sim

Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity [Methods and Resources]

The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane anion channel that plays a key role in controlling transepithelial fluid movement. Excessive activation results in intestinal fluid loss during secretory diarrheas, whereas CFTR mutations underlie cystic fibrosis (CF). Anion permeability depends both on how well CFTR channels work (permeation/gating) and on how many are present at the membrane. Recently, treatments with two drug classes targeting CFTR—one boosting ion-channel function (potentiators) and the other increasing plasma membrane density (correctors)—have provided significant health benefits to CF patients. Here, we present an image-based fluorescence assay that can rapidly and simultaneously estimate both CFTR ion-channel function and the protein's proximity to the membrane. We monitor F508del-CFTR, the most common CF-causing variant, and confirm rescue by low temperature, CFTR-targeting drugs and second-site revertant mutation R1070W. In addition, we characterize a panel of 62 CF-causing mutations. Our measurements correlate well with published data (electrophysiology and biochemistry), further confirming validity of the assay. Finally, we profile effects of acute treatment with approved potentiator drug VX-770 on the rare-mutation panel. Mapping the potentiation profile on CFTR structures raises mechanistic hypotheses on drug action, suggesting that VX-770 might allow an open-channel conformation with an alternative arrangement of domain interfaces. The assay is a valuable tool for investigation of CFTR molecular mechanisms, allowing accurate inferences on gating/permeation. In addition, by providing a two-dimensional characterization of the CFTR protein, it could better inform development of single-drug and precision therapies addressing the root cause of CF disease.




sim

Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics

Shao-En Ong
May 1, 2002; 1:376-386
Research




sim

Simulation: The Implications of Drone Warfare




sim

A simplified method for the preparation of detergent-free lipid rafts

Jennifer L. Macdonald
May 1, 2005; 46:1061-1067
Methods






sim

????????-duality for self-similar groupoid actions on graphs

Nathan Brownlowe, Alcides Buss, Daniel Gonçalves, Jeremy B. Hume, Aidan Sims and Michael F. Whittaker
Trans. Amer. Math. Soc. 377 (), 5513-5560.
Abstract, references and article information





sim

46 Receive AMS-Simons Research Enhancement Grants for PUI Faculty

Forty-six mathematical scientists have been named recipients of AMS-Simons Research Enhancement Grants for Primarily Undergraduate Institution (PUI) Faculty. Each awardee will receive $3,000 per year for three years. 

The grants foster and support research collaboration by full-time mid-career mathematicians at US institutions that do not offer a mathematics doctoral degree.

This year’s grant recipients hail from 42 institutions across 21 US states. The grants will support their research in several different areas, from number theory to applied mathematics.

This is the grant program’s second cohort, said Sarah Bryant, associate vice president of programs. “Over the first two years, we’ve worked with faculty from 75 different institutions, including 19 minority-serving institutions, which shows just how much this program is expanding and making an impact,” Bryant said. She noted that “in the first year, the grants supported 87 trips, helped produce 70 publications and preprints, and gave awardees the resources needed to collaborate and advance their work.”

The grant allows for any activities that will further the awardee’s research program. Expenses include but are not limited to conference participation, institute visits, collaboration travel (awardee or collaborator), computer equipment or software, family-care expenses, and teaching assistants.

Administration of the award by the grantee’s institution is required; annual discretionary funds for a grantee’s department and administrative funds for a grantee's institution will be available at the end of each grant year.

The grants are made possible through funding from the Simons Foundation and the American Mathematical Society (AMS), as well as Eve, Kirsten, Lenore, and Ada of the Menger family.

