pe

The interoperability of crystallographic data and databases

Interoperability of crystallographic data with other disciplines is essential for the smooth and rapid progress of structure-based science in the computer age. Within crystallography and closely related subject areas, there is already a high level of conformance to the generally accepted FAIR principles (that data be findable, accessible, interoperable and reusable) through the adoption of common information exchange protocols by databases, publishers, instrument vendors, experimental facilities and software authors. Driven by the success within these domains, the IUCr has worked closely with CODATA (the Committee on Data of the International Science Council) to help develop the latter's commitment to cross-domain integration of discipline-specific data. The IUCr has, in particular, emphasized the need for standards relating to data quality and completeness as an adjunct to the FAIR data landscape. This can ensure definitive reusable data, which in turn can aid interoperability across domains. A microsymposium at the IUCr 2023 Congress provided an up-to-date survey of data interoperability within and outside of crystallography, expounded using a broad range of examples.




pe

The prediction of single-molecule magnet properties via deep learning

This paper uses deep learning to present a proof-of-concept for data-driven chemistry in single-molecule magnets (SMMs). Previous discussions within SMM research have proposed links between molecular structures (crystal structures) and single-molecule magnetic properties; however, these have only interpreted the results. Therefore, this study introduces a data-driven approach to predict the properties of SMM structures using deep learning. The deep-learning model learns the structural features of the SMM molecules by extracting the single-molecule magnetic properties from the 3D coordinates presented in this paper. The model accurately determined whether a molecule was a single-molecule magnet, with an accuracy rate of approximately 70% in predicting the SMM properties. The deep-learning model found SMMs from 20 000 metal complexes extracted from the Cambridge Structural Database. Using deep-learning models for predicting SMM properties and guiding the design of novel molecules is promising.




pe

Persistence of atoms in molecules: there is room beyond electron densities

Evidence that the electronic structure of atoms persists in molecules to a much greater extent than has been usually admitted is presented. This is achieved by resorting to N-electron real-space descriptors instead of one- or at most two-particle projections like the electron or exchange-correlation densities. Here, the 3N-dimensional maxima of the square of the wavefunction, the so-called Born maxima, are used. Since this technique is relatively unknown to the crystallographic community, a case-based approach is taken, revisiting first the Born maxima of atoms in their ground state and then some of their excited states. It is shown how they survive in molecules and that, beyond any doubt, the distribution of electrons around an atom in a molecule can be recognized as that of its isolated, in many cases excited, counterpart, relating this fact with the concept of energetic promotion. Several other cases that exemplify the applicability of the technique to solve chemical bonding conflicts and to introduce predictability in real-space analyses are also examined.




pe

Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ4–8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ4–8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ4–8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ4–16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ4–12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.




pe

Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity

Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.




pe

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




pe

Linking solid-state phenomena via energy differences in `archetype crystal structures'

Categorization underlies understanding. Conceptualizing solid-state structures of organic molecules with `archetype crystal structures' bridges established categories of disorder, polymorphism and solid solutions and is herein extended to special position and high-Z' structures. The concept was developed in the context of disorder modelling [Dittrich, B. (2021). IUCrJ, 8, 305–318] and relies on adding quantum chemical energy differences between disorder components to other criteria as an explanation as to why disorder – and disappearing disorder – occurs in an average structure. Part of the concept is that disorder, as probed by diffraction, affects entire molecules, rather than just the parts of a molecule with differing conformations, and the finding that an R·T energy difference between disorder archetypes is usually not exceeded. An illustrative example combining disorder and special positions is the crystal structure of oestradiol hemihydrate analysed here, where its space-group/subgroup relationship is required to explain its disorder of hydrogen-bonded hydrogen atoms. In addition, we show how high-Z' structures can also be analysed energetically and understood via archetypes: high-Z' structures occur when an energy gain from combining different rather than overall alike conformations in a crystal significantly exceeds R·T, and this finding is discussed in the context of earlier explanations in the literature. Twinning is not related to archetype structures since it involves macroscopic domains of the same crystal structure. Archetype crystal structures are distinguished from crystal structure prediction trial structures in that an experimental reference structure is required for them. Categorization into archetype structures also has practical relevance, leading to a new practice of disorder modelling in experimental least-squares refinement alluded to in the above-mentioned publication.




