cir

Apparatus for circulating comminuted materials

An improved scraper plate assembly is provided on a comminuting device having compliant rounded edges, sloped walls, and reduced height for placement along recycle flow paths within a comminuting apparatus when circulating subdivided waste material from between a pair of scissor rolls for further delivery to a scissor roll for further movement and subdividing of the subdivided waste material. A comminuting apparatus is also provided.




cir

DC-DC converter, control circuit, and power supply control method

A DC-DC converter includes a first amplifier that amplifies a first difference between a first reference voltage and a feedback voltage corresponding to an output voltage, a second amplifier that amplifies a second difference between the first reference voltage and an integrated value of the feedback voltage, and a controller that controls a switching circuit to change the output voltage when the first difference reaches the second different.




cir

Voltage-to-current sensing circuit and related DC-DC converter

The present disclosure is directed to a voltage-to-current sensing circuit having a bias terminal configured to receive a reference voltage, an offset terminal configured to receive an offset current, and an operational amplifier configured to output a low voltage signal. The device includes a first amplifier having first and second high voltage inputs configured to receive a first voltage difference across a sense component on a high voltage line and to generate a first current, a second amplifier having first and second low voltage inputs configured to receive a second voltage difference between the bias terminal and the offset terminal and to generate a second current, a summing circuit configured to provide an intermediate voltage corresponding to a sum of the first and the second currents, and a low-voltage transistor coupled to an output of the amplifier and controlled by the intermediate voltage to generate the output current.




cir

High efficient control circuit for buck-boost converters and control method thereof

A controller used in a buck-boost converter includes a clock generator, an error amplifying circuit, a comparing circuit, a proportional sampling circuit, a logic circuit, a pulse width increasing circuit, first and second driving circuits. Based on a clock signal generated by the clock generator, the proportional sampling circuit samples the difference between a current sensing signal and a compensation signal generated by the error amplifying circuit, and generates a proportional sampling signal. The pulse width increasing circuit generates a sum control signal based on the proportional sampling signal and a logic control signal generated by the logic circuit, wherein a modulation value adjusted by the proportional sampling signal is added to the pulse width of the logic control signal to generate the pulse width of the sum control signal. The first and second driving circuits generate driving signals based on the sum control signal and the logic control signal.




cir

Startup circuit

A startup circuit to ensure a bandgap reference circuit reliably starts up or recovers from a noise disturbance is provided. The startup circuit incorporates a pull down resistor to detect the bandgap reference circuit being in a disabled state. The startup circuit creates a positive feedback loop to force the bandgap reference circuit out of a disabled state. Consequently, whenever the power supply for the bandgap reference circuit sags or if bandgap output collapses, the output of the bandgap circuit reliably ramps back up to the expected level.




cir

Control circuit of a switched-mode power converter and method thereof

A method for controlling voltage crossing a power switch of a switched-mode power converter includes the steps of: controlling a switch frequency of the power switch of the switched-mode power converter to a first frequency as activating the switched-mode power converter; and then changing the switch frequency of the power switch to a second frequency after the switched-mode power converter is activated for a predetermined time; wherein the first frequency is lower than the second frequency.




cir

Power supply device control circuit

In some aspects of the invention, overcurrent protection is carried out by suppressing fluctuations in current flowing through a switching element after overcurrent detection. A peak current reaching time detection circuit detects a peak current reaching time needed until current flowing through a switching element reaches a peak value. A difference voltage detection circuit, including a ½ time detection circuit which detects a time of ½ an ON time of the preceding cycle of the switching element, detects difference voltage between reference voltage used when detecting overcurrent flowing to a load and a signal which has detected current flowing through the switching element for the ½ time. A delay time adjustment circuit, based on at least one of the peak current reaching time and difference voltage, carries out adjustment and control of a delay time occurring until the time when the switching element is turned off after detecting the overcurrent.




cir

Low dropout light emitting diode (LED) ballast circuit and method therefor

A ballast circuit for a Light Emitting Diode (LED) has a regulator element coupled to the LED and to an input voltage source. A control circuit is coupled to the LED and to an input voltage source. A first switching device is coupled in series with the regulator element. A second switching device is coupled to the input voltage and the control circuit.