Applications for the next cohort are anticipated to open on MathPrograms.org on January 9, 2025. Visit the AMS website to view an informational PowerPoint or sign up to receive email updates about the program. Faculty who applied for but did not receive the 2023 or 2024 awards are encouraged to reapply if they are still eligible for the grant. 




sim

Characterizing human {alpha}-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases [Protein Structure and Folding]

Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.




sim

Seeded fibrils of the germline variant of human {lambda}-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability [Molecular Biophysics]

Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt β-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.




sim

The Translation of Dosimetry into Clinical Practice: What It Takes to Make Dosimetry a Mandatory Part of Clinical Practice




sim

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis

Natalie Bruiners
Dec 1, 2020; 61:1617-1628
Research Articles




sim

Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome [Research Articles]

Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet–microbiome interactions. Here, we used a click chemistry–based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne [SAA]) into the murine gut microbial community (Bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet–microbiome interactions.




sim

US adults are more likely to have poor health than those in 10 similar countries, survey finds




sim

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis [Research Articles]

The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin’s anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.




sim

Measuring Site-specific Glycosylation Similarity between Influenza a Virus Variants with Statistical Certainty [Research]

Influenza A virus (IAV) mutates rapidly, resulting in antigenic drift and poor year-to-year vaccine effectiveness. One challenge in designing effective vaccines is that genetic mutations frequently cause amino acid variations in IAV envelope protein hemagglutinin (HA) that create new N-glycosylation sequons; resulting N-glycans cause antigenic shielding, allowing viral escape from adaptive immune responses. Vaccine candidate strain selection currently involves correlating antigenicity with HA protein sequence among circulating strains, but quantitative comparison of site-specific glycosylation information may likely improve the ability to design vaccines with broader effectiveness against evolving strains. However, there is poor understanding of the influence of glycosylation on immunodominance, antigenicity, and immunogenicity of HA, and there are no well-tested methods for comparing glycosylation similarity among virus samples. Here, we present a method for statistically rigorous quantification of similarity between two related virus strains that considers the presence and abundance of glycopeptide glycoforms. We demonstrate the strength of our approach by determining that there was a quantifiable difference in glycosylation at the protein level between WT IAV HA from A/Switzerland/9715293/2013 (SWZ13) and a mutant strain of SWZ13, even though no N-glycosylation sequons were changed. We determined site-specifically that WT and mutant HA have varying similarity at the glycosylation sites of the head domain, reflecting competing pressures to evade host immune response while retaining viral fitness. To our knowledge, our results are the first to quantify changes in glycosylation state that occur in related proteins of considerable glycan heterogeneity. Our results provide a method for understanding how changes in glycosylation state are correlated with variations in protein sequence, which is necessary for improving IAV vaccine strain selection. Understanding glycosylation will be especially important as we find new expression vectors for vaccine production, as glycosylation state depends greatly on the host species.




sim

Molecular Dynamics Simulation-assisted Ionic Liquid Screening for Deep Coverage Proteome Analysis [Technological Innovation and Resources]

In-depth coverage of proteomic analysis could enhance our understanding to the mechanism of the protein functions. Unfortunately, many highly hydrophobic proteins and low-abundance proteins, which play critical roles in signaling networks, are easily lost during sample preparation, mainly attributed to the fact that very few extractants can simultaneously satisfy the requirements on strong solubilizing ability to membrane proteins and good enzyme compatibility. Thus, it is urgent to screen out ideal extractant from the huge compound libraries in a fast and effective way. Herein, by investigating the interior mechanism of extractants on the membrane proteins solubilization and trypsin compatibility, a molecular dynamics simulation system was established as complement to the experimental procedure to narrow down the scope of candidates for proteomics analysis. The simulation data shows that the van der Waals interaction between cation group of ionic liquid and membrane protein is the dominant factor in determining protein solubilization. In combination with the experimental data, 1-dodecyl-3-methylimidazolium chloride (C12Im-Cl) is on the shortlist for the suitable candidates from comprehensive aspects. Inspired by the advantages of C12Im-Cl, an ionic liquid-based filter-aided sample preparation (i-FASP) method was developed. Using this strategy, over 3,300 proteins were confidently identified from 103 HeLa cells (~100 ng proteins) in a single run, an improvement of 53% over the conventional FASP method. Then the i-FASP method was further successfully applied to the label-free relative quantitation of human liver cancer and para-carcinoma tissues with obviously improved accuracy, reproducibility and coverage than the commonly used urea-based FASP method. The above results demonstrated that the i-FASP method could be performed as a versatile tool for the in-depth coverage proteomic analysis of biological samples.