pe

Chaperone-mediated MHC-I peptide exchange in antigen presentation

This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.




pe

Evolution of structure and spectroscopic properties of a new 1,3-diacetylpyrene polymorph with temperature and pressure

A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV–Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Å for a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-β is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-β displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of −55.8 (57) MK−1 in the direction of C—H⋯O interactions.




pe

Refinement of cryo-EM 3D maps with a self-supervised denoising model: crefDenoiser

Cryogenic electron microscopy (cryo-EM) is a pivotal technique for imaging macromolecular structures. However, despite extensive processing of large image sets collected in cryo-EM experiments to amplify the signal-to-noise ratio, the reconstructed 3D protein-density maps are often limited in quality due to residual noise, which in turn affects the accuracy of the macromolecular representation. Here, crefDenoiser is introduced, a denoising neural network model designed to enhance the signal in 3D cryo-EM maps produced with standard processing pipelines. The crefDenoiser model is trained without the need for `clean' ground-truth target maps. Instead, a custom dataset is employed, composed of real noisy protein half-maps sourced from the Electron Microscopy Data Bank repository. Competing with the current state-of-the-art, crefDenoiser is designed to optimize for the theoretical noise-free map during self-supervised training. We demonstrate that our model successfully amplifies the signal across a wide variety of protein maps, outperforming a classic map denoiser and following a network-based sharpening model. Without biasing the map, the proposed denoising method leads to improved visibility of protein structural features, including protein domains, secondary structure elements and modest high-resolution feature restoration.




pe

Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation

The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington's disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a's facilitation of Httext1 fibrillization.




pe

Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act

A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics.




pe

Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature

Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydro­phobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power.




pe

From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion

3D electron diffraction (3DED) is increasingly employed to determine molec­ular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using di­chloro­methane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.




pe

Tuning structural modulation and magnetic properties in metal–organic coordination polymers [CH3NH3]CoxNi1−x(HCOO)3

Three solid solutions of [CH3NH3]CoxNi1−x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896–17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105–115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios.




pe

Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith

Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by Rietveld refinement and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.




pe

Unity gives strength: combining Bertaut's and Belov's concepts and the formalism of aperiodic crystals to solve magnetic structures of unprecedented complexity




pe

Crystal structure solution and high-temperature thermal expansion in NaZr2(PO4)3-type materials

The NaZr2P3O12 family of materials have shown low and tailorable thermal expansion properties. In this study, SrZr4P6O24 (SrO·4ZrO2·3P2O5), CaZr4P6O24 (CaO·4ZrO2·3P2O5), MgZr4P6O24 (MgO·4ZrO2·3P2O5), NaTi2P3O12 [½(Na2O·4TiO2·3P2O5)], NaZr2P3O12 [½(Na2O·4ZrO2·3P2O5)], and related solid solutions were synthesized using the organic–inorganic steric entrapment method. The samples were characterized by in-situ high-temperature X-ray diffraction from 25 to 1500°C at the Advanced Photon Source and National Synchrotron Light Source II. The average linear thermal expansion of SrZr4P6O24 and CaZr4P6O24 was between −1 × 10−6 per °C and 6 × 10−6 per °C from 25 to 1500°C. The crystal structures of the high-temperature polymorphs of CaZr4P6O24 and SrZr4P6O24 with R3c symmetry were solved by Fourier difference mapping and Rietveld refinement. This polymorph is present above ∼1250°C. This work measured thermal expansion coefficients to 1500°C for all samples and investigated the differences in thermal expansion mechanisms between polymorphs and between compositions.




pe

Solvatomorphism in a series of copper(II) complexes with the 5-phenyl­imidazole/perchlorate system as ligands

In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenyl­imidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenyl­imidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(di­methyl­formamide) (7), 2(acetone) (8), 2(tetra­hydro­furane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(di­ethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole–H⋯Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the di­ethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2–6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7–11), linking the complexes and contributing to the stability of the crystalline compounds.