cir

Delay compensation circuit

A device (200) includes a circuit (202) and a driver stage (204) therefor. The circuit includes two sub-circuits (231 and 232). The driver stage includes switcher logic (206) that produces signals that control switching on and off of the sub-circuits. The switcher logic also produces other signals in advance of the signals that control the switching of the sub-circuits. The driver stage includes delay compensations circuits (221 and 222), coupled to the switcher logic and to the circuit, that produce timing signals for the switcher logic. The timing signals are closely aligned with moments that a changing voltage at a node between the sub-circuits passes through threshold voltages. The timing signals compensate for all delays of signals through the device such that a period that both sub-circuits are off is minimized, while ensuring that both sub-circuits are not on at a same time.




cir

Charge pump regulator circuit with a variable drive voltage ring oscillator

A charge pump regulator circuit includes a voltage controlled oscillator and a plurality of charge pumps. The voltage controlled oscillator has a plurality of inverter stages connected in series in a ring. A plurality of oscillating signals is generated from outputs of the inverter stages. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive voltage. Each oscillating signal is phase shifted from a preceding oscillating signal. Each charge pump is connected to a corresponding one of the inverter stages to receive the oscillating signal produced by that inverter stage. Each charge pump outputs a voltage and current. The output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to the load.




cir

Power converting circuit and control circuit thereof

A power converting circuit includes an upper gate switch, a transistor, a current source circuit, a comparator circuit, a delay circuit, and a pulse width modulation signal generating circuit. The transistor and the current source circuit provide a reference signal. The comparator circuit generates a comparing signal according to the reference signal and an output signal provided by the upper gate switch. The delay circuit generates a delay signal according to the comparing signal and a clock signal. The pulse width modulation signal generating circuit generates a control signal for the upper gate switch according to the delay signal and the clock signal for configuring the conduction status of the upper gate switch. The power converting circuit adjusts the conduction time of the upper gate switch according to the reference signal and the output signal.




cir

Pseudo constant on time control circuit and step-down regulator

A step-down regulator comprising a pseudo constant on time control circuit is disclosed, comprising an on-time generator configured to receive a switching signal provided by the step-down regulator and a control signal provided by the pseudo constant on time control circuit, and generates an on-time signal; a feedback control circuit configured to receive a feedback signal representative of the output voltage of the step-down regulator and generate an output signal; and a logic control circuit coupled to the on-time generator and the feedback control circuit to receive the on-time signal and the output signal and generating the control signal, and a power stage configured to receive an input voltage and the control signal and generate the switching signal.




cir

Bootstrap startup and assist circuit

A bootstrap assist circuit and a startup circuit comprising a voltage controlled switch and a startup ramp voltage generator connected to the voltage controlled switch that will control a high side switch, a dimming interface or an enable/disable input function. Said system is used to provide a bootstrap technique to continuously switch a floating high side switch (MOSFET) by continuously charging a capacitor and then “level shifting” said capacitor voltage across the gate and source of the said high side switch to turn the switch on.




cir

Reference voltage circuit and image-capture circuit

A reference voltage circuit for generating a reference voltage to be referred when a pixel signal is digitally converted, includes ramp voltage generating means for generating a ramp voltage which drops from a predetermined initial voltage at a certain gradient, a transistor for forming, together with the ramp voltage generating means, a current mirror circuit, and gain change means for changing a current value of a current flowing from a predetermined power supply via the transistor to change the gradient of the ramp voltage generated by the ramp voltage generating means.




cir

Current mirror circuits in different integrated circuits sharing the same current source

A current mirror circuit, receiving an input current and outputting a plurality of mirroring currents, comprising: a first transistor, wherein a control terminal and a first terminal of the first transistor are connected to a first mirroring current of the input current; at least one second transistor, wherein a control terminal and a first terminal of the at least one second transistor are connected to the at least one second mirroring current of the input current; and a plurality of third transistors, outputting the plurality of mirroring currents from first terminals of the plurality of third transistors, wherein control terminals of the plurality of third transistors are connected to control terminals of the first transistor and the at least one second transistor. The first transistor, the at least one second transistor and the plurality of third transistors are identical.




