euro

Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus

Prithviraj Rajebhosale
Oct 23, 2024; 44:e0063242024-e0063242024
Cellular




euro

Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys

Corey M. Ziemba
Oct 16, 2024; 44:e0349242024-e0349242024
Systems/Circuits




euro

On the Role of Theory and Modeling in Neuroscience

Daniel Levenstein
Feb 15, 2023; 43:1074-1088
Viewpoints




euro

Neuronal Avalanches in Neocortical Circuits

John M. Beggs
Dec 3, 2003; 23:11167-11177
BehavioralSystemsCognitive




euro

Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs

Shiaoching Gong
Sep 12, 2007; 27:9817-9823
Toolbox




euro

Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation

Holly Oakley
Oct 4, 2006; 26:10129-10140
Neurobiology of Disease




euro

A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses

α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses.




euro

Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance

Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in the mid-level visual cortex.




euro

Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death

Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12–17] and in acute brain slices (P8–12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain.




euro

Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling

Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior.




euro

Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys

The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and therefore unlikely to directly reflect the formation of perceptual decisions.




euro

Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy

We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain.




euro

Dynamic Organization of Neuronal Extracellular Matrix Revealed by HaloTag-HAPLN1

The brain's extracellular matrix (ECM) regulates neuronal plasticity and animal behavior. ECM staining shows a net-like structure around a subset of neurons, a ring-like structure at the nodes of Ranvier, and diffuse staining in the interstitial matrix. However, understanding the structural features of ECM deposition across various neuronal types and subcellular compartments remains limited. To visualize the organization pattern and assembly process of the hyaluronan-scaffolded ECM in the brain, we fused a HaloTag to hyaluronan proteoglycan link protein 1, which links hyaluronan and proteoglycans. Expression or application of the probe in primary rat neuronal cultures enables us to identify spatial and temporal regulation of ECM deposition and heterogeneity in ECM aggregation among neuronal populations. Dual-color birthdating shows the ECM assembly process in culture and in vivo. Sparse expression in mouse brains of either sex reveals detailed ECM architectures around excitatory neurons and developmentally regulated dendritic ECM. Our study uncovers extensive structural features of the brain's ECM, suggesting diverse roles in regulating neuronal plasticity.




euro

Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations

Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors—social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30–60 and 60–90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders.




euro

Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding

Neural decoding is a tool for understanding how activities from a population of neurons inside the brain relate to the outside world and for engineering applications such as brain–machine interfaces. However, neural decoding studies mainly focused on different decoding algorithms rather than different neuron types which could use different coding strategies. In this study, we used two-photon calcium imaging to assess three auditory spatial decoders (space map, opponent channel, and population pattern) in excitatory and inhibitory neurons in the dorsal inferior colliculus of male and female mice. Our findings revealed a clustering of excitatory neurons that prefer similar interaural level difference (ILD), the primary spatial cues in mice, while inhibitory neurons showed random local ILD organization. We found that inhibitory neurons displayed lower decoding variability under the opponent channel decoder, while excitatory neurons achieved higher decoding accuracy under the space map and population pattern decoders. Further analysis revealed that the inhibitory neurons’ preference for ILD off the midline and the excitatory neurons’ heterogeneous ILD tuning account for their decoding differences. Additionally, we discovered a sharper ILD tuning in the inhibitory neurons. Our computational model, linking this to increased presynaptic inhibitory inputs, was corroborated using monaural and binaural stimuli. Overall, this study provides experimental and computational insight into how excitatory and inhibitory neurons uniquely contribute to the coding of sound locations.




euro

Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus

Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by -secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ.




euro

Investigation of Metaplasticity Associated with Transcranial Focused Ultrasound Neuromodulation in Humans

Low-intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for noninvasive brain stimulation (NIBS). TUS delivered in a theta (5 Hz) burst pattern (tbTUS) induces plasticity in the human primary motor cortex (M1) for 30–60 min, showing promise for therapeutic development. Metaplasticity refers to activity-dependent changes in neural functions governing synaptic plasticity; depotentiation is the reversal of long-term potentiation (LTP) by a subsequent protocol with no effect alone. Metaplasticity can enhance plasticity induction and clinical efficacy of NIBS protocols. In our study, we compared four NIBS protocol combinations to investigate metaplasticity on tbTUS in humans of either sex. We delivered four interventions: (1) sham continuous theta burst stimulation with 150 pulses (cTBS150) followed by real tbTUS (tbTUS only), (2) real cTBS150 followed by sham tbTUS (cTBS only), (3) real cTBS150 followed by real tbTUS (metaplasticity), and (4) real tbTUS followed by real cTBS150 (depotentiation). We measured motor-evoked potential amplitude, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation (ICF), and short-interval intracortical facilitation before and up to 90 min after plasticity intervention. Plasticity effects lasted at least 60 min longer when tbTUS was primed with cTBS150 compared with tbTUS alone. Plasticity was abolished when cTBS150 was delivered after tbTUS. cTBS150 alone had no significant effect. No changes in M1 intracortical circuits were observed. Plasticity induction by tbTUS can be modified in manners consistent with homeostatic metaplasticity and depotentiation. This substantiates evidence that tbTUS induces LTP-like processes and suggests that metaplasticity can be harnessed in the therapeutic development of TUS.




euro

Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis

GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal’s behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences.




euro

Neurophysiology of Effortful Listening: Decoupling Motivational Modulation from Task Demands

In demanding listening situations, a listener's motivational state may affect their cognitive investment. Here, we aim to delineate how domain-specific sensory processing, domain-general neural alpha power, and pupil size as a proxy for cognitive investment encode influences of motivational state under demanding listening. Participants (male and female) performed an auditory gap-detection task while the pupil size and the magnetoencephalogram were simultaneously recorded. Task demand and a listener's motivational state were orthogonally manipulated through changes in gap duration and monetary-reward prospect, respectively. Whereas task difficulty impaired performance, reward prospect enhanced it. The pupil size reliably indicated the modulatory impact of an individual's motivational state. At the neural level, the motivational state did not affect auditory sensory processing directly but impacted attentional postprocessing of an auditory event as reflected in the late evoked-response field and alpha-power change. Both pregap pupil dilation and higher parietal alpha power predicted better performance at the single-trial level. The current data support a framework wherein the motivational state acts as an attentional top–down neural means of postprocessing the auditory input in challenging listening situations.




euro

Neurons Underlying Aggression-Like Actions That Are Shared by Both Males and Females in Drosophila

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.




euro

Erratum: McCosh et al., "Norepinephrine Neurons in the Nucleus of the Solitary Tract Suppress Luteinizing Hormone Secretion in Female Mice"




euro

Selective Vulnerability of GABAergic Inhibitory Interneurons to Bilirubin Neurotoxicity in the Neonatal Brain

Hyperbilirubinemia (HB) is a key risk factor for hearing loss in neonates, particularly premature infants. Here, we report that bilirubin (BIL)-dependent cell death in the auditory brainstem of neonatal mice of both sexes is significantly attenuated by ZD7288, a blocker for hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated current (Ih), or by genetic deletion of HCN1. GABAergic inhibitory interneurons predominantly express HCN1, on which BIL selectively acts to increase their intrinsic excitability and mortality by enhancing HCN1 activity and Ca2+-dependent membrane targeting. Chronic BIL elevation in neonatal mice in vivo increases the fraction of spontaneously active interneurons and their firing frequency, Ih, and death, compromising audition at the young adult stage in HCN1+/+, but not in HCN1–/– genotype. We conclude that HB preferentially targets HCN1 to injure inhibitory interneurons, fueling a feedforward loop in which lessening inhibition cascades hyperexcitability, Ca2+ overload, neuronal death, and auditory impairments. These findings rationalize HCN1 as a potential target for managing HB encephalopathy.




euro

Glucocorticoids Rapidly Modulate CaV1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons

The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity.




euro

FAO urges Europe to support nutrition and sustainable farming

Milan - European governments must help combat [...]




euro

Euro-Mediterranean Conference on Agriculture welcomes FAO transformational changes

Rome, 2 December 2014 – The Ministers of Agriculture of the European Union and of other Mediterranean countries welcomed FAO’s transformational changes implemented in the last two years, and underlined [...]




euro

Advancing sustainable inland fisheries and aquaculture in Europe: EIFAAC hosts 32nd Session and International Symposium

The European Inland Fisheries and Aquaculture Advisory Commission (EIFAAC) is dedicated to the sustainable development and responsible management of European inland fisheries and aquaculture. In line with the [...]




euro

Europeans Were Using Cocaine in the 17th Century—Hundreds of Years Earlier Than Historians Thought

Scientists identified traces of the drug in the brain tissue of two individuals buried in the crypt of a hospital in Milan




euro

These 3,000-Year-Old Arrowheads Are Pivotal Clues in the Mystery of 'Europe's Oldest Known Battlefield'

While no written records exist, new research has illuminated key details of the battle fought in northern Germany during the 13th century B.C.E.




euro

Europe’s Megalithic Monuments Originated in France and Spread by Sea Routes, New Study Suggests

The ancient burial structures, strikingly similar all across Europe and the mediterranean, have puzzled scientists and historians for centuries




euro

Introduction to Techniques Used to Study Mosquito Neuroanatomy and Neural Circuitry

