carbon

SPL Participates in Pressurized Hydrocarbon Liquids Sampling and Analysis Study on Behalf of Noble Energy

Final report on study conducted by SPL is published by Noble Energy




carbon

CarboNix LLC Receives Major Grant from the National Institutes of Health to Fund Technology that Safely Removes Allergens and Dust Mites

Columbia, SC-based Company Committed to Eliminating Allergy and Asthma-Causing Dust Mites from the Home




carbon

Diversified Plastics, Inc. Joins the Carbon Production Network

Carbon technology is next-generation 3D-additive manufacturing.




carbon

Transmute Coin Introduces Process for Recycling Carbon-based Materials with Zero CO2 Emission & Waste Pollution

COLDFALL Corporation is accepting Transmute Coins, cryptocurrency from its patrons as payment for transmutation of tires, plastics, coal, and carbon-based materials.




carbon

GRAFEX® SUPER FULLERENE - A New Carbon Molecule With Superior Antioxidant Properties

GRAFEX® SUPER FULLERENE




carbon

AAA Public Adjusters Talks About Carbon Monoxide Poisoning

Prevention, how to spot symptoms, and what to do in case of carbon monoxide leaks




carbon

Luxivair SBD Committed to Reducing Carbon Footprint

FBO Offers Greener Alternative in Southern California




carbon

Luxivair SBD Committed to Reducing Carbon Footprint

FBO Offers Greener Alternative in Southern California




carbon

Carbonated Drinks Increase the Risk of Tooth Erosion

Studies show that consuming too much carbonated drinks can increase the risk of tooth erosion.




carbon

Colossal carbon! Disturbance and biomass dynamics in Alaska’s national forests

The Chugach and Tongass National Forests are changing, possibly in response to global warming.




carbon

There’s carbon in them thar hills: But how much? Could Pacific Northwest forests store more?

As a signatory to the United Nations Framework Convention on Climate Change, the United States annually compiles a report on the nation's carbon flux—the amount of carbon emitted into the atmosphere compared to the amount stored by terrestrial landscapes.




carbon

Can we store carbon and have our timber and habitat too?

With the passage of the Multiple Use Sustained Yield Act of 1960, the U.S. Forest Service has managed its 193 million acres of forest and grassland for multiple uses, including timber, watersheds, and wildlife. Using today’s terminology, some of these purposes are considered ecosystem services, which encompass a breadth of benefits provided by forests, including their ability to absorb and store atmospheric carbon, a greenhouse gas linked to climate change.




carbon

The Fall River Long-Term Site Productivity Study in Coastal Washington: Site Characteristics, Methods, and Biomass and Carbon and Nitrogen Stores Before and After Harvest

The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the world's largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil compaction, tillage, and vegetation control on site properties and growth of planted Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Biomass-removal treatments included removal of commercial bole (BO), bole to 5-cm top diameter (BO5), total tree (TT), and total tree plus all legacy woody debris (TT+). Vegetation control (VC) effects were tested in BO, while soil compaction and compaction plus tillage were imposed in BO+VC treatment. All treatments were imposed in 1999. The preharvest stand contained similar amounts of carbon (C) above the mineral soil (292 Mg/ha) as within the mineral soil to 80- cm depth including roots (298 Mg/ha). Carbon stores above the mineral soil ordered by size were live trees (193 Mg/ha), old-growth logs (37 Mg/ha), forest floor (27 Mg/ha), old-growth stumps and snags (17 Mg/ha), coarse woody debris (11 Mg/ha), dead trees/snags (7 Mg/ha), and understory vegetation (0.1 Mg/ha). The mineral soil to 80-cm depth contained 248 Mg C/ha, and roots added 41 Mg/ha. Total nitrogen (N) in mineral soil and roots (13 349 kg/ha) was more than 10 times the N store above the mineral soil (1323 kg/ha). Postharvest C above mineral soil decreased to 129, 120, 63, and 50 Mg/ha in BO, BO5, TT, and TT+, respectively. Total N above the mineral soil decreased to 722, 747, 414, and 353 Mg/ha in BO, BO5, TT, and TT+, respectively. The ratio of total C above the mineral soil to total C within the mineral soil was markedly altered by biomass removal, but proportions of total N stores were reduced only 3 to 6 percent owing to the large soil N reservoir on site.




carbon

Forest inventory-based estimation of carbon stocks and flux in California forests in 1990

Estimates of forest carbon stores and flux for California circa 1990 were modeled from forest inventory data in support of California's legislatively mandated greenhouse gas inventory. Reliable estimates of live-tree carbon stores and flux on timberlands outside of national forest could be calculated from periodic inventory data collected in the 1980s and 1990s; however, estimation of circa 1990 flux on national forests and forests other than timberland was problematic owing to a combination of changing inventory protocols and definitions and the lack of remeasurement data on those land categories. We estimate annual carbon flux on the 7.97 million acres of timberlands outside of national forests (which account for 24 percent of California's forest area and 28 percent of its live tree aboveground biomass) at 2.9 terragrams per year.




carbon

Climate Change, Carbon, and Forestry in Northwestern North America: Proceedings of a Workshop November 14 - 15, 2001 Orcas Island, Washington

Interactions between forests, climatic change and the Earths carbon cycle are complex and represent a challenge for forest managers - they are integral to the sustainable management of forests. In this volume, a number of papers are presented that describe some of the complex relationships between climate, the global carbon cycle and forests.




carbon

New cost estimates for carbon sequestration through afforestation in the United States

This report provides new cost estimates for carbon sequestration through afforestation in the United States. We extend existing studies of carbon sequestration costs in several important ways, while ensuring the transparency of our approach. We clearly identify all components of our cost estimates so that other researchers can reconstruct our results as well as use our data for other purposes. Our cost estimates have five distinguishing features: (1) we estimate costs for each county in the contiguous United States; (2) we include afforestation of rangeland, in addition to cropland and pasture; (3) our opportunity cost estimates account for capitalized returns to future development (including associated option values) in addition to returns to agricultural production; (4) we develop a new set of forest establishment costs for each county; and (5) we incorporate data on Holdridge life zones to limit afforestation in locations where temperature and moisture availability prohibit forest growth. We find that at a carbon price of $50/ton, approximately 200 million tons of carbon would be sequestered annually through afforestation. At a price of $100/ton, an additional 100 million tons of carbon would be sequestered each year. Our estimates closely match those in earlier econometric studies for relatively low carbon prices, but diverge at higher carbon prices. Accounting for climatic constraints on forest expansion has important effects on cost estimates.




carbon

Storage and flux of carbon in live trees, snags, and logs in the Chugach and Tongass National Forests

Carbon storage and flux estimates for the two national forests in Alaska are provided using inventory data from permanent plots established in 1995–2003 and remeasured in 2004–2010. Estimates of change are reported separately for growth, sapling recruitment, harvest, mortality, snag recruitment, salvage, snag falldown, and decay. Although overall aboveground carbon mass in live trees did not change in the Tongass National Forest, the Chugach National Forest showed a 4.5 percent increase. For the Tongass National Forest, results differed substantially for managed and unmanaged forest: managed lands had higher per-acre rates of sequestration through growth and recruitment, and carbon stores per acre that were higher for decomposing downed wood, and lower for live trees and snags. The species composition of carbon stores is changing on managed lands, with a carbon mass loss for yellow-cedar but increases for red alder and Sitka spruce. On unmanaged lands, the Chugach National forest had carbon mass increases in Sitka spruce and white spruce, and the Tongass National Forest had increases in western redcedar and red alder.




carbon

Why Reducing Our Carbon Emissions Matters

By The Conversation While it’s true that Earth’s temperatures and carbon dioxide levels have always fluctuated, the reality is that humans’ greenhouse emissions since the industrial revolution have put us in uncharted territory. Written by Dr Benjamin Henley and Assoc … Continue reading




carbon

School District Switches to Local and Organic Meals, Cuts Carbon Footprint—and Saves Money

By Melissa Hellmann Yes! Magazine A new report revealed surprising results when Oakland overhauled its lunch menu at 100-plus schools by serving less meat and more fruits and vegetables. When her eldest son was in elementary school in the Oakland … Continue reading




carbon

5-(pyridin-2-yl-amino)-pyrazine-2-carbonitrile compounds and their therapeutic use