cir

Power-supply circuit for DC appliance

A power-supply circuit for a DC appliance includes an input unit including a first terminal and a second terminal so as to receive a DC current, an output unit including a third terminal to output the DC current entered by the input unit and a fourth terminal, a connection unit including a first conductive line and a second conductive line so as to interconnect the input unit and the output unit, a rectifier unit including first to fourth diodes coupled as a bridge diode format so as to rectify the input DC current in a predetermined direction, an inductor unit that is connected in series to the rectifier unit in such a manner that the input DC current is gradually increased from an abrupt change time point of the DC current, and a condenser unit that is connected in series to the inductor unit.




cir

Power control circuit and power supply system employing the same

A power control circuit for a power supply system including a control unit, a driving circuit and a power supply unit is disclosed. The power control circuit includes a current detection unit, a voltage detection unit and a power detection unit. The current detection unit is used for detecting a current signal. The voltage detection unit is used for detecting a voltage signal. The power detection unit is connected with the current detection unit, the voltage detection unit and the control unit for acquiring a power signal according to the current signal and voltage signal. By comparing an adjustable power reference signal with the power signal, the control unit issues a control signal to the driving circuit. In response to the control signal, the power supply unit is driven by the driving circuit to output an adjusted power to the load according to the adjustable power reference signal.




cir

Control device for switching power supply circuit, and heat pump unit

A mode controller shifts, along with increase in an electric power in first and second of chopper circuits and, operation modes of the first and the second of the chopper circuits from a first mode to a third mode via a second mode. An operation controller causes, in the first mode, the first of chopper circuit to perform an chopping operation, and the second of chopper circuit to suspend the chopping operation, in the second mode, causes the first and the second of chopper circuits to alternatively perform the chopping operations, and in the third mode causes both of the first and the second of chopper circuits to perform the chopping operations.




cir

Method for lost circulation reduction in drilling operations

A method may include determining a first particle size distribution for particulate additives in a first wellbore fluid circulated through a wellbore through an earthen formation, and determining a second particle size distribution for drilled cuttings resulting from drilling of the wellbore. The first and second particle size distributions may then be compared to determine a third particle size distribution for the combined particulate additives and the drilled cuttings. A lost circulation material having a fourth particle size distribution may then be selected based on the third particle size distribution and the selected lost circulation material may be pumped into the wellbore.




cir

Fire suppression circulation system

An arrangement for testing a fire suppression sprinkler system includes a supply conduit for supplying a fire suppression fluid to a plurality of sprinklers. A sensor senses a flow of fire suppression fluid through the supply conduit. A drain conduit drains fire suppression fluid when the fire suppression system is tested. A drain valve controls the flow of the fire suppression fluid so that when the fire suppression system is tested the fire suppression fluid is controlled to enter the drain conduit. A fire suppression fluid collection tank collects the fire suppression fluid which has entered the drain conduit for reintroducing the collected fire suppression fluid to the supply conduit. A circulation valve controls the flow of the fire suppression fluid so that when the fire suppression system is tested the fire suppression fluid enters the fire suppression fluid collection tank.




cir

Liquid supply with circulation via through-passing inner pipes

The invention relates to a liquid supply system wherein liquid, such as for example, a supply of warm water, circulates. Said system consists of thick outer tubes, the inner chamber of said thick outer tubes allowing a liquid to flow through, a thin inner tube is respectively placed inside the outer tube in which the liquid can flow in the direction counter to that in the inner chamber. In the path of at least one outer tube, a first tube branch is introduced enabling the first inner tube to be withdrawn, and in said first branch, at least one functional component, such as a shut-off valve, is introduced into the inner tube and guided to a second tube branch in the path of an outer tube and extends further through said tube branch and then into the inner chamber of the latter outer tube.




cir

Train end and train integrity circuit for train control system

A train system that includes a plurality of train units including a first train unit and second train unit coupled together. Each first and second train unit includes a controller configured to detect a change in train configuration of the train units, and comprising a plurality of inputs; train integrity signal lines spanning each train unit and coupled with the controller at the plurality of inputs and configured to transmit signals between a front end and a rear end of the train system, the signals indicating a status of train integrity of the train system; and a plurality of relays in communication with the controller, and configured to indicate a coupling or non-coupling status of each train unit.