sim

Calculating glycoprotein similarities from mass spectrometric data [Review]

Complex protein glycosylation occurs through biosynthetic steps in the secretory pathway that create macro- and microheterogeneity of structure and function.  Required for all life forms, glycosylation diversifies and adapts protein interactions with binding partners that underpin interactions at cell surfaces and pericellular and extracellular environments. Because these biological effects arise from heterogeneity of structure and function, it is necessary to measure their changes as part of the quest to understand nature.  Quite often, however, the assumption behind proteomics that post-translational modifications are discrete additions that can be modeled using the genome as a template does not apply to protein glycosylation.  Rather, it is necessary to quantify the glycosylation distribution at each glycosite and to aggregate this information into a population of mature glycoproteins that exist in a given biological system.  To date, mass spectrometric methods for assigning singly glycosylated peptides are well-established.  But it is necessary to quantify glycosylation heterogeneity accurately in order to gauge the alterations that occur during biological processes.  The task is to quantify the glycosylated peptide forms as accurately as possible and then apply appropriate bioinformatics algorithms to the calculation of micro- and macro-similarities.  In this review, we summarize current approaches for protein quantification as they apply to this glycoprotein similarity problem.




sim

Exploring Transatlantic Responses to Far-right Populism in Europe: Simulation Exercise

Exploring Transatlantic Responses to Far-right Populism in Europe: Simulation Exercise Research paper sysadmin 1 May 2018

A new paper summarizes the findings of a recent simulation exercise exploring how governments on both sides of the Atlantic might respond to a descent towards populist authoritarianism in an EU member state.

Young protester, Serbia. Photo: urbazon/Getty Images.

Summary

  • To better understand how governments on both sides of the Atlantic might respond to a descent towards populist authoritarianism in an EU member state, Chatham House organized a simulation event involving a group of experts drawn from the public sector, academia and NGOs.
  • Simulation exercises enable the testing and modelling of the responses of different actors when presented with specific situations; participants’ interactions in a given set of circumstances are explored, and patterns of negotiation are captured and analysed.
  • In this simulation, European, US and multilateral representatives were given the task of managing relations with Baltia, a fictional Eastern European state on the verge of electing a far-right nationalist, Eurosceptic government. They were then challenged to manage their relationship with Baltia after it had elected such a government, which was pushing for a ‘leave’ vote in a planned referendum on the country’s continued EU membership.
  • The simulation highlighted a number of issues:
    • Limited instruments are available to liberal democratic governments where there is cause for concern regarding the outcome of an election in an allied country. There are relatively few tools at the disposal of governments to support political allies, or to prevent outcomes that are perceived as threatening democratic norms. The simulation reinforced the view that interventionist moves, either from the European Commission or from individual national governments, would be more likely to come in response to an unfavourable development rather than pre-emptively.
    • The EU, and caucuses of European states, are the main international interlocutors in this type of political crisis involving an EU member state. The US opted to play a limited role in the negotiations; the same was largely true for NATO, aside from its action in sharing intelligence about a potential coup in Baltia. France and Germany formed a natural working partnership, taking meetings together and coordinating policies first before discussing them with a wider European circle, although their positions did not always align.
    • The UK’s capacity to shape the outcome of collective EU discussions appeared more restricted, while Brexit also seemed to shape the response of other EU states to the developing situation in Baltia. Although member states were undoubtedly reluctant to see another country go down this route, they were also resolute in demonstrating a unity of approach and limited flexibility in the face of the new populist government’s attempt to divide them.




sim

Simmons ranks among game's best

MLB Network's countdown of baseball's best players at each position continued with the third installment of the "Top 10 Right Now!" series, featuring the game's top left and center fielders.




sim

Patients taking dabigatran to prevent stroke should avoid simvastatin and lovastatin, study suggests




sim

Lying flat after stroke achieves similar outcomes to sitting up, trial finds




sim

TSMC Collaborates with Ansys and Microsoft to Accