pac

Descartes’ Study Reveals Nearly 90% of Consumers’ Sustainable Home Delivery Choices Are Impacted by Economic Pressure

Descartes Systems Group has released findings from its 2024 Home Delivery Sustainability Report: The Environmentally Conscious Consumer Under Pressure survey, which examined online consumer sentiment of retailers’ sustainability practices around their delivery operations.




pac

Rising e-commerce packaging costs and the European Union’s new Packaging & Packaging Waste Regulations (P&PWR) require careful consideration

By Jo Bradley, Business Development Manager at Sparck Technologies.

Companies can be schizophrenic about packaging and its costs. On the one hand, product packaging is closely scrutinised – a battleground between buyers seeking to drive costs down and marketers looking for ever greater impact and ‘shelf appeal’.




pac

Russia's largest bank sends huge package of documents to China for its first branch

Sberbank — Russia's largest state-owned bank — has the only foreign branch in India. In early November it was reported that Sberbank was going to open a branch in China. According to Alexander Vedyakhin, deputy chairman of the board, all the necessary documents have been sent to China, RBC reports. "We have been communicating with the People's Bank of China a lot lately. We have sent a massive package of documents there, as the Chinese regulator is very meticulous about documents. I hope that by the end of 2023 we will be able to open a branch in China. It usually takes 1.5-2 years, but we hope that by the end of 2023 we will already have a branch in this country,” Alexander Vedyakhin said. Sberbank opened a representative office in China in 2010; A representative office of Sberbank appeared in Germany in 2009; Sberbank has only one branch abroad — in New Delhi, India. After the start of the Russian special operation in Ukraine, Sberbank came under sanctions from Western states: the United States and Great Britain froze the bank's assets and banned citizens from doing business with it, whereas the EU disconnected Sberbank from the SWIFT interbank data exchange system.




pac

Pilipenko’s case: pacifists out

Economist Vladislav Inozemtsev writes about the change in the leadership of the Federal Chamber of Lawyers “At the end of last week ... at a meeting of the Council of the Federal Chamber of Lawyers of Russia, its long-term president, Yuri Pilipenko, who has held this post since 2015, was not re-elected for another term. (It is noteworthy that on the morning of December 15, he, being a president of the Chamber, sent a letter to the head of the Council of Bars and Law Societies of Europe, James MacGuill, expressing concern about the situation with the protection of the legal rights of Russians in European countries).” Inozemtsev notes that Pilipenko is a “highly experienced lawyer” who, as it would seem, “talentedly led a professional organization of lawyers, skillfully resolving any sensitive issues in the interaction between the legal community and the authorities, and at the same time demonstrating a willingness to independently make important decisions for the legal workers without waiting for the initiatives of the Ministry of Justice and the Kremlin.”




pac

PacSun elevates shopping experience with Manhattan Active Point of Sale

Manhattan Associates Inc has announced that PacSun, the specialty retailer of emerging youth brands and trending fashion, has selected Manhattan Active Point of Sale to enhance its omnichannel sales strategy and deliver a seamless, unified customer shopping experience.




pac

The Ergonomic Solutions Group’s new SpacePole Kiosk – A modular, configurable and customisable platform for a wide range of self-service applications

The Ergonomic Solutions Group, the designer and manufacturer of technology mounting solutions, has launched the SpacePole Kiosk – described as a multifunctional platform with maximum flexibility for a wide range of self-service applications including self-check-in/check-out, self-ordering, endless aisle, product display & advertising, ticketing, click & collect and many more.




pac

Compact high-performance embedded computer for kiosk and robotics applications

Advantech, provider of AIoT platforms and services, has launched ARK-3533, a compact fanless edge computer tailored for kiosk and robotics applications.




pac

Brother UK launches compact line up of mono lasers for business

Business technology solutions provider Brother UK has launched a compact range of mono laser printers for businesses, helping resellers to support customers with downsized offices and decentralised workforces.



  • Print and Label

pac

ISTA European Packaging Symposium will bring together global transport packaging leaders to focus on e-commerce, sustainability and more

The International Safe Transit Association (ISTA), the industry developer of pre-shipment performance testing standards for packaged products, has announced programming for its annual European Packaging Symposium, which will be held 8-9 October at the Le Méridien Frankfurt in Frankfurt, Germany.




pac

swop 2024: Year-end packaging roundup

Shanghai World of Packaging (swop) will take centre stage from November 18 to 20, 2024, at the Shanghai New International Expo Centre.