cir

Method and sequential monitoring overlay system for track circuits

A sequential monitoring system is for an interlocking logic system and a track circuit system including a plurality of track circuits. The sequential monitoring system includes an interface between the interlocking logic system and the track circuit system; and a processor structured to monitor a state of each of the track circuits, validate a sequence of state changes of the track circuits, and interrupt and correct invalid track circuit state indications between the track circuit system and the interlocking logic system. The interface normally passes inputs from the track circuit system to outputs to the interlocking logic system. When an out of sequence event occurs, the processor applies a quarantine to a minimum of three of the track circuits in a quarantined area, thereby inhibiting use of an unoccupied track circuit in the quarantined area.




cir

Compensating mold plunger for integrated circuit manufacture

A device and method for manufacturing integrated circuit packaging using a mold plunger with position compensation in a manufacturing setting. In an embodiment, a compensating mold plunger, which may be used during the manufacture of an integrated circuit package, engages a die set on a carrier and within a bushing. This may be done to inject a mold compound on top of the die/carrier. If the bushing that is housing the die/carrier tandem is misaligned with the plunger in any lateral direction, the amount of pressure may be compromised. A compensating mold plunger includes a flexible portion that allows for the head of the plunger to properly engage the die/carrier despite any possible misalignments. Further, different die/carrier combinations may also be used with a compensating mold plunger because the pressure and force applied may be uniform inside a bushing despite the contents of the bushing.




cir

Fluid dispensing unit having a circulation system and a method for circulating a fluid in a fluid dispensing unit

A dispensing unit is provided having a circulation system for circulating a fluid in the dispensing unit. The circulation system includes a circulation circuit and a mechanism for circulating the fluid in the circulation circuit. By circulating the fluid, the fluid is counteracted from crystallizing. A method for circulating a fluid in a dispensing unit is also provided.




cir

Coking plant with flue gas recirculation

Improvement in carbonization in a carbonization furnace and simultaneous reduction in NOx emissions is achieved by recirculation of waste gas from a coking oven back to the oven chamber, the downcomers, or the sole channel system.




cir

EQUALIZER CIRCUIT AND RECEIVING APPARATUS USING THE SAME

An equalizer circuit includes an phase-to-phase connectors including an phase-to-phase capacitor and four phase-to-phase switches, four output buffers, and control signal generation circuitry. One terminal of each phase-to-phase switches is connected to one of four connection paths on which four conversion signals being different in phase by 90° are input. The other one terminal of each phase-to-phase switches is connected to the phase-to-phase capacitor. Each output buffer is connected to one of the four connection paths and outputs an output signal. The control signal generation circuitry outputs control signals to control turning-on/off of the respective four phase-to-phase switches. A closing of the first, second, third, and fourth phase-to-phase switches are started from any one of phase-to-phase switches in one of a first ascending circulation and a first descending circulation based on the 4-phase control signals.




cir

HALF-RATE CLOCK DATA RECOVERY CIRCUIT

A half-rate clock data recovery circuit includes: a voltage-controlled oscillator (VCO) for generating a data sampling clock and an edge sampling clock according to a control voltage; an adjusting circuit for dynamically controlling the VCO to adjust the phase difference between the data sampling clock and the edge sampling clock to be different from 90 degrees in multiple test periods; and a control circuit for instructing the adjusting circuit to respectively utilize different control value combinations to control the VCO in the multiple test periods, and for recording multiple recovered-signal quality indicators respectively corresponding to the multiple test periods. Afterwards, the control circuit instructs the adjusting circuit to utilize a control value combination corresponding to the best quality indicator among the multiple recovered-signal quality indicators to control the VCO.




cir

Circular saw

A circular saw including a saw blade (36) which may be rotatingly driven about a rotational axis, and at least one first splitting wedge is described. The circular saw is configured so that the first splitting wedge is movable relative to the rotational axis of the saw blade.




cir

Pneumatic radial tire with tread having thin circumferential groove and lug groove

A pneumatic radial tire in which a plurality of land portion rows 2 are formed by a plurality of main grooves that extend in the circumferential direction on a tread portion of a tire, and a thin groove 3 that extends in the tire circumferential direction is formed in at least one shoulder land portion row 2A that is positioned on the tread end among the plurality of land portion rows. A land portion 5 that is positioned between, the thin groove 3 and the tread end 4 is partitioned into a plurality of blocks 5a by a lug groove 6 that extends in the tire width direction and whose maximum groove depth is set deeper than the groove depth of the thin groove, and the groove depth of the lug groove continuously changes so as to become a maximum at an intermediate position between the thin groove and the tread end. According to the present invention, it is possible to provide a pneumatic radial tire that can achieve improved drainage performance.