The present invention pertains generally to the field of therapeutic compounds. More specifically the present invention pertains to certain pyridyl-amino-pyrazine carbonitrile compounds that, inter alia, inhibit Checkpoint Kinase 1 (CHK1) kinase function. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit CHK1 kinase function, and in the treatment of diseases and conditions that are mediated by CHK1, that are ameliorated by the inhibition of CHK1 kinase function, etc., including proliferative conditions such as cancer, etc., optionally in combination with another agent, for example, (a) a DNA topoisomerase I or II inhibitor; (b) a DNA damaging agent; (c) an antimetabolite or thymidylate synthase (TS) inhibitor; (d) a microtubule targeted agent; and (e) ionizing radiation.




carbon

Solvent-based primer solution based on silylated polyurethane (SPUR) chemistry for polycarbonate substrates

A primer solution for enhanced adhesion to a rigid substrate for aviation and aerospace applications includes an aminosilane-capped polyurethane prepolymer and a first solvent. The first solvent reacts with or modifies the surface of the rigid substrate, enabling the primer solution including the aminosilane-capped polyurethane prepolymer to become a part of the surface of the rigid substrate.




carbon

Separation of components from a multi-component hydrocarbon stream which includes ethylene

A process to separate a multi-component hydrocarbon stream which includes ethylene and other components with at least some of the components being present in a number of phases, is provided. The process includes in a first flash stage, flashing the multi-component hydrocarbon stream, from an elevated pressure and temperature to a pressure in the range of 10-18 bar(a), producing a first ethylene-containing vapor stream at a pressure in the range of 10-18 bar(a) and a multi-phase stream which includes some ethylene. In a second flash stage, the multi-phase stream is flashed to a pressure of less than 6 bar(a), producing a second vapor stream at a pressure of less than 6 bar(a) and a bottoms stream. The first ethylene-containing vapor stream is removed from the first flash stage, the second vapor stream is removed from the second flash stage and the bottoms stream is removed from the second flash stage.




carbon

Catalysts, processes for preparing the catalysts, and processes for transalkylating aromatic hydrocarbon compounds

A catalyst comprising an aluminosilicate zeolite having an MOR framework type, an acidic MFI molecular sieve component having a Si/Al2 molar ratio of less than 80, a metal component comprising one or more elements selected from groups VIB, VIIB, VIII, and IVA, an inorganic oxide binder, and a fluoride component.




carbon

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using basic molecular sieves

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with a basic catalyst to convert a portion of the weakly basic nitrogen compounds to basic nitrogen compounds. The method also includes contacting the hydrocarbon feed stream with an acidic adsorbent to adsorb the basic nitrogen compounds from the stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




carbon

Demulsifying of hydrocarbon feeds

In various aspects, the invention provides for processing a hydrocarbon feed having hydrocarbon and emulsified aqueous components demulsifying into hydrocarbon and aqueous phases over an initial demulsification time, with an active agent to form a treated feed. The active agent has an active agent solubility in the hydrocarbon component and in the aqueous component, the aqueous component has an aqueous component solubility in the hydrocarbon component. The active agent solubility in the hydrocarbon component is greater than the aqueous component solubility in the hydrocarbon component. The active agent solubility in the aqueous component is greater than the active agent solubility in the hydrocarbon component. The active agent solubility in the aqueous component is greater than the active agent solubility in the hydrocarbon component. A treated demulsified hydrocarbon phase separates from the active agent and the aqueous component in a modified demulsification time that is shorter than the initial demulsification time.




carbon

Methods for removing weakly basic nitrogen compounds from a hydrocarbon stream using acidic clay

Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with acidic clay to produce a hydrocarbon effluent stream having a lower weakly basic nitrogen compound content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.




carbon

Method for the manufacture of branched saturated hydrocarbons

The invention relates to a method for the manufacture of branched saturated hydrocarbons, said method comprising the steps where a feed comprising olefins having at least 10 carbons is simultaneously hydrogenated and isomerized in the presence of hydrogen at a temperature of 100-400° C., under hydrogen partial pressure of 0.01-10 MPa, in the presence of a catalyst comprising a metal selected from the metals of Group VIIIb of the Periodic Table of Elements, a molecular sieve selected from ten member ring molecular sieves, twelve member ring molecular sieves and mesoporous molecular sieves embedded with zeolite, and a carrier, to yield branched saturated hydrocarbons.




carbon

Carbon nanotube devices with unzipped low-resistance contacts

A method of creating a semiconductor device is disclosed. An end of a carbon nanotube is unzipped to provide a substantially flat surface. A contact of the semiconductor device is formed. The substantially flat surface of the carbon nanotube is coupled to the contact to create the semiconductor device. An energy gap in the unzipped end of the carbon nanotube may be less than an energy gap in a region of the carbon nanotube outside of the unzipped end region.




carbon

Surface treated calcium carbonate filler for resin and resin composition containing the filler

Provided is a surface treated calcium carbonate filler for resins, which comprises calcium carbonate particles, the surface of which has been treated with at least one surface active agent (A) selected from the group consisting of saturated fatty acids, unsaturated fatty acids, alicyclic carboxylic acids, resin acids, and salts thereof and with at least one compound (B) having the ability to chelate alkaline earth metals, the compound (B) being selected from the group consisting of phosphonic acids, polycarboxylic acids, and salts thereof. The surface treated calcium carbonate filler for resins of the present invention deteriorates little with time, has satisfactory dispersibility in resins, and can give a sheet or film which has a satisfactory balance among durability, weatherability, strength, and thermal stability, and is useful as a battery separator or a light reflector.




carbon

Method and facility for treating carbonaceous radioactive waste

The invention relates to the treatment of carbonaceous radioactive waste, comprising the delivery of waste to one or more radioactive isotope separation stations isotopes, said isotopes being among at least carbon 14, chlorine 36, and tritium. Advantageously, the delivery to each of the stations occurs in wet form, with water being a common medium for conveying the waste to each of the separation stations.




carbon

Thermal treatment of carbonaceous waste

A method is provided for the decontamination of radioactive carbonaceous material, such as graphite, in which an injection of steam is planned into the material, concurrent with a first roasting thermal treatment of the material at a temperature between 1200° C. and 1500° C. Advantageously, the first treatment may be followed by a second treatment at a lower temperature with an injection of carbon oxide for oxidation according to the Boudouard reaction.




carbon

Hydrothermal conversion of biomass to hydrocarbon products

A process for the conversion of biomass to hydrocarbon products such as transportation fuels, kerosene, diesel oil, fuel oil, chemical and refinery plant feeds. The instant process uses a hydrocarbon or synthesis gas co-feed and hot pressurized water to convert the biomass in a manner commonly referred to as hydrothermal liquefaction.




carbon

Catalytic dehydrochlorination of hydrochlorofluorocarbons

A dehydrochlorination process is disclosed. The process involves contacting RfCFClCH2X with a catalyst in a reaction zone to produce a product mixture comprising RfCF═CHX, wherein said catalyst comprises MY supported on carbon, and wherein Rf is a perfluorinated alkyl group, X ═H, F, Cl, Br or I, M=K, Na or Cs, and Y═F, Cl or Br.




carbon

Preparation of fluorinated olefins via catalytic dehydrohalogenation of halogenated hydrocarbons

A process for making a fluorinated olefin having the step of dehydrochlorinating a hydrochlorofluorocarbon having at least one hydrogen atom and at least one chlorine atom on adjacent carbon atoms, preferably carried out in the presence of a catalyst selected from the group consisting of (i) one or more metal halides, (ii) one or more halogenated metal oxides, (iii) one or more zero-valent metals/metal alloys, (iv) a combination of two or more of the foregoing.




carbon

Compositions comprising supercritical carbon dioxide and metallic compounds

Methods of increasing the solubility of a base in supercritical carbon dioxide include forming a complex of a Lewis acid and the base, and dissolving the complex in supercritical carbon dioxide. The Lewis acid is soluble in supercritical carbon dioxide, and the base is substantially insoluble in supercritical carbon dioxide. Methods for increasing the solubility of water in supercritical carbon dioxide include dissolving an acid or a base in supercritical carbon dioxide to form a solution and dissolving water in the solution. The acid or the base is formulated to interact with water to solubilize the water in the supercritical carbon dioxide. Some compositions include supercritical carbon dioxide, a hydrolysable metallic compound, and at least one of an acid and a base. Some compositions include an alkoxide and at least one of an acid and a base.