pe

A short note on the use of irreducible representations for tilted octahedra in perovskites

It is pointed out that many authors are unaware that the particular choice of unit-cell origin determines the irreducible representations to which octahedral tilts in perovskites belong. Furthermore, a recommendation is made that the preferred option is with the origin at the B-cation site rather than that of the A site.




pe

New insights into the magnetism and magnetic structure of LuCrO3 perovskite

A polycrystalline sample LuCrO3 has been characterized by neutron powder diffraction (NPD) and magnetization measurements. Its crystal structure has been Rietveld refined from NPD data in space group Pnma; this perovskite contains strongly tilted CrO6 octahedra with extremely bent Cr—O—Cr superexchange angles of ∼142°. The NPD data show that below Néel temperature (TN ≃ 131 K), the magnetic structure can be defined as an A-type antiferromagnetic arrangement of Cr3+ magnetic moments, aligned along the b axis, with a canting along the c axis. A noticeable magneto­strictive effect is observed in the unit-cell parameters and volume upon cooling down across TN. The AC magnetic susceptibility indicates the onset of magnetic ordering below 112.6 K; the magnetization isotherms below TN show a nonlinear behaviour that is associated with the described canting of the Cr3+ magnetic moments. From the Curie–Weiss law, the effective moment of the Cr3+ sublattice is found to be μeff = 3.55 μB (calculated 3.7 μB) while the ΘCW parameter yields a value of −155 K, indicating antiferromagnetic interactions. There is a conspicuous increase of TN upon the application of external pressure, which must be due to shortening of the Cr—O bond length under compression that increases the orbital overlap integral.




pe

Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet

Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12.




pe

Crystal structure reinvestigation and spectroscopic analysis of tricadmium orthophosphate

Single crystals of tricadmium orthophosphate, Cd3(PO4)2, have been synthesized successfully by the hydro­thermal route, while its powder form was obtained by a solid-solid process. The corresponding crystal structure was determined using X-ray diffraction data in the monoclinic space group P21/n. The crystal structure consists of Cd2O8 or Cd2O10 dimers linked together by PO4 tetra­hedra through sharing vertices or edges. Scanning electron microscopy (SEM) was used to investigate the morphology and to confirm the chemical composition of the synthesized powder. Infrared analysis corroborates the presence of isolated phosphate tetra­hedrons in the structure. UV–Visible studies showed an absorbance peak at 289 nm and a band gap energy of 3.85 eV, as determined by the Kubelka–Munk model.




pe

Synthesis, crystal structure and properties of chlorido­tetra­kis­(pyridine-3-carbo­nitrile)­thio­cyanato­iron(II)

Reaction of FeCl2·4H2O with KSCN and 3-cyano­pyridine (pyridine-3-carbo­nitrile) in ethanol accidentally leads to the formation of single crystals of Fe(NCS)(Cl)(3-cyano­pyridine)4 or [FeCl(NCS)(C6H4N2)4]. The asymmetric unit of this compound consists of one FeII cation, one chloride and one thio­cyanate anion that are located on a fourfold rotation axis as well as of one 3-cyano­pyridine coligand in a general position. The FeII cations are sixfold coordinated by one chloride anion and one terminally N-bonding thio­cyanate anion in trans-positions and four 3-cyano­pyridine coligands that coordinate via the pyridine N atom to the FeII cations. The complexes are arranged in columns with the chloride anions, with the thio­cyanate anions always oriented in the same direction, which shows the non-centrosymmetry of this structure. No pronounced inter­molecular inter­actions are observed between the complexes. Initially, FeCl2 and KSCN were reacted in a 1:2 ratio, which lead to a sample that contains the title compound as the major phase together with a small amount of an unknown crystalline phase, as proven by powder X-ray diffraction (PXRD). If FeCl2 and KSCN is reacted in a 1:1 ratio, the title compound is obtained as a nearly pure phase. IR investigations reveal that the CN stretching vibration for the thio­cyanate anion is observed at 2074 cm−1, and that of the cyano group at 2238 cm−1, which also proves that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. Measurements with thermogravimetry and differential thermoanalysis reveal that the title compound decomposes at 169°C when heated at a rate of 4°C min−1 and that the 3-cyano­pyridine ligands are emitted in two separate poorly resolved steps. After the first step, an inter­mediate compound with the composition Fe(NCS)(Cl)(3-cyano­pyridine)2 of unknown structure is formed, for which the CN stretching vibration of the thio­cyanate anion is observed at 2025 cm−1, whereas the CN stretching vibration of the cyano group remain constant. This strongly indicates that the FeII cations are linked by μ-1,3-bridg­ing thio­cyanate anions into chains or layers.




pe

Synthesis, crystal structure and hydrogenation properties of MgxLi3 − xB48 − y (x = 1.11, y = 0.40)

The ternary magnesium/lithium boride, MgxLi3 − xB48 − y (x = 1.11, y = 0.40, idealized formula MgLi2B48), crystallizes as its own structure type in P43212, which is closely related to the structural family comprising α-AlB12, Be0.7Al1.1B22 and tetra­gonal β-boron. The asymmetric unit of title structure contains two statistical mixtures Mg/Li in Wyckoff sites 8b with relative occupancies Mg:Li = 0.495 (9):0.505 (9) and 4a with Mg:Li = 0.097 (8):0.903 (8). The boron atoms occupy 23 8b sites and two 4a sites. One of the latter sites has a partial occupancy factor of 0.61 (2). Both unique Mg/Li atoms adopt a twelvefold coordination environment in the form of truncated tetra­hedra (Laves polyhedra). These polyhedra are connected by triangular faces to four [B12] icosa­hedra. The boron atoms exhibit four kinds of polyhedra, namely penta­gonal pyramid (coordination number CN = 6), distorted tetra­gonal pyramid (CN = 5), bicapped hexa­gon (CN = 8) and gyrobifastigium (CN = 8). At the gas hydrogenation of MgLi2B48 alloy, formation of the eutectic composite hydride LiBH4+Mg(BH4)2 and amorphous boron is observed. In the temperature range 543–623 K, the hydride eutectics decompose, forming MgH2, LiH, MgB4, B and H2.




pe

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.




pe

New copper carboxyl­ate pyrene dimers: synthesis, crystal structure, Hirshfeld surface analysis and electrochemical characterization

Two new copper dimers, namely, bis­(dimethyl sulfoxide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C2H6OS)2] or [Cu2(pyr-COO−)4(DMSO)2] (1), and bis­(di­methyl­formamide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C3H7NO)2] or [Cu2(pyr-COO−)4(DMF)2] (2) (pyr = pyrene), were synthesized from the reaction of pyrene-1-carb­oxy­lic acid, copper(II) nitrate and tri­ethyl­amine from solvents DMSO and DMF, respectively. While 1 crystallized in the space group Poverline{1}, the crystal structure of 2 is in space group P21/n. The Cu atoms have octa­hedral geometries, with four oxygen atoms from carboxyl­ate pyrene ligands occupying the equatorial positions, a solvent mol­ecule coordinating at one of the axial positions, and a Cu⋯Cu contact in the opposite position. The packing in the crystal structures exhibits π–π stacking inter­actions and short contacts through the solvent mol­ecules. The Hirshfeld surfaces and two-dimensional fingerprint plots were generated for both compounds to better understand the inter­molecular inter­actions and the contribution of heteroatoms from the solvent ligands to the crystal packing. In addition, a Cu2+/Cu1+ quasi-reversible redox process was identified for compound 2 using cyclic voltammetry that accounts for a diffusion-controlled electron-donation process to the Cu dimer.




pe

The synthesis and structural properties of a chlorido­bis­{N-[(4-meth­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­trichlorido­zincate coordination complex

The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the ortho­rhom­bic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-meth­oxy­phenyl azoformamide ligands in a bidentate manner, utilizing both the nitro­gen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding inter­actions with distances of 2.002 (3) and 2.012 (3) Å, while nitro­gen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the inter­molecular inter­actions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) inter­actions are dominant. This unique crystal structure sheds light on arrangement and bonding inter­actions with azo­formamide ligands, and their unique qualities over similar semicarbazone and azo­thio­formamide structures.




