Gandhinagar Collector on Saturday said there would be a total lockdown in Gandhinagar city and Kalol municipality on the lines of Ahmedabad and Surat.




tal

'Co-morbidity, late hospitalization ailing Guj'

Director of All India Institute of Medical Sciences, Delhi (AIIMS-D), Dr Randeep Guleria on Saturday said that late hospitalization of Covid-19 patients due to fear of stigma and higher prevalence of co-morbid conditions like diabetes, hypertension, heart and kidney disease were key reasons behind the high number of Civid-19 deaths in Gujarat.




tal

Punjab: Balbir Singh Senior admitted to a private hospital due to pneumonia




tal

On Mother’s Day, relive nostalgia with these 3 recipes for dips




tal

31 new Covid-19 cases in Punjab, total 1,762




tal

28 cases take Haryana's corona tally to 675

The Covid-19 count of Haryana on Saturday reached 675 as 28 new cases, which includes 25 from the national capital region (NCR) were reported. A 22-year-old TB patient also succumbed to Covid-19 in Panipat taking death toll to 9 in the state.




tal

‘Focussing on mental state, can pick up from where I left’: Virat Kohli




tal

A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.




tal

Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities

The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse−1 and up to 27000 pulses s−1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV–visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5–20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses.




tal

Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.




tal

Reducing sample consumption for serial crystallography using acoustic drop ejection

Efficient sample delivery is an essential aspect of serial crystallography at both synchrotrons and X-ray free-electron lasers. Rastering fixed target chips through the X-ray beam is an efficient method for serial delivery from the perspectives of both sample consumption and beam time usage. Here, an approach for loading fixed targets using acoustic drop ejection is presented that does not compromise crystal quality, can reduce sample consumption by more than an order of magnitude and allows serial diffraction to be collected from a larger proportion of the crystals in the slurry.




tal

Performance of nearly fixed offset asymmetric channel-cut crystals for X-ray monochromators

X-ray double-crystal monochromators face a shift of the exit beam when the Bragg angle and thus the transmitted photon energy changes. This can be compensated for by moving one or both crystals accordingly. In the case of monolithic channel-cut crystals, which exhibit utmost stability, the shift of the monochromated beam is inevitable. Here we report performance tests of novel, asymmetrically cut, channel-cut crystals which reduce the beam movements by more than a factor of 20 relative to the symmetric case over the typical energy range of an EXAFS spectrum at the Cu K-edge. In addition, the presented formulas for the beam offset including the asymmetry angle directly indicate the importance of this value, which has been commonly neglected so far in the operation of double-crystal monochromators.




tal

X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III

A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s−1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.




tal

X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector

Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.




tal

X-ray free-electron laser wavefront sensing using the fractional Talbot effect

Wavefront sensing at X-ray free-electron lasers is important for quantitatively understanding the fundamental properties of the laser, for aligning X-ray instruments and for conducting scientific experimental analysis. A fractional Talbot wavefront sensor has been developed. This wavefront sensor enables measurements over a wide range of energies, as is common on X-ray instruments, with simplified mechanical requirements and is compatible with the high average power pulses expected in upcoming X-ray free-electron laser upgrades. Single-shot measurements were performed at 500 eV, 1000 eV and 1500 eV at the Linac Coherent Light Source. These measurements were applied to study both mirror alignment and the effects of undulator tapering schemes on source properties. The beamline focal plane position was tracked to an uncertainty of 0.12 mm, and the source location for various undulator tapering schemes to an uncertainty of 1 m, demonstrating excellent sensitivity. These findings pave the way to use the fractional Talbot wavefront sensor as a routine, robust and sensitive tool at X-ray free-electron lasers as well as other high-brightness X-ray sources.




tal

X-ray absorption linear dichroism at the Ti K-edge of rutile (001) TiO2 single crystal

X-ray absorption linear dichroism of rutile TiO2 at the Ti K-edge provides information about the electronic states involved in the pre-edge transitions. Here, linear dichroism with high energy resolution is analyzed in combination with ab initio finite difference method calculations and spherical tensor analysis. It provides an assignment of the three pre-edge peaks beyond the octahedral crystal field splitting approximation and estimates the spatial extension of the corresponding final states. It is then discussed for the first time the X-ray absorption (XAS) of pentacoordinated titanium atoms due to oxygen vacancies and it is found that, similarly to anatase TiO2, rutile is expected to exhibit a transition on the low-energy side of peak A3. Its apparent absence in the experiment is related to the degree of p–d orbital mixing which is small in rutile due to its centrosymmetric point group. A recent XAS linear dichroism study on anatase TiO2 single crystals has shown that peak A2 has an intrinsic origin and is due to a quadrupolar transition to the 3d energy levels. In rutile, due to its centrosymmetric point group, the corresponding peak A2 has a small dipole moment explaining the weak transition. The results are confronted with recent picosecond X-ray absorption spectroscopy on rutile TiO2 nanoparticles.