cir

Tire having a circumferential groove including a first groove portion and a second groove portion

A tire 1 comprises rib-shaped land portions 20 extending in a tire circumferential direction TC and has a circumferential groove 30 adjacent to the land portions 20 and extending in the tire circumferential direction TC. Tread contact surfaces 10 of the land portions 20 form smooth surfaces with no gap when a normal load is applied and the tread contact surfaces are in contact with a road surface. The circumferential groove 30 includes a shallow groove portion 40 extending in the tread-width direction TW, and a deep groove portion 50 adjacent to the shallow groove portion 40 in the tire circumferential direction and extending in the tread-width direction. A deep groove portion 50 is recessed more inwardly in a tire radial direction TR than the shallow groove portion 40 with a groove bottom 40c of the shallow groove portion 40 being an upper end of the deep groove portion 50.




cir

Electronic lock with power failure control circuit

An electronic lock with power failure control circuit includes a lock mechanism having a latchbolt movable between extended and a retracted positions and an electrically powered lock actuator to lock and unlock the latchbolt. The power failure control circuit includes a microcontroller and the lock is connected to a primary power source and an auxiliary power source, preferably supercapacitors and charger that can be turned on by the microcontroller and off when the charger signals a full charge. A power monitor circuit detects low voltage on the primary power supply and sets a power failure interrupt causing the microcontroller to execute power failure instructions that control the actuator so that the lock is placed into a desired locked or unlocked final state during the power failure. upon detection of the return of good power, the system resets the lock.




cir

Industrial fluid circuits and method of controlling the industrial fluid circuits using variable speed drives on the fluid pumps of the industrial fluid circuits

An industrial fluid circulating system having at least one fluid circulation circuit, includes a plurality of pumps connected in parallel to circulate the fluid through each of the fluid circulation circuit, a separate motor driving each pump, a load detector to sense operating loads on the system and each circuit, and a speed control to vary the speed of each motor to thereby vary the pumping capacity of each pump in response to the detected load on the system, each pump of each respective circuit running simultaneously at a substantially similar speed or a predetermined equal reduced speed of the respective circuit or an almost equal reduced speed or a similar reduced speed.




cir

PERIPHERAL INTERFACE CIRCUIT

A peripheral interface circuit and a peripheral memory system are provided. The peripheral interface circuit includes an interface sequencer, an input/output controller, a register unit and a data buffer. The interface sequencer receives requests from the input/output controller and accesses the peripheral memory in response to the requests. The data buffer is randomly accessed by address. If target data of the data access request exists in the data buffer, the input/output controller returns data from the data buffer in response to the request; if target data of the data access request does not exist in the data buffer, the input/output controller sends an interface request to the interface sequencer to access the peripheral memory and keeps a copy of at least the target data in the data buffer.




cir

SEMICONDUCTOR DEVICE INCLUDING A PLURALITY OF CIRCUITS AND A BUS CONNECTING THE CIRCUITS TO ONE ANOTHER, AND METHOD OF OPERATING THE SEMICONDUCTOR DEVICE

A semiconductor device includes a plurality of circuits, a general bus configured to be connected to each of the plurality of circuits and to provide a general channel among the plurality of circuits, and a designated bus configured to be connected to a subgroup of circuits from among the plurality of circuits and to provide a designated channel among the subgroup of circuits.




cir

Technologies for automatic timing calibration in an inter-integrated circuit data bus

Technologies for controlling timing calibration of a dedicated inter-integrated circuit data bus by a primary microcontroller are disclosed. The primary microcontroller performs a data transfer with a secondary integrated circuit using the dedicated inter-integrated circuit data bus, and determines a duration of the data transfer. If the duration is outside of an acceptable range, the primary microcontroller updates one or more data transfer timing parameters so that the duration of future data transfers are closer to the acceptable range.




cir

Heat transfer device including compressible particles suspended in a circulating heat-transfer fluid