carbon

4(3)-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carbonitrile

A compound and a fragrance composition containing the same are provided, wherein the compound has a citrus odor in addition to a muguet odor, which is useful as a fragrance, is stable in an aqueous vehicle, and can provide a bright muguet odor with good fragrance retention by being blended with another fragrance. Particularly, they are 4(3)-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carbonitrile and a fragrance composition containing 4(3)-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carbonitrile.




carbon

Fluorocarbon emulsion stabilizing surfactants

Surfactants (e.g., fluorosurfactants) for stabilizing aqueous or hydrocarbon droplets in a fluorophilic continuous phase are presented. In some embodiments, fluorosurfactants include a fluorophilic tail soluble in a fluorophilic (e.g., fluorocarbon) continuous phase, and a headgroup soluble in either an aqueous phase or a lipophilic (e.g., hydrocarbon) phase. The combination of a fluorophilic tail and a headgroup may be chosen so as to create a surfactant with a suitable geometry for forming stabilized reverse emulsion droplets having a disperse aqueous or lipophilic phase in a continuous, fluorophilic phase. In some embodiments, the headgroup is preferably non-ionic and can prevent or limit the adsorption of molecules at the interface between the surfactant and the discontinuous phase. This configuration can allow the droplet to serve, for example, as a reaction site for certain chemical and/or biological reactions. In another embodiment, aqueous droplets are stabilized in a fluorocarbon phase at least in part by the electrostatic attraction of two oppositely charged or polar components, one of which is at least partially soluble in the dispersed phase, the other at least partially soluble in the continuous phase. One component may provide collodial stability of the emulsion, and the other may prevent the adsorption of biomolecules at the interface between a component and the discontinous phase. Advantageously, surfactants and surfactant combinations of the invention may provide sufficient stabilization against coalescence of droplets, without interfering with processes that can be carried out inside the droplets.




carbon

Carbonate prodrugs and methods of using the same

The present invention provides carbonate prodrugs which comprise a carbonic phosphoric anhydride prodrug moiety attached to the hydroxyl or carboxyl group of a parent drug moiety. The prodrugs may provide improved physicochemical properties over the parent drug. Also provided are methods of treating a disease or condition that is responsive to the parent drug using the carbonate prodrugs, as well as kits and unit dosages.




carbon

Process for the preparation of fluoroalkyl (fluoro)alkyl carbonates and carbamates

Fluoroalkyl alkyl carbonates and fluorosubstituted carbamates which are suitable as additives or solvents in lithium ion batteries are prepared from fluoroalkyl fluoroformates and the respective alcohol or amine. Methanol is the preferred alcohol, dimethylamine and diethylamine are preferred amines. Fluoromethyl methyl carbonate is the preferred compound to be produced. Fluoroalkyl fluoroformates can be prepared from aldehydes and carbonyl fluoride.




carbon

Process for the production of high-purity dimethyl carbonate

A process for producing a high-purity dimethyl carbonate, which includes: (I) cooling a commercial grade dimethyl carbonate containing 1 ppm or more of chlorine to a temperature from +6° C. to −5° C. at a rate from 0.5-2° C./hour, to obtain a first solid dimethyl carbonate; (II) heating the first solid dimethyl carbonate to a temperature from −5° C. to +6° C. at a rate of 1-5° C./hour, to obtain a mixture comprising a second solid dimethyl carbonate and a predetermined amount of a first liquid dimethyl carbonate; (III) separating the first liquid dimethyl carbonate from the mixture, to obtain the second solid dimethyl carbonate; (IV) heating the second solid dimethyl carbonate to a temperature from 20° C. to 40° C., to obtain a second liquid dimethyl carbonate, wherein the second liquid dimethyl carbonate has a purity degree higher than 99.99% and a chlorine content lower than or equal to 1 ppm.




carbon

Aliphatic polycarbonate quench method

The present disclosure is directed to, in part, an aliphatic polycarbonate polymerization reaction initiated by combining an epoxide with carbon dioxide in the presence of a catalytic transition metal-ligand complex to form a reaction mixture, and further quenching that polymerization reaction by contacting the reaction mixture with an acid containing a non-nucleophilic anion produces a crude polymer solution with improved stability and processability.




