ucl

Olympic softball trio to play for UCLA, Arizona

The Bruins' Rachel Garcia and Bubba Nickles and the Wildcats' Dejah Mulipola will play for their college teams and Team USA in the rescheduled Olympics in 2021.






ucl

Clean Energy Laws Signed in New Jersey: Offshore Wind, Efficiency, Solar, Storage and Nuclear Benefit

Clean energy advocates rejoiced as legislation was passed today in New Jersey that will support the development of a massive amount of renewable energy, specifically community solar, energy storage, offshore wind and energy efficiency. The bill also props up nuclear power in the state with the establishment of zero-emission certificates.




ucl

What Does the Nuclear Power Phase-Out Mean for Energy Storage?

The power industry is facing a nuclear power dilemma, according to a report published by The Union of Concerned Scientists. UCS assessed the economic viability and performance of nuclear power plants operating in the United States and concluded that the retirement of these plants will likely result in the adoption of coal and natural gas for baseload power generation, two energy sources that contribute to carbon dioxide emissions.




ucl

Tidal Lagoon’s Next Plant May Produce Power on Par with Nuclear

The U.K. company planning the world’s first tidal-lagoon power station said its next plant may generate electricity at almost half the price.




ucl

Japan Anticipates Clean Energy Will Edge Out Nuclear Power

Japan anticipates that by 2030 clean energy such as solar and hydro will generate slightly more of the nation’s electricity than nuclear power plants.




ucl

Why New Nuclear Technology Hurts the Case for Renewables

Does nuclear energy deserve a seat at the table alongside renewable energy technologies in weaning us off of fossil fuels and transitioning into a cleaner energy world? A new report published yesterday suggests not only will newer small modular reactor (SMR) technology be at least as expensive as larger reactors, it won't fit the needs of a more flexible grid system, and its development will siphon away funding from the truly renewable energy options that need it.




ucl

Nuclear Giant Exelon Launches Front Group to Cover Its Assets, Undermine Renewable Energy?

Nuclear power, which accounts for 19 percent of the nation's electricity generation, is facing some serious challenges. Not only did its hoped-for renaissance fizzle out, four reactors shut down last year, another is closing this fall, and the nuclear giant Exelon says it will announce plant closings by the end of this year if market conditions don't improve.




ucl

Listen Up: Electricity from Nuclear Too Cheap to Meter — Or Not

It's the environmentalist's third rail question: "Should we promote nuclear power as an expedient way to reduce CO2 emissions?" On the one hand, nuclear power generates electricity with almost negligible CO2 emissions — potentially a good way for our society to reverse the current global warming trends. On the other hand, nuclear power is...well...nuclear. Problems related to waste disposal, proliferation and high costs have not been solved, and we still have the occasional disaster.




ucl

Japan Anticipates Clean Energy Will Edge Out Nuclear Power

Japan anticipates that by 2030 clean energy such as solar and hydro will generate slightly more of the nation’s electricity than nuclear power plants.





ucl

The Impact of AI on Nuclear Deterrence: China, Russia, and the United States

By Lora Saalman HONOLULU (14 April 2020)—Artificial intelligence (AI) is an increasingly important component of weapons systems, with both positive and negative implications for nuclear deterrence. Integration of AI into military platforms has the potential to allow weaker nuclear-armed states to reset the imbalance of power, but at the same time it exacerbates fears that stronger states may further solidify their dominance and engage in more provocative actions.

This is a summary only. Click the title for the full article, or visit www.EastWestCenter.org/Research-Wire for more.




ucl

Gov't Won't Seek to Move away from Nuclear Power Too Fast...It Will Take 60 Years to Phase out

President Moon Jae-in said on August 17, "The denuclearization bid by the current government is not so radical. It will take more than 60 years for us to reach that goal." In an interview in celebration of the 100th day since taking power, President Moon said, "The design life of nuclear reactors that were launched recently or under construction is 60 years. We plan to close reactors one by one as soon as their design life expires." His remarks are in reponse to criticism that his government'...




ucl

Moon-Putin Meeting...Differ in How to Respond to North's Nuclear

Moon Jae-in South Korean President and Vladimir Putin Russian President met on September 6 in Far Eastern Federal University in Russia's Vladivostok to discuss issues including the current North Korea nuclear crisis and economic cooperation between Russia and South Korea for 2 hours and 40 minutes. The two leaders agreed that the North's nuclear tests are "unacceptable" but differed in how it must be handled including cutting crude oil supplies to North Korea. President Moon said, "When ...




ucl

Donald Trump urges nuclear talks with China in call with Russia’s Vladimir Putin

US President Donald Trump called on Thursday for involving China in new arms control talks with Russia, telling Russian leader Vladimir Putin that they need to avoid a “costly arms race,” the White House said.“President Trump reaffirmed that the United States is committed to effective arms control that includes not only Russia, but also China, and looks forward to future discussions to avoid a costly arms race,” a statement said.Trump and Putin spoke by phone, also discussing the coronavirus…




ucl

China may have secretly conducted low-level nuclear test blasts

US concerns about Beijing's possible pact breaches have been prompted by activities at China's Lop Nur nuclear test site throughout 2019.




ucl

China needs more nuclear warheads: report

BEIJING: China should expand its stock of nuclear warheads to 1,000 soon, Global Times editor-in-chief Hu Xijin said on Friday, even as US President Donald Trump repeats his call for China to join an...

[[ This is a content summary only. Visit my website for full links, other content, and more! ]]




ucl

China needs more nuclear warheads: report

BEIJING: China should expand its stock of nuclear warheads to 1,000 soon, Global Times editor-in-chief Hu Xijin said on Friday, even as US President Donald Trump repeats his call for China to join an arms control treaty, foreign media reported.The Global Times is published by the People’s...




ucl

China needs more nuclear warheads: report

BEIJING: China should expand its stock of nuclear warheads to 1,000 soon, Global Times editor-in-chief Hu Xijin said on Friday, even as US President Donald Trump repeats his call for China to join an arms control treaty, foreign media reported.The Global Times is published by the People’s...




ucl

It would take Iran more than 4 months to develop nuclear weapons

The US assassination of Iranian general Qassem Soleimani has raised fears of nuclear conflict, but Iran has been on the road to building nuclear weapons for some time




ucl

Falling rocks can explode so hard that only nuclear weapons beat them

If big rocks fall far enough they can explode with more energy than any non-nuclear bomb – and the ensuing shockwave can snap large trees half a kilometre away




ucl

A Japanese nuclear power plant created a habitat for tropical fish

A small increase in water temperature near a Japanese nuclear power plant allowed tropical fish to colonise the area, suggesting global warming will drastically alter some marine ecosystems




ucl

Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers

ABSTRACT

Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery.

IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients.




ucl

Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci

ABSTRACT

Streptococcus pneumoniae (or pneumococcus) is a highly prevalent human pathogen. Toll-like receptors (TLRs) function as immune sensors that can trigger host defenses against this bacterium. Defects in TLR-activated signaling pathways, including deficiency in the adaptor protein myeloid differentiation factor 88 (MyD88), are associated with markedly increased susceptibility to infection. However, the individual MyD88-dependent TLRs predominantly involved in antipneumococcal defenses have not been identified yet. Here we find that triple knockout mice simultaneously lacking TLR7, TLR9, and TLR13, which sense the presence of bacterial DNA (TLR9) and RNA (TLR7 and TLR13) in the phagolysosomes of phagocytic cells, display a phenotype that largely resembles that of MyD88-deficient mice and rapidly succumb to pneumococcal pneumonitis due to defective neutrophil influx into the lung. Accordingly, TLR7/9/13 triple knockout resident alveolar macrophages were largely unable to respond to pneumococci with the production of neutrophil-attracting chemokines and cytokines. Mice with single deficiencies of TLR7, TLR9, or TLR13 showed unaltered ability to control lung infection but were moderately more susceptible to encephalitis, in association with a decreased ability of microglia to mount cytokine responses in vitro. Our data point to a dominant, tissue-specific role of nucleic acid-sensing pathways in innate immune recognition of S. pneumoniae and also show that endosomal TLRs are largely capable of compensating for the absence of each other, which seems crucial to prevent pneumococci from escaping immune recognition. These results may be useful to develop novel strategies to treat infections by antibiotic-resistant pneumococci based on stimulation of the innate immune system.