  • Exhibitions and Events
  • Retail Supply Chain

pac

Scan & Save celebrates third anniversary with retailers praising its impact

Jisp, the retail technology company, has marked the three-year anniversary of its Scan & Save app achieving high performance figures. Jisp reports that, since its launch in 2021, Scan & Save has earned retailers almost £6million while shoppers have saved over £2.2million in that time.




pac

The Study Explores the Impact of Sterilization Methods on Aronia Juice Quality

A research team has conducted a comprehensive study on the effects of various sterilization methods on the quality of Aronia melanocarpa juice (AMJ).




pac

MSU Expert: How President-Elect Trump Could Impact Education

Education is only becoming a bigger issue for both political parties. Questions and discussions surrounding the role of parents and their children's education as well as funding and the use of school vouchers remain top of mind as we prepare for a new administration. President-elect Donald Trump could make significant changes to the U.S. Department of Education, as questions loom about the future of the department under Trump. Josh Cowen is a professor of education policy in Michigan State University's College of Education. He has worked across the country on policy issues related to school choice, teacher quality and education reform. Cowen is the author of the new book The Privateers: How Billionaires Created a Culture War and Sold School Vouchers (Harvard Education Press). Here, he answers questions on what changes could come to education and what vouchers could mean for the U.S.




pac

Power Line Test Bed Energizes Technologies for Increasing Grid Capacity

As population growth and extreme temperatures strain the United States power grid, utilities and equipment manufacturers are looking for ways to increase the amount of electricity the grid can carry. The Powerline Conductor Accelerated Testing Facility, or PCAT, located at the Department of Energy's Oak Ridge National Laboratory, is one of the only facilities in the country where companies can try out new transmission line technologies for long time periods in extremes of wind, weather, temperature and electrical load conditions.




pac

MSU Expert: How President-Elect Trump Could Impact Education

Education is only becoming a bigger issue for both political parties. Questions and discussions surrounding the role of parents and their children's education as well as funding and the use of school vouchers remain top of mind as we prepare for a new administration. President-elect Donald Trump could make significant changes to the U.S. Department of Education, as questions loom about the future of the department under Trump. Josh Cowen is a professor of education policy in Michigan State University's College of Education. He has worked across the country on policy issues related to school choice, teacher quality and education reform. Cowen is the author of the new book The Privateers: How Billionaires Created a Culture War and Sold School Vouchers (Harvard Education Press). Here, he answers questions on what changes could come to education and what vouchers could mean for the U.S.




pac

The Study Explores the Impact of Sterilization Methods on Aronia Juice Quality

A research team has conducted a comprehensive study on the effects of various sterilization methods on the quality of Aronia melanocarpa juice (AMJ).




pac

When There's No One Else to Blame: The Impact of Coworkers' Perceived Competence and Warmth on the Relations between Ostracism, Shame, and Ingratiation




pac

How Identity Impacts Bystander Responses to Workplace Mistreatment




pac

The Lean Impact Start-Up Framework: Fueling Innovation for Positive Societal Change




pac

Forensic Service: Battery Pack May Have Caused Incheon EV Fire

[Science] :
Forensic authorities say last month’s electric vehicle fire in Incheon may have started with a battery pack under the car. The Incheon Metropolitan Police said the National Forensic Service delivered the assessment Friday, saying the battery pack may have caught fire and caused the car to burst into ...

[more...]




pac

S. Korea, US to Launch Solar Observation Instrument to Int’l Space Station

[Science] :
South Korea and the United States will launch a jointly developed instrument to the International Space Station(ISS) to help scientists learn more about the solar wind.  According to the Korea AeroSpace Administration and the Korea Astronomy and Space Science Institute, the Coronal Diagnostic ...

[more...]




pac

Space Agency to Develop Lunar Module to be Sent to Moon by 2032

[Science] :
The Korea AeroSpace Administration and the Korea Aerospace Research Institute are set to proceed with the development of a lunar module after signing an agreement on the second phase of the nation’s moon exploration project. According to the state agency on Monday, some 530 billion won, or around 386 ...

[more...]




pac

S. Korea’s Telecom Satellite Koreasat-6A Launched from US Space Center

[Science] :
A telecommunication satellite from the South Korean telecom giant KT has been launched into space and is now in orbit.  According to a launch video from SpaceX, the Koreasat-6A, a geostationary satellite for communication services, was launched aboard SpaceX’s Falcon 9 rocket from the Kennedy Space ...

[more...]




pac

KOSPI Plunges amid Concerns about Trump’s Impact on Economy

[Politics] :
South Korea’s benchmark stock index, the KOSPI, continued its sharp decline for the fourth consecutive day on Wednesday, in the wake of Donald Trump’s victory in the U.S. presidential election last week.  On Wednesday, the KOSPI fell by 65-point-49 points, or two-point-64 percent, closing at ...

[more...]




pac

NATO, S. Korea and Other Indo-Pacific Partners Condemn N. Korea's Troop Deployment

[International] :
The North Atlantic Treaty Organization(NATO), along with its Indo-Pacific partners, including South Korea, strongly denounced North Korea's troop deployment to Russia in support of its military offensive against Ukraine. In a statement on Friday, NATO's top decision-making North Atlantic Council(NAC) ...

[more...]




pac

Can Your Ceiling Fan Direction Impact Energy Costs?

You probably don't need to change your ceiling fan direction if you only use it to cool the room, but you can switch the direction for a wintertime hack.




pac

Finance Minister: Trump’s Reelection Likely to Have ‘Considerable’ Impact on S. Korean Economy

[Economy] :
Finance Minister Choi Sang-mok said Thursday that he expects Donald Trump’s reelection to have a “considerable” impact on the South Korean economy.  The minister made the remarks Wednesday in Seoul during a meeting of ministers concerned with the economy, the morning after Donald Trump won the U.S. ...

[more...]







pac

Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability

Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances.




pac

GraphT–T (V1.0Beta), a program for embedding and visualizing periodic graphs in 3D Euclidean space

Following the work of Day & Hawthorne [Acta Cryst. (2022), A78, 212–233] and Day et al. [Acta Cryst. (2024), A80, 258–281], the program GraphT–T has been developed to embed graphical representations of observed and hypothetical chains of (SiO4)4− tetrahedra into 2D and 3D Euclidean space. During embedding, the distance between linked vertices (T–T distances) and the distance between unlinked vertices (T⋯T separations) in the resultant unit-distance graph are restrained to the average observed distance between linked Si tetrahedra (3.06±0.15 Å) and the minimum separation between unlinked vertices is restrained to be equal to or greater than the minimum distance between unlinked Si tetrahedra (3.713 Å) in silicate minerals. The notional interactions between vertices are described by a 3D spring-force algorithm in which the attractive forces between linked vertices behave according to Hooke's law and the repulsive forces between unlinked vertices behave according to Coulomb's law. Embedding parameters (i.e. spring coefficient, k, and Coulomb's constant, K) are iteratively refined during embedding to determine if it is possible to embed a given graph to produce a unit-distance graph with T–T distances and T⋯T separations that are compatible with the observed T–T distances and T⋯T separations in crystal structures. The resultant unit-distance graphs are denoted as compatible and may form crystal structures if and only if all distances between linked vertices (T–T distances) agree with the average observed distance between linked Si tetrahedra (3.06±0.15 Å) and the minimum separation between unlinked vertices is equal to or greater than the minimum distance between unlinked Si tetrahedra (3.713 Å) in silicate minerals. If the unit-distance graph does not satisfy these conditions, it is considered incompatible and the corresponding chain of tetrahedra is unlikely to form crystal structures. Using GraphT–T, Day et al. [Acta Cryst. (2024), A80, 258–281] have shown that several topological properties of chain graphs influence the flexibility (and rigidity) of the corresponding chains of Si tetrahedra and may explain why particular compatible chain arrangements (and the minerals in which they occur) are more common than others and/or why incompatible chain arrangements do not occur in crystals despite being topologically possible.




pac

The impact of exchanging the light and heavy chains on the structures of bovine ultralong antibodies

The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form β-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Å resolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallo­graphic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing.




pac

Duality of spaces and the origin of integral reflection conditions

The reciprocal of a non-primitive unit cell is not a unit cell and the basis vectors do not correspond to cell lengths.




pac

Animations, videos and 3D models for teaching space-group symmetry

Animations, videos and 3D models have been designed to visualize the effects of symmetry operators on selected cases of crystal structures, pointing out the relationship with the diagrams published in International Tables for Crystallography, Vol. A.




pac

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

AnACor2.0 significantly accelerates the calculation of analytical absorption corrections in long-wavelength crystallography, achieving up to 175× speed improvements. This enhancement is achieved through innovative sampling techniques, bisection and gridding methods, and optimized CUDA implementations, ensuring efficient and accurate results.




pac

TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing

Here we describe TOMOMAN (TOMOgram MANager), an extensible open-sourced software package for handling cryo-electron tomography data preprocessing. TOMOMAN streamlines interoperability between a wide range of external packages and provides tools for project sharing and archival.