A heat transfer device including a container in which a heat-transfer fluid circulates in a closed loop. The heat transfer fluid is capable of undergoing an increase in volume on solidifying. The container further contains particles suspended in the heat-transfer fluid. At least some of the particles are compressible under the pressure of the fluid, as the fluid is solidifying, so as to at least partially compensate for the increase in volume of the fluid upon solidifying.




cir

Fluid-dynamic circuit

A fluid-dynamic circuit includes a source of a pressurized fluid; a distributor valve for distributing the pressurized fluid to transport lines; a feeding line for feeding the pressurized fluid, which is interposed between the source and the valve; a main user apparatus, which is reciprocatingly operated by an actuator that includes a slider sealably fitted in a sliding seat of a containing element divided thereby into a first chamber and a second chamber in opposite positions and having variable volumes; and second and third transport lines for the pressurized fluid, which are interposed between the distributor valve and the first and second chamber respectively, a first derived transport line being interposed between the valve and at least one of the second and third transport lines, and having a normally closed quick discharge device mounted thereto, whose opening is designed to be controlled by the actuator.




cir

Masonry circular saw stabilizing and supporting shoe

A supporting and stabilizing shoe used with a masonry circular power saw. A shoe frame rigidly mounts to the saw's motor frame. A plate that is preferably substantially planar and bifurcated to form two substantially co-planar members with a gap therebetween pivotably mounts to the shoe frame. A spring biases the plate away from the blade, but can be overcome, and an adjustment knob tightens the plate in position relative to the blade. This provides for depth adjustment for the blade and keeps the blade at a desired angle, such as ninety degrees, to the workpiece surface. The plate extends longitudinally from the motor frame beneath the drive mechanism and the blade of the saw to provide a stable surface upon which the saw can rest during use or storage.




cir

Process and refractory metal core for creating varying thickness microcircuits for turbine engine components

The present disclosure is directed to a refractory metal core for use in forming varying thickness microcircuits in turbine engine components, a process for forming the refractory metal core, and a process for forming the turbine engine components. The refractory metal core is used in the casting of a turbine engine component. The core is formed by a sheet of refractory metal material having a curved trailing edge portion integrally formed with a leading edge portion.




cir

Hydrocarbon resource processing apparatus including a load resonance tracking circuit and related methods

A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also a spirally wound electrical conductor surrounding the hydrocarbon processing container, and a radio frequency (RF) circuit coupled to the spirally wound electrical conductor and configured to supply RF power to the hydrocarbon resource while tracking a load resonance of the RF circuit. The RF circuit may be configured to generate magnetic fields within the hydrocarbon processing container parallel with an axis thereof.




cir

Dial of circular hosiery knitting machine of the type with cylinder and dial with yarn cutting device

A dial of a circular hosiery knitting machine of the type with a cylinder and dial with yarn cutting device. The dial comprises a dial body which is substantially disk-shaped. The dial is provided with a cutting device, which comprises a plurality of cutting sectors which are distributed around the axis of the dial body and have cutting edges. The cutting sectors are arranged at sectors of the dial body which are intended to be free from needles. The cutting device comprises a cutter which is adapted to abut against the cutting edges of the cutting sectors to cut at least one yarn engaged by one of the cutting sectors in its rotary motion about the axis of the dial body with respect to the cutter.




cir

Double-cylinder circular machine, particularly for knitting hosiery items or the like, with simplified actuation mechanism

A double-cylinder circular machine, particularly for knitting hosiery items, with simplified actuation mechanism, comprising a supporting structure which comprises a footing, which supports a lower needle cylinder, and a column which extends substantially vertically, protrudes upwardly from the footing and supports an upper needle cylinder, which is arranged above and coaxially with respect to the lower needle cylinder, and further comprising elements for the actuation of the lower needle cylinder and of the upper needle cylinder with a rotary motion about a common axis, the actuation elements comprising an electric motor which is connected kinematically to the lower needle cylinder and to the upper needle cylinder and is accommodated inside the column.




cir

Circular knitting machine with mounting arrangement for sinker cams

Sinker cam segments in a circular knitting machine are located with respect to the generally radial direction by a generally radially inwardly facing location surface disposed radially outward of the segments. Each segment's radially outer end defines a contact region that abuts the locating surface. The contact region can be complementary surface contour to that of the locating surface, or a pair of discrete, spaced contact points protruding out from the radially outer end of the segment. The contact region is a reference for positioning the sinker cam segment with respect to the generally radial direction.




cir

Simplified single-knit circular knitting machine

In the case of a single circular knitting machine consisting of a central rotatable needle cylinder (Z), around which a sinker ring (PR) comprising sinkers (P) as well as stationary cam systems (S) are arranged, which act on the needles (1), which are in each case assigned to the sinkers (P) and which can be moved vertically up and down, so as to replace the pitches, which hit one another rigidly, with a sinker grid system, which is flexible per se, which is automatically oriented in the needle gaps, a rocker (44) comprising an upper and a lower control bump (45) being provided in each case on the end of the sinkers (P), which is spaced apart from the needle, the sinker ring (PR), at the end below the sinkers (P), which is spaced apart from the needle, is embodied as a pivot point projection (40) comprising pivot point slits (41), in which the sinkers (P) are accommodated with their pivot inlet (43) so that they are capable of being tilted and the sinkers (P) being are laterally fixed in the needle gaps with sliding noses (47) at the end, which is spaced apart from the needle, transport the last knitting loops to the needle shaft (1) behind the needle latches in response to the knitting loop formation.




cir

Sewing machine accessory for circular sewing

A sewing machine accessory includes a plate for attaching to a sewing machine workbed and to be located below a needle, the plate includes an opening and a guiding track, and a positioning device includes a sliding member slidably engaged with the guiding track of the accessory plate, and a pointed member extended from the sliding member for engaging with a cloth material to be stitched and for forming of an arced stitch on the cloth material, and the pointed member is movable close to the needle for stitching or forming a circular or arced stitch that includes a relatively decreased or smaller outer diameter.




cir

Integrated circuit and apparatus for detecting oscillations

An integrated circuit includes a pulse generator to provide an excitation pulse to an output terminal and a comparator to receive a signal in response to the excitation pulse and for comparing the signal to a threshold to produce a comparator output signal corresponding to oscillations in the signal. The integrated circuit further includes a counter to count pulses in the comparator output signal and a discriminator circuit to compare a count value of the counter to a damping threshold and for providing an output signal having a first value when the count value is equal to or exceeds the damping threshold and otherwise having a second value.




cir

Laundry drying unit having a lint screen arranged within a process air circuit and a method for operating said laundry drying unit

A laundry drying unit includes a process air circuit and a component arranged in the process air circuit. Provided above the component is a washing tank for dispensing a cleaning fluid, with a flow of cleaning fluid dispensed from the washing tank to the component being controlled by a controllable valve. The valve can be controlled on the basis of an amount of cleaning fluid in the washing tank.




cir

Dryer air circulation adaptor and filter and filter bypass assembly

An adaptor can convert a conventional hot air clothes dryer to draw air from outside instead of inside a building, and comprises an adaptor housing securable over the air intake region of the dryer in fluid communication with the air inlet of the dryer, with an adaptor housing inlet connectable to an air intake linkage. A filter and filter bypass assembly can be used in combination with the adaptor. The assembly comprises an outer enclosure and an inner enclosure inside the outer enclosure. An inner enclosure inlet and inner enclosure outlet define a first airflow path through the inner enclosure and an outer enclosure inlet and outer enclosure outlet define a second airflow path through the outer enclosure and bypassing the inner enclosure. The inner enclosure and the outer enclosure have a common aperture for insertion of a filter into the inner enclosure across the first airflow path.




cir

OLED GATE DRIVING CIRCUIT STRUCTURE

The present invention provides an OLED gate driving circuit structure, comprising an OLED panel, a gate charge/discharge driving circuit, a logic process unit and a source driving circuit; the gate charge/discharge driving circuit is located at one side of the OLED panel, and the gate charge/discharge driving circuit comprises a plurality of output ends, and each output end is electrically coupled to the logic process unit with one signal line; the logic process unit is located inside the OLED panel, and the logic process unit receives a scan signal transmitted by the gate charge/discharge driving circuit through the signal line, and converts the scan signal into a discharge scan signal and a charge scan signal to be provided to the OLED panel; the source driving circuit is coupled to the OLED panel, and provides a data signal to the OLED panel, and only one gate driving integrated circuit is utilized in the structure for achieving the charge and discharge procedures of the gate driving circuit to save the hardware cost and to simplify the panel layout circuit and to make the frame of the panel narrower.