IMPORTANCE The pneumococcus is a bacterium that frequently causes infections in the lungs, ears, sinus cavities, and meninges. During these infections, body defenses are triggered by tissue-resident cells that use specialized receptors, such as Toll-like receptors (TLRs), to sense the presence of bacteria. We show here that pneumococci are predominantly detected by TLRs that are located inside intracellular vacuoles, including endosomes, where these receptors can sense the presence of nucleic acids released from ingested bacteria. Mice that simultaneously lacked three of these receptors (specifically, TLR7, TLR9, and TLR13) were extremely susceptible to lung infection and rapidly died after inhalation of pneumococci. Moreover, tissue-resident macrophages from these mice were impaired in their ability to respond to the presence of pneumococci by producing inflammatory mediators capable of recruiting polymorphonuclear leucocytes to infection sites. This information may be useful to develop drugs to treat pneumococcal infections, particularly those caused by antibiotic-resistant strains.




ucl

Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus

ABSTRACT

Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.

IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.




ucl

Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics

ABSTRACT

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.

IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.




ucl

Progressive supranuclear palsy and pawpaw

Consider consumption of annonacin-containing plant products, including pawpaw, as a possible environmental risk factor for atypical parkinsonism.




ucl

Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5' Untranslated Region [Virus-Cell Interactio

Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex.

IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections.




ucl

Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain [Neuroscience]

Chronic pain is a highly prevalent disease with poorly understood pathophysiology. In particular, the brain mechanisms mediating the transition from acute to chronic pain remain largely unknown. Here, we identify a subcortical signature of back pain. Specifically, subacute back pain patients who are at risk for developing chronic pain exhibit...




ucl

{alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are maȷor seed-competent species [Molecular Bases of Disease]

Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies.




ucl

Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adȷacent motif (PAM) sequences [Molecular Biophysics]

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9–gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9–gRNA, SaCas9–gRNA, and FnCas9–gRNA, respectively) and of three engineered SpCas9–gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a “beacon” assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9–gRNA binding to fluorescently labeled target DNA derivatives called “Cas9 beacons.” We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9–gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.




ucl

Recent Approaches To Optimize Laboratory Assessment of Antinuclear Antibodies [Minireviews]

The presence of antinuclear antibodies (ANAs) is a hallmark of a number of systemic autoimmune rheumatic diseases, and testing is usually performed as part of the initial diagnostic workup when suspicion of an underlying autoimmune disorder is high. The indirect immunofluorescence antibody (IFA) technique is the preferred method for detecting ANAs, as it demonstrates binding to specific intracellular structures within the cells, resulting in a number of staining patterns that are usually categorized based on the cellular components recognized and the degree of binding, as reflected by the fluorescence intensity or titer. As a screening tool, the ANA patterns can guide confirmatory testing useful in elucidating a specific clinical diagnosis or prognosis. However, routine use of ANA IFA testing as a global screening test is hampered by its labor-intensiveness, subjectivity, and limited diagnostic specificity, among other factors. This review focuses on current efforts to standardize the nomenclature of ANA patterns and on alternative methods for ANA determination, as well as on recent advances in image-based computer algorithms to automate IFA testing in clinical laboratories.




ucl

Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress

Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.

Implications:

HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.




ucl

Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

SIGNIFICANCE STATEMENT

This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




ucl

ProPSMA: A Callout to the Nuclear Medicine Community to Change Practices with Prospective, High-Quality Data




ucl

The Standard of Care: From Nuclear Radiology to Nuclear Medicine




ucl

Incidental Findings Suggestive of COVID-19 in Asymptomatic Patients Undergoing Nuclear Medicine Procedures in a High-Prevalence Region

Infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may remain asymptomatic, leading to under-recognition of the related disease, coronavirus disease, 2019 (COVID-19), and to incidental findings in nuclear imaging procedures performed for standard clinical indications. Here, we report about our local experience in a region with high COVID-19 prevalence and dynamically increasing infection rates. Methods: Within the 8-d period of March 16–24, 2020, hybrid imaging studies of asymptomatic patients who underwent 18F-FDG PET/CT or 131I SPECT/CT for standard oncologic indications at our institution in Brescia, Italy, were analyzed for findings suggestive of COVID-19. The presence, radiologic features, and metabolic activity of interstitial pneumonia were identified, correlated with the subsequent short-term clinical course, and described in a case series. Results: Six of 65 patients (9%) who underwent PET/CT for various malignancies showed unexpected signs of interstitial pneumonia on CT and elevated regional 18F-FDG avidity. Additionally, 1 of 12 patients who received radioiodine for differentiated thyroid carcinoma also showed interstitial pneumonia on SPECT/CT. Five of 7 patients had subsequent proof of COVID-19 by reverse-transcriptase polymerase chain reaction. The remaining 2 patients were not tested immediately but underwent quarantine and careful monitoring. Conclusion: Incidental findings suggestive of COVID-19 may not be infrequent in hybrid imaging of asymptomatic patients in regions with an expansive spread of SARS-CoV-2. Nuclear medicine services should prepare accordingly.