pe

Crystal structure and Hirshfeld-surface analysis of di­aqua­bis­(5-methyl-1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octa­hedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexa­hydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate HL− anions in the equatorial plane and two water mol­ecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) inter­actions.




pe

Synthesis, crystal structure and properties of poly[(μ-2-methyl­pyridine N-oxide-κ2O:O)bis­(μ-thio­cyanato-κ2N:S)cobalt(II)]

The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methyl­pyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methyl­pyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thio­cyanate anions and one 2-methyl­pyridine N-oxide coligand in general positions. The CoII cations are octa­hedrally coordinated by two O-bonding 2-methyl­pyridine N-oxide ligands, as well as two S- and two N-bonding thio­cyanate anions, and are connected via μ-1,3(N,S)-bridging thio­cyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional inter­molecular inter­actions are observed between the layers. The 2-methyl­pyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thio­cyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methyl­pyridine N-oxide coligands.




pe

Temperature-dependent solid-state phase transition with twinning in the crystal structure of 4-meth­oxy­anilinium chloride

At room temperature, the title salt, C7H10NO+·Cl−, is ortho­rhom­bic, space group Pbca with Z' = 1, as previously reported [Zhao (2009). Acta Cryst. E65, o2378]. Between 250 and 200 K, there is a solid-state phase transition to a twinned monoclinic P21/c structure with Z' = 2. We report the high temperature structure at 250 K and the low-temperature structure at 100 K. In the low-temperature structure, the –NH3 hydrogen atoms are ordered and this group has a different orientation in each independent mol­ecule, in keeping with optimizing N—H⋯Cl hydrogen bonding, some of which are bifurcated: these hydrogen bonds have N⋯Cl distances in the range 3.1201 (8)–3.4047 (8) Å. In the single cation of the high-temperature structure, the NH hydrogen atoms are disordered into the average of the two low-temperature positions and the N⋯Cl hydrogen bond distances are in the range 3.1570 (15)–3.3323 (18) Å. At both temperatures, the meth­oxy group is nearly coplanar with the rest of the mol­ecule, with the C—C—O—C torsion angles being −7.0 (2)° at 250 K and −6.94 (12) and −9.35 (12)° at 100 K. In the extended ortho­rhom­bic structure, (001) hydrogen-bonded sheets occur; in the monoclinic structure, the sheets propagate in the (010) plane.




pe

Crystal structures of two formamidinium hexa­fluorido­phosphate salts, one with batch-dependent disorder

Syntheses of the acyclic amidinium salts, morpholino­formamidinium hexa­fluorido­phosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6−, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6−, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexa­fluorido­phosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the asymmetric unit. The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in space group Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar unit cell and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric space group Pca21, with two cations and anions in the asymmetric unit. In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the inductive effect of the oxygen atom in the morpholino compound.




pe

Crystal structure of poly[hexa-μ-bro­mido-bis{2-[1-(py­ri­din-2-yl)ethyl­idene­amino]ethanol­ato}tetracopper(II)]

The reaction of the Schiff base 2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethanol (HL), which is formed by reaction of 2-amino­ethanol and 2-acetyl­pyridine with CuBr2 in ethanol results in the isolation of the new polymeric complex poly[hexa-μ-bromido-bis­{2-[1-(pyridin-2-yl)ethyl­idene­amino]­ethano­lato}tetra­copper(II)], [Cu4Br6(C9H11N2O)2]n or [Cu4Br6L2]n. The asymmetric unit of the crystal structure of the polymeric [Cu4Br6L2]n complex is composed by four copper (II) cations, two monodeprotonated mol­ecules of the ligand, and six bromide anions, which act as bridges. The ligand mol­ecules act in a tridentate fashion through their azomethine nitro­gen atoms, their pyridine nitro­gen atoms, and their alcoholate O atoms. The crystal structure shows two types of geometries in the coordination polyhedrons around Cu2+ ions. Two copper cations are situated in a square-based pyramidal environment, while the two other copper cations adopt a tetra­hedral geometry. Bromides anions acting as bridges between two metal ions connect the units, resulting in a tetra­nuclear polymer compound.