carbon

Process for preparing diaryl carbonates from dialkyl carbonates

The invention provides a process for preparing diaryl carbonates from dialkyl carbonates and aromatic hydroxyl compounds using at least two reaction columns, a process section for recovering the dialkyl carbonate used in the reaction and for removing the alcohol of reaction, one or more process steps for removing the by-products obtained in the process which have a boiling point between that of the dialkyl carbonate and that of the alkyl aryl carbonate formed during the preparation of the diaryl carbonate, and a process step for further purification of the diaryl carbonate obtained from the reaction columns.




carbon

Methanol carbonylation process with rhodium catalyst and a metallic co-catalyst selected from transition metals, zinc, beryllium, indium, tin, strontium and barium

A carbonylation process for making acetic acid using a metallic co-catalyst composition, effective as a rhodium stabilizer and/or rate promoter, at molar ratios of metal/rhodium of about 0.5 to 40. The process includes reacting methanol with carbon monoxide in the presence of a rhodium-based catalytic metal complex with about 1 to 20 weight percent methyl iodide, less than about 8 weight % water and about 0.5 to about 30 weight percent methyl acetate. The crude acetic acid is flashed and further purified.




carbon

Methods for production of arginine biocarbonate at low pressure

A method of producing arginine bicarbonate is provided including reacting an arginine slurry with a source of carbon dioxide gas under elevated temperature and low pressure to form a solution of at least 50% arginine bicarbonate, and recovering arginine bicarbonate from the solution.




carbon

Modified carbon material and process of making and using the same

A method of making modified carbon materials for use in fabricating fuel cell components. The modified carbon may comprise pendant fluorocarbon groups bonded covalently bonded thereto. In one embodiment, a mixture is formed and comprises carbon material suitable for use in a fuel cell component, an organic solvent, a compound having the general formula I—R wherein R is a fluorocarbon, and a reductant.




carbon

Methods for production of high concentration of arginine bicarbonate solution at high pressure

Methods of producing arginine bicarbonate solutions in very high concentrations including reacting an arginine slurry containing a first portion of arginine with a source of carbon dioxide gas at elevated pressure and temperature, adding subsequent portions of arginine to the resulting solution and further reacting with compressed carbon dioxide until a final solution containing in excess of 50% by weight are provided which include preparing an arginine solution by subjecting an arginine water slurry to elevated pressure and temperature and reacting the arginine solution with a source of carbon dioxide gas to form a solution comprising arginine and bicarbonate anion and recovering arginine bicarbonate from the solution.




carbon

Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst

Provided by the present invention is a method for efficient oxidation of alcohols by using, as a catalyst for dehydrogenation oxidation, a ruthenium complex which can be easily produced and easily handled and is obtainable at a relatively low cost. The invention relates to a method of producing a compound having a carbonyl group by dehydrogenation oxidation of alcohols by using as a catalyst the ruthenium carbonyl complex represented by the following general formula (1) RuXY(CO)(L) (1) (in the general formula (1), X and Y may be the same or different from each other and represent an anionic ligand, and L represents a tridentate aminodiphosphine ligand).




carbon

Method of synthesising polycarbonates in the presence of a bimetallic catalyst and a chain transfer agent

The invention provides a process for the synthesis of a polycarbonate, the process comprising the step of reacting carbon dioxide with at least one epoxide in the presence of a catalyst of formula (I) and a chain transfer agent. The invention also provides a polymerization system for the copolymerization of carbon dioxide and at least one epoxide comprising a catalyst of formula (I) and a chain transfer agent, polycarbonates produced by the inventive process, a block copolymer comprising a polycarbonate produced by the inventive process, and a method of producing the block copolymer. The invention also relates to novel catalysts of formula (III).




carbon

High molecular weight alkyl-allyl cobalttricarbonyl complexes and use thereof for preparing dielectric thin films

A method for forming a cobalt-containing thin film by a vapor deposition process is provided. The method comprises using at least one precursor corresponding in structure to Formula (I); wherein R1 and R2 are independently C2-C8-alkyl; x is zero, 1 or 2; and y is zero or 1; wherein both x and y can not be zero simultaneously.




carbon

Method for simply separating carbon nanotube

Disclosed are a method and an apparatus for separating metallic CNT and semiconducting CNT, comprising treating with a physical separation means of centrifugation, freezing-thawing-squeezing, diffusion, permeation or the like using a gel containing CNT as a dispersed and isolated state (CNT-containing gel), to thereby make semiconducting CNT exist in gel and make metallic CNT exist in solution.