ucl

Nuclear Medicine Operations in the Times of COVID-19: Strategies, Precautions, and Experiences




ucl

Journal of Nuclear Medicine




ucl

Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies [RESEARCH ARTICLE]

Sonu Shrestha Baral, Molly E. Lieux, and Patrick J. DiMario

Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1­­­–2-day-old larvae likely rendered these cells more resilient to nucleolar stress.

This article has an associated First Person interview with the first author of the paper.




ucl

Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies [Research Articles]

Mutations in protein-coding genes are well established as the basis for human cancer, yet how alterations within noncoding genome, a substantial fraction of which contain cis-regulatory elements (CRE), contribute to cancer pathophysiology remains elusive. Here, we developed an integrative approach to systematically identify and characterize noncoding regulatory variants with functional consequences in human hematopoietic malignancies. Combining targeted resequencing of hematopoietic lineage–associated CREs and mutation discovery, we uncovered 1,836 recurrently mutated CREs containing leukemia-associated noncoding variants. By enhanced CRISPR/dCas9–based CRE perturbation screening and functional analyses, we identified 218 variant-associated oncogenic or tumor-suppressive CREs in human leukemia. Noncoding variants at KRAS and PER2 enhancers reside in proximity to nuclear receptor (NR) binding regions and modulate transcriptional activities in response to NR signaling in leukemia cells. NR binding sites frequently colocalize with noncoding variants across cancer types. Hence, recurrent noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies.

Significance:

We describe an integrative approach to identify noncoding variants in human leukemia, and reveal cohorts of variant-associated oncogenic and tumor-suppressive cis-regulatory elements including KRAS and PER2 enhancers. Our findings support a model in which noncoding regulatory variants connect enhancer dysregulation with nuclear receptor signaling to modulate gene programs in hematopoietic malignancies.

See related commentary by van Galen, p. 646.

This article is highlighted in the In This Issue feature, p. 627




ucl

[PERSPECTIVES] PTEN Nuclear Functions

For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.




ucl

UK nuclear fusion reactor will fire up for the first time in 23 years

Within months researchers will attempt to create a ball of plasma hotter than the sun inside the Joint European Torus, a doughnut-shaped machine in south-east England




ucl

Ironbark: Did two spies really prevent all-out nuclear war?

Ironbark is one of 2020’s anticipated movies. Benedict Cumberbatch plays the MI6 handler of a Russian spy who may have helped prevent nuclear war




ucl

Places around England compete to host underground nuclear waste dump

Businesses, individuals with land, and local governments are competing to host an underground nuclear waste facility in the UK, and receive a yearly £2.5 million incentive




ucl

India's nuclear future put on hold

Safety fears derail plan to import reactors.




ucl

A nuclear waste site where the biggest fear isn’t radiation, but coronavirus

Workers at ‘most toxic place in America’ are terrified to return to a site where there has been very little protection from the outbreak

For more than a month, coronavirus has brought cleanup of a 586-square-mile decommissioned nuclear production complex in south-eastern Washington state to a near standstill.

Most of the more than 11,000 employees at the Hanford site were sent home in late March, with only essential workers remaining to make sure the “most toxic place in America” stays safe and secure.

Continue reading...




ucl

Critics alarmed by US nuclear agency's bid to relax rules on radioactive waste

Nuclear Regulatory Commission keen to allow material to be disposed of by ‘land burial’ – with potentially damaging effects

The federal agency providing oversight of the commercial nuclear sector is attempting to push through a rule change critics say could allow dangerous amounts of radioactive material to be disposed of in places like municipal landfills, with potentially serious consequences to human health and the environment.

Related: Coca-Cola and Pepsi falling short on pledges over plastic – report

Continue reading...




ucl

'Critical' situation as forest fires rage on near Chernobyl nuclear plant

Forest fires are raging in the contaminated area near the Chernobyl nuclear power plant, but officials insist there is no radiation threat.