Mosquitoes transmit deadly pathogens from person to person as they obtain the blood meal that is essential for their life cycle. Female mosquitoes of many species are unable to reproduce without consuming protein that they obtain from blood. This developmental stage makes them highly efficient disease vectors of deadly pathogens. They can transmit pathogens between members of the same species and different species that can provide a route for evolving zoonotic viruses to jump from animals to humans. One possible way to develop novel strategies to combat pathogen transmission by mosquitoes is to study the sensory systems that drive mosquito reproductive behaviors, in particular the neural architecture and circuits of mosquito sensory afferent neurons, the central circuits that process sensory information, and the downstream circuits that drive reproductive behaviors. The study of mosquito neuroanatomy and circuitry also benefits basic neuroscience, allowing for comparative neuroanatomy in insect species, which has great value in the current model species-heavy landscape of neuroscience. Here, we introduce two important techniques that are used to study neuroanatomy and neural circuitry—namely, immunofluorescent labeling and neural tracing. We describe how to apply these approaches to study mosquito neuroanatomy and describe considerations for researchers using the techniques.




euro

Leading European TV component manufacturer standardizes on SolidWorks 3D mechanical design software

Lithuania's JSC Vilniaus Vingis tackles design challenges of time to market, precision, and complexity with SolidWorks software




euro

Ishida Europe to cut product design time by 80 percent with SolidWorks software

World's largest supplier of food weighing machines to automate custom product configuration with 3D CAD software





euro

Bus4Life brings literature and life to Europe

Bus4Life is OM’s mobile missions centre to the unreached people of Central and Eastern Europe, bringing books and also participating in summer programmes, as it did in summer 2017.




euro

Bulgarians attend TeenStreet Europe

A group of Bulgarian teenagers and leaders took part in this year’s TeenStreet Europe for the first time and experienced God in new ways.




euro

News24 Business | SA markets eurobonds as GNU lifts confidence

South Africa is marketing eurobonds in its first potential international debt sale under a government of national unity following May elections.




euro

Barnes & Noble College grant funds mental health, neurodiversity initiative 

A grant from Barnes & Noble College will fund Penn State Beaver Thrives, an initiative designed to help the campus and local community become more inclusive. The resources and programming of Penn State Beaver Thrives will focus on mental health and neurodiversity. The first program will be a dyslexia simulation program.




euro

Penn State DuBois honors students embark on European cultural adventure

Before the fall semester started, 19 honors students from Penn State DuBois embarked on an unforgettable journey across Europe, visiting Belgium, Luxembourg, the Netherlands and France. The weeklong trip, part of the honors scholar program, allowed students to immerse themselves in new cultures, savor local cuisines, explore historical landmarks, and encounter diverse wildlife.




euro

News24 Business | Buyers from Gauteng, Europe snapping up trophy homes in Cape Town

About 80% of trophy home sales in Cape Town were along the Atlantic Seaboard, especially in Camps Bay, Clifton, Bantry Bay, Fresnaye and at the Waterfront.




euro

New module to support caregivers of children who are neurodivergent

The Clearinghouse for Military Family Readiness at Penn State, in partnership with the Department of Defense, has launched a new parent-education module designed to help parents and caregivers navigate the journey with their children who are neurodivergent or who have autism spectrum disorder.




euro

The least-reached in Europe

“I was not happy when the Lord told me to go to France,” recalls one American OM worker, who soon discovered Europe’s great spiritual needs.




euro

European youth gather for second-ever Mission-Net Congress

Mission-Net welcomes more than 2,500 people and 110 mission organisations from Europe and other parts of the world to Erfurt, Germany, this week.




euro

The UK tops Europe renewable energy ranking

The UK is the Europe's leading destination for foreign investment in green energy, followed by Spain, finds fDi’s Top European Locations for Renewable Energy Investment.




euro

fDi’s European Cities and Regions of the Future 2020/21 – Winners

In spite of the uncertainty caused by Brexit, London retains its position as fDi's European City of the Future for 2020/21, while Paris keeps the regional crown.




euro

fDi’s European Cities of the Future 2020/21 – London maintains European pre-eminence

London has retained its position as fDi’s European City of the Future, while Paris has climbed to second place, knocking Dublin into the third spot. 




euro

fDi's European Cities and Regions of the Future 2020/21 - FDI Strategy: London and Glasgow take major prizes

London is crowned best major city in Europe in fDi's FDI Strategy category, with Glasgow, Vilnius, Reykjavik and Galway also winning out.




euro

fDi’s European Regions of the Future 2020/21: Paris Region retains supremacy

Paris Region has kept its fDi European Region of the Future title, while Dublin Region holds on to second place and North Rhine-Westphalia is in third. 




euro

fDi's European Cities and Regions of the Future 2020/21 - FDI Strategy: North Rhine-Westphalia takes regional crown

North Rhine-Westphalia is fDi's top large region for FDI Strategy, with the Basque Country topping the table for mid-sized regions and Ireland South East first among small regions. 




euro

fDi’s European Cities and Regions of the Future 2020/21 - London leads LEP ranking while Oxfordshire makes rapid rise

London LEP and Thames Valley Berkshire LEP hold on to their respective first and second places in the Local Enterprise Partnership rankings, while Oxfordshire LEP jumps up eight places to third. 




euro

Chinese investment to Europe at record high

Sino-European foreign direct investment is converging, according to data from fDi Markets.