pac

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

Analytical absorption corrections are employed in scaling diffraction data for highly absorbing samples, such as those used in long-wavelength crystallography, where empirical corrections pose a challenge. AnACor2.0 is an accelerated software package developed to calculate analytical absorption corrections. It accomplishes this by ray-tracing the paths of diffracted X-rays through a voxelized 3D model of the sample. Due to the computationally intensive nature of ray-tracing, the calculation of analytical absorption corrections for a given sample can be time consuming. Three experimental datasets (insulin at λ = 3.10 Å, thermolysin at λ = 3.53 Å and thaumatin at λ = 4.13 Å) were processed to investigate the effectiveness of the accelerated methods in AnACor2.0. These methods demonstrated a maximum reduction in execution time of up to 175× compared with previous methods. As a result, the absorption factor calculation for the insulin dataset can now be completed in less than 10 s. These acceleration methods combine sampling, which evaluates subsets of crystal voxels, with modifications to standard ray-tracing. The bisection method is used to find path lengths, reducing the complexity from O(n) to O(log2 n). The gridding method involves calculating a regular grid of diffraction paths and using interpolation to find an absorption correction for a specific reflection. Additionally, optimized and specifically designed CUDA implementations for NVIDIA GPUs are utilized to enhance performance. Evaluation of these methods using simulated and real datasets demonstrates that systematic sampling of the 3D model provides consistently accurate results with minimal variance across different sampling ratios. The mean difference of absorption factors from the full calculation (without sampling) is at most 2%. Additionally, the anomalous peak heights of sulfur atoms in the Fourier map show a mean difference of only 1% compared with the full calculation. This research refines and accelerates the process of analytical absorption corrections, introducing innovative sampling and computational techniques that significantly enhance efficiency while maintaining accurate results.




pac

Animations, videos and 3D models for teaching space-group symmetry

A series of animations, videos and 3D models that were developed, filmed or built to teach the symmetry properties of crystals are described. At first, these resources were designed for graduate students taking a basic crystallography course, coming from different careers, at the National Autonomous University of Mexico. However, the COVID-19 pandemic had the effect of accelerating the generation of didactic material. Besides our experience with postgraduate students, we have noted that 3D models attract the attention of children, and therefore we believe that these models are particularly useful for teaching children about the assembled arrangements of crystal structures.




pac

Duality of spaces and the origin of integral reflection conditions

The dualism between direct and reciprocal space is at the origin of well known relations between basis vectors in the two spaces. It is shown that when a coordinate system corresponding to a non-primitive unit cell is adopted, this dualism has to be handled with care. In particular, the reciprocal of a non-primitive unit cell is not a unit cell but a region in reciprocal space that does not represent a unit of repetition by translation. The basis vectors do not correspond to reciprocal-space cell lengths, contrary to what is stated even in the core CIF dictionary. The corresponding unit cell is a multiple of this region. The broken correspondence between basis vectors and unit cell is at the origin of the integral reflection conditions.




pac

Structure of face-centred icosahedral quasicrystals with cluster close packing

A 6D structure model for face-centred icosahedral quasicrystals consisting of so-called pseudo-Mackay and mini-Bergman-type atomic clusters is proposed based on the structure model of the Al69.1Pd22Cr2.1Fe6.8 3/2 cubic approximant crystal (with space group Pa3, a = 40.5 Å) [Fujita et al. (2013). Acta Cryst. A69, 322–340]. The cluster centres form an icosahedral close sphere packing generated by the occupation domains similar to those in the model proposed by Katz & Gratias [J. Non-Cryst. Solids (1993), 153–154, 187–195], but their size is smaller by a factor τ2 [τ = (1 + (5)1/2)/2]. The clusters cover approximately 99.46% of the atomic structure, and the cluster arrangement exhibits 15 and 19 different local configurations, respectively, for the pseudo-Mackay and mini-Bergman-type clusters. The occupation domains that generate cluster shells are modelled and discussed in terms of structural disorder and local reorganization of the cluster arrangements (phason flip).




pac

Performance of a photoelectron momentum microscope in direct- and momentum-space imaging with ultraviolet photon sources

The Photoelectron-Related Image and Nano-Spectroscopy (PRINS) endstation located at the Taiwan Photon Source beamline 27A2 houses a photoelectron momentum microscope capable of performing direct-space imaging, momentum-space imaging and photoemission spectroscopy with position sensitivity. Here, the performance of this microscope is demonstrated using two in-house photon sources – an Hg lamp and He(I) radiation – on a standard checkerboard-patterned specimen and an Au(111) single crystal, respectively. By analyzing the intensity profile of the edge of the Au patterns, the Rashba-splitting of the Au(111) Shockley surface state at 300 K, and the photoelectron intensity across the Fermi edge at 80 K, the spatial, momentum and energy resolution were estimated to be 50 nm, 0.0172 Å−1 and 26 meV, respectively. Additionally, it is shown that the band structures acquired in either constant energy contour mode or momentum-resolved photoemission spectroscopy mode were in close agreement.