pe

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­idene]benzenesulfonamide

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.




pe

Synthesis, crystal structure and thermal properties of di­bromido­bis­(2-methyl­pyridine N-oxide-κO)cobalt(II)

Reaction of CoBr2 with 2-methyl­pyridine N-oxide in n-butanol leads to the formation of the title compound, [CoBr2(C6H7NO)2] or [CoBr2(2-methyl­pyridine N-oxide)2]. Its asymmetric unit consists of one CoII cation as well as two bromide anions and two 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are tetra­hedrally coordinated by two bromide anions and two 2-methyl­pyridine N-oxides, forming discrete complexes. In the crystal structure, these complexes are linked predominantly by weak C–H⋯Br hydrogen bonding into chains that propagate along the crystallographic a-axis. Powder X-ray diffraction (PXRD) measurements indicate that a pure phase was obtained. Thermoanalytical investigations prove that the title compound melts before decomposition; before melting, a further endothermic signal of unknown origin was observed that does not correspond to a phase transition.




pe

Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one

The title com­pound, C13H11NO, adopts an E configuration about the C=C double bond. The pyrrole ring is inclined to the phenyl ring at an angle of 44.94 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis. These ribbons are connected via C—H⋯π inter­actions, forming a three-dimensional network. No significant π–π inter­actions are observed.




pe

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S−, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I−, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-l-me­thio­nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.




pe

Crystal structure and characterization of a new one-dimensional copper(II) coordination polymer containing a 4-amino­benzoic acid ligand

A CuII coordination polymer, catena-poly[[[aqua­copper(II)]-bis­(μ-4-amino­benz­o­ato)-κ2N:O;κ2O:N] monohydrate], {[Cu(pABA)2(H2O)]·H2O}n (pABA = p-amino­benzoate, C7H4NO2−), was synthesized and characterized. It exhibits a one-dimensional chain structure extended into a three-dimensional supra­molecular assembly through hydrogen bonds and π–π inter­actions. While the twinned crystal shows a metrically ortho­rhom­bic lattice and an apparent space group Pbcm, the true symmetry is monoclinic (space group P2/c), with disordered Cu atoms and mixed roles of water mol­ecules (aqua ligand/crystallization water). The luminescence spectrum of the complex shows an emission at 345 nm, cf. 349 nm for pABAH.




pe

Synthesis and crystal structures of bis­[1-oxopyridin-2-olato(1−)]bis­(penta­fluoro­phen­yl)silicon(IV)–tetra­hydro­furan–pentane (2/1/1), bis­[1-oxopyridin-2-olato(1−)]bis­(p-tol­yl)silicon(IV), and dimes

The neutral organosilicon(IV) complex, (C6F5)2Si(OPO)2 (OPO = 1-oxopyridin-2-one, C5H4NO2), was synthesized from (C6F5)2Si(OCH3)2 and 2 equiv. of 1-hy­droxy­pyridin-2-one in tetra­hydro­furan (THF). Single crystals grown from the diffusion of n-pentane into a THF solution were identified as a THF hemisolvate and an n-pentane hemisolvate, (C6F5)2Si(OPO)2·0.5THF·0.5C5H12 (1). p-Tol­yl2Si(OPO)2 (2) and mesit­yl2Si(OPO)2 (3) crystallized directly from reaction mixtures of 2 equiv. of Me3Si(OPO) with p-tol­yl2SiCl2 and mesit­yl2SiCl2, respectively, in aceto­nitrile. The oxygen-bonded carbon and nitro­gen atoms of the OPO ligands in 1, 2, and 3 were modeled as disordered indicating co-crystallization of up to three possible diastereomers in each. Solution NMR studies support the presence of exclusively the all-cis isomer in 1 and multiple isomers in 2. Poor solubility of 3 limited its characterization in solution.




pe

Crystal structure of tetra­kis­(μ-2-hy­droxy-3,5-di­isoprop­yl­benzoato)bis­[(dimethyl sulfoxide)copper(II)]