tal

The HARE chip for efficient time-resolved serial synchrotron crystallography

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.




tal

Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

The time evolution of the electron density and the resulting time dependence of the X-ray polarizability of a crystal irradiated by highly intense XFEL femtosecond pulses is investigated theoretically. Rate equations for bound electrons and the Boltzmann equation for the unbound electron gas are used in calculations.




tal

The indexing ambiguity in serial femtosecond crystallography (SFX) resolved using an expectation maximization algorithm

An expectation maximization algorithm is implemented to resolve the indexing ambiguity which arises when merging data from many crystals in protein crystallography, especially in cases where partial reflections are recorded in serial femtosecond crystallography (SFX) at XFELs.




tal

Nanocrystalline materials: recent advances in crystallographic characterization techniques

This feature article reviews the control and understanding of nanoparticle shape from their crystallography and growth. Particular emphasis is placed on systems relevant for plasmonics and catalysis.




tal

Binding site asymmetry in human transthyretin: insights from a joint neutron and X-ray crystallographic analysis using perdeuterated protein

A neutron crystallographic study of perdeuterated transthyretin reveals important aspects of the structure relating to its stability and its propensity to form fibrils, as well as evidence of a single water molecule that affects the symmetry of the two binding pockets.




tal

Chemical crystallography and crystal engineering

Today, there is very little doubt that chemistry owes as much to crystallography as crystallography does to chemistry. This mutual synergy defines modern chemical crystallography.





tal

Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum

Gluconate 5-dehydrogenase (Ga5DH; EC 1.1.1.69) from Lentibacter algarum (LaGa5DH) was recombinantly expressed in Escherichia coli and purified to homogeneity. The protein was crystallized and the crystal structure was solved at 2.1 Å resolution. The crystal belonged to the monoclinic system, with space group P1 and unit-cell parameters a = 55.42, b = 55.48, c = 79.16 Å, α = 100.51, β = 105.66, γ = 97.99°. The structure revealed LaGaDH to be a tetramer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. LaGa5DH has high structural similarity to other Ga5DH proteins, demonstrating that this enzyme is highly conserved.




tal

Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport

The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.




tal

Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa

Factor for inversion stimulation (Fis) is a versatile bacterial nucleoid-associated protein that can directly bind and bend DNA to influence DNA topology. It also plays crucial roles in regulating bacterial virulence factors and in optimizing bacterial adaptation to various environments. Fis from Pseudomonas aeruginosa (PA4853, referred to as PaFis) has recently been found to be required for virulence by regulating the expression of type III secretion system (T3SS) genes. PaFis can specifically bind to the promoter region of exsA, which functions as a T3SS master regulator, to regulate its expression and plays an essential role in transcription elongation from exsB to exsA. Here, the crystal structure of PaFis, which is composed of a four-helix bundle and forms a homodimer, is reported. PaFis shows remarkable structural similarities to the well studied Escherichia coli Fis (EcFis), including an N-terminal flexible loop and a C-terminal helix–turn–helix (HTH) motif. However, the critical residues for Hin-catalyzed DNA inversion in the N-terminal loop of EcFis are not conserved in PaFis and further studies are required to investigate its exact role. A gel-electrophoresis mobility-shift assay showed that PaFis can efficiently bind to the promoter region of exsA. Structure-based mutagenesis revealed that several conserved basic residues in the HTH motif play essential roles in DNA binding. These structural and biochemical studies may help in understanding the role of PaFis in the regulation of T3SS expression and in virulence.





tal

Visualization Bench for the screening of crystallization assays and the automation of in situ experiments




tal

Exploring the complex map of insulin polymorphism: a novel crystalline form in the presence of m-cresol

A novel monoclinic phase of human insulin co-crystallized with m-cresol was structurally characterized by means of powder and single-crystal X-ray diffraction.




tal

The crystal structure of the heme d1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo

The crystal structure of the c-type cytochrome NirC from Pseudomonas aeruginosa has been determined and reveals the simultaneous presence of monomers and 3D domain-swapped dimers in the same asymmetric unit.




tal

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

A new scaling program is presented with new features to support multi-sweep workflows and analysis within the DIALS software package.




tal

Crystal and solution structures of fragments of the human leucocyte common antigen-related protein

The crystal and solution SAXS structures of a fragment of human leucocyte common antigen-related protein show that it is less flexible than the homologous proteins tyrosine phosphatase receptors δ and σ.