pac

Similarity score for screening phase-retrieved maps in X-ray diffraction imaging – characterization in reciprocal space

X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed.




pac

A differentiable simulation package for performing inference of synchrotron-radiation-based diagnostics

The direction of particle accelerator development is ever-increasing beam quality, currents and repetition rates. This poses a challenge to traditional diagnostics that directly intercept the beam due to the mutual destruction of both the beam and the diagnostic. An alternative approach is to infer beam parameters non-invasively from the synchrotron radiation emitted in bending magnets. However, inferring the beam distribution from a measured radiation pattern is a complex and computationally expensive task. To address this challenge we present SYRIPY (SYnchrotron Radiation In PYthon), a software package intended as a tool for performing inference of synchrotron-radiation-based diagnostics. SYRIPY has been developed using PyTorch, which makes it both differentiable and able to leverage the high performance of GPUs, two vital characteristics for performing statistical inference. The package consists of three modules: a particle tracker, Lienard–Wiechert solver and Fourier optics propagator, allowing start-to-end simulation of synchrotron radiation detection to be carried out. SYRIPY has been benchmarked against SRW, the prevalent numerical package in the field, showing good agreement and up to a 50× speed improvement. Finally, we have demonstrated how SYRIPY can be used to perform Bayesian inference of beam parameters using stochastic variational inference.




pac

Asymmetric electrostatic dodecapole: compact bandpass filter with low aberrations for momentum microscopy

Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer.




pac

Roentgenoscopy of laser-induced projectile impact testing

Laser-induced projectile impact testing (LIPIT) based on synchrotron imaging is proposed and validated. This emerging high-velocity, high-strain microscale dynamic loading technique offers a unique perspective on the strain and energy dissipation behavior of materials subjected to high-speed microscale single-particle impacts. When combined with synchrotron radiation imaging techniques, LIPIT allows for in situ observation of particle infiltration. Two validation experiments were carried out, demonstrating the potential of LIPIT in the roentgenoscopy of the dynamic properties of various materials. With a spatial resolution of 10 µm and a temporal resolution of 33.4 µs, the system was successfully realized at the Beijing Synchrotron Radiation Facility 3W1 beamline. This innovative approach opens up new avenues for studying the dynamic properties of materials in situ.




pac

The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties

In a photoinjector electron source, the initial transverse electron bunch properties are determined by the spatial properties of the laser beam on the photocathode. Spatial shaping of the laser is commonly achieved by relay imaging an illuminated circular mask onto the photocathode. However, the Gibbs phenomenon shows that recreating the sharp edge and discontinuity of the cut profile at the mask on the cathode is not possible with an optical relay of finite aperture. Furthermore, the practical injection of the laser into the photoinjector results in the beam passing through small or asymmetrically positioned apertures. This work uses wavefront propagation to show how the transport apertures cause ripple structures to appear in the transverse laser profile even when effectively the full laser power is transmitted. The impact of these structures on the propagated electron bunch has also been studied with electron bunches of high and low charge density. With high charge density, the ripples in the initial charge distribution rapidly wash-out through space charge effects. However, for bunches with low charge density, the ripples can persist through the bunch transport. Although statistical properties of the electron bunch in the cases studied are not greatly affected, there is the potential for the distorted electron bunch to negatively impact machine performance. Therefore, these effects should be considered in the design phase of accelerators using photoinjectors.




pac

Spexwavepy: an open-source Python package for X-ray wavefront sensing using speckle-based techniques

In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with. Here, we present an open-source Python package, spexwavepy, for X-ray wavefront sensing using speckle-based techniques. This Python package covers a variety of X-ray speckle-based techniques, provides plenty of examples with real experimental data and offers detailed online documentation for users. We hope it can help new researchers learn and apply the speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines.




pac

Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space

Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps.




pac

α-d-2'-De­oxy­adenosine, an irradiation product of canonical DNA and a com­ponent of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis

α-d-2'-De­oxy­ribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-de­oxy­adenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydro­gen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydro­gen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydro­gen bonds formed by the conformers. The formation of the supra­molecular assembly of α-dA is controlled by hydro­gen bonding and stacking inter­actions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydro­gen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydro­gen bonds involving the sugar moieties to form a sheet. A com­parison of the solid-state structures of the anomeric 2'-de­oxy­adenosines revealed significant differences of their conformational parameters.