Metal complexes of 3,5-diiso­propyl­salicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diiso­propyl­salicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hy­droxy group of the diiso­propyl­salicylate ligands participates in intra­molecular O—H⋯O hydrogen-bonding inter­actions.




pe

Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methyl­phen­yl)sulfon­yl]-2,7,8,9-tetra­hydro-1H-3,6:10,13-diep­oxy-1,8-benzodi­aza­cyclo­penta­decine ethanol hemisolvate

The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent mol­ecule and a half mol­ecule of ethanol solvent. The main compound stabilizes its mol­ecular conformation by forming a ring with an R12(7) motif with the ethanol solvent mol­ecule. In the crystal, mol­ecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions also strengthen the mol­ecular packing.




pe

Lithium and sodium 3-(3,4-di­hydroxy­phen­yl)propenoate hydrate

Treatment of 3-(3,4-di­hydroxy­phen­yl)propenoic acid (caffeic acid or 3,4-di­hydroxy­cinnamic acid) with the alkali hydroxides MOH (M = Li, Na) in aqueous solution led to the formation of poly[aqua­[μ-3-(3,4-di­hydroxy­phen­yl)propenoato]lithium], [Li(C9H7O4)(H2O)]n, 1, and poly[aqua­[μ-3-(3,4-di­hydroxy­phen­yl)propenoato]sodium], [Na(C9H7O4)(H2O)]n, 2. The crystal structure of 1 consists of a lithium cation that is coordinated nearly tetra­hedrally by three carboxyl­ate oxygen atoms and a water mol­ecule. The carboxyl­ate groups adopt a μ3-κ3O:O':O' coordination mode that leads to a chain-like catenation of Li cations and carboxyl­ate units parallel to the b axis. Moreover, the lithium carboxyl­ate chains are connected by hydrogen bonds between water mol­ecules attached to lithium and catechol OH groups. The crystal structure of 2 shows a sevenfold coordination of the sodium cation by one water mol­ecule, two monodentately binding carboxyl­ate groups and four oxygen atoms from two catechol groups. The coordination polyhedra are linked by face- and edge-sharing into chains extending parallel to the b axis. The chains are inter­linked by the bridging 3-(3,4-di­hydroxy­phen­yl)propenoate units and by inter­molecular hydrogen bonds to form the tri-periodic network.




pe

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.




pe

Crystal structures of tri­chlorido­(4-methyl­piperidine)gold(III) and two polymorphs of tri­bromido(4-methyl­piperidine)­gold(III)

Tri­chlorido­(4-methyl­piperidine)­gold(III), [AuCl3(C6H13N)], 1, crystallizes in Pbca with Z = 8. Tri­bromido­(4-methyl­piperidine)­gold(III), [AuBr3(C6H13N)], 2, crystallizes as two polymorphs, 2a in Pnma with Z = 4 (imposed mirror symmetry) and 2b, which is isotypic to 1. The Au—N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au—Cl bonds trans to N are longer than those cis to N, whereas the Au—Br bonds trans to N are slightly shorter than the cis bonds. The methyl and AuX3 groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of mol­ecules with offset stacking of the AuX3 moieties associated with short Au⋯X contacts; for 1 and 2b these are reinforced by N—H⋯X hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are inter­connected by Br⋯Br contacts.




pe

Crystal structure and Hirshfeld surface analysis of 5-hy­droxy­penta­nehydrazide

Carb­oxy­hydrazides are widely used in medicinal chemistry because of their medicinal properties and many drugs have been developed containing this functional group. A suitable inter­mediate to obtain potential hydrazide drug candidates is the title compound 5-hy­droxy­penta­nehydrazide, C5H12N2O2 (1). The aliphatic compound can react both via the hydroxyl and hydrazide moieties forming derivatives, which can inhibit Mycobacterium tuberculosis catalase-peroxidase (KatG) and consequently causes death of the pathogen. In this work, the hydrazide was obtained via a reaction of a lactone with hydrazine hydrate. The colourless prismatic single crystals belong to the ortho­rhom­bic space group Pca21. Regarding supra­molecular inter­actions, the compound shows classic medium to strong inter­molecular hydrogen bonds involving the hydroxyl and hydrazide groups. Besides, the three-dimensional packing also shows weak H⋯H and C⋯H contacts, as investigated by Hirshfeld surface analysis (HS) and fingerprint plots (FP).




pe

Synthesis, crystal structure and Hirshfeld analysis of N-ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­idene}hydrazinecarbo­thio­amide

The title compound (C14H23N3S, common name: cis-jasmone 4-ethyl­thio­semicarbazone) was synthesized by the equimolar reaction of cis-jasmone and 4-ethyl­thio­semicarbazide in ethanol facilitated by acid catalysis. There is one crystallographically independent mol­ecule in the asymmetric unit, which shows disorder of the terminal ethyl group of the jasmone carbon chain [site-occupancy ratio = 0.911 (5):0.089 (5)]. The thio­semicarbazone entity [N—N—C(=S)—N] is approximately planar, with the maximum deviation of the mean plane through the N/N/C/S/N atoms being 0.0331 (8) Å, while the maximum deviation of the mean plane through the five-membered ring of the jasmone fragment amounts to −0.0337 (8) Å. The dihedral angle between the two planes is 4.98 (7)°. The mol­ecule is not planar due to this structural feature and the sp3-hybridized atoms of the jasmone carbon chain. Additionally, one H⋯N intra­molecular inter­action is observed, with graph-set motif S(5). In the crystal, the mol­ecules are connected through pairs of H⋯S inter­actions with R22(8) and R21(7) graph-set motifs into centrosymmetric dimers. The dimers are further connected by H⋯N inter­actions with graph-set motif R22(12), which are related by an inversion centre, forming a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. The crystal structure and the supra­molecular assembly of the title compound are compared with four known cis-jasmone thio­semicarbazone derivatives (two crystalline modifications of the non-substituted form, the 4-methyl and the 4-phenyl derivatives). A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%), and H⋯N/N⋯H (6.6%) inter­faces (only the disordered atoms with the highest s.o.f. were considered for the evaluation).




pe

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-[(1Z,3E)-1-cyano-2,4-di­phenyl­penta-1,3-dien-1-yl]pyridine-3,5-dicarbo­nitrile monohydrate

The asymmetric unit of the title compound, C25H18N6·H2O, comproses two mol­ecules (I and II), together with a water mol­ecule. The terminal phenyl groups attached to the methyl groups of the mol­ecules I and II do not overlap completely, but are approximately perpendicular. In the crystal, the mol­ecules are connected by N—H⋯N, C—H⋯N, O—H⋯N and N—H⋯O hydrogen bonds with each other directly and through water mol­ecules, forming layers parallel to the (001) plane. C—H⋯π inter­actions between these layers ensure the cohesion of the crystal structure. A Hirshfeld surface analysis indicates that H⋯H (39.1% for mol­ecule I; 40.0% for mol­ecule II), C⋯H/H⋯C (26.6% for mol­ecule I and 25.8% for mol­ecule II) and N⋯H/H⋯N (24.3% for mol­ecules I and II) inter­actions are the most important contributors to the crystal packing.




pe

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyl­diazen-1-yl)phen­yl]methyl­idene}amino)penta­noate-κ3O,N,O']copper(II)

The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from l-leucine and azo­benzene-salicyl­aldehyde. One imidazole mol­ecule is additionally coordinated to the copper(II) ion in the equatorial plane. The crystal structure features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.




pe

Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)

Reaction of Co(NCS)2 with 2-methyl­pyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thio­cyanate anions and three crystallographically independent 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thio­cyanate anions in the trans-positions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. These complexes are linked by inter­molecular C–H⋯S inter­actions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound.




pe

Synthesis, crystal structure and thermal properties of the dinuclear complex bis­(μ-4-methylpyridine N-oxide-κ2O:O)bis­[(methanol-κO)(4-methylpyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II)]

Reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thio­cyanate anions, two 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octa­hedrally coordinate two terminal N-bonded thio­cyanate anions, three 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-meth­yl­pyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol mol­ecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide), which has been reported in the literature and which is of poor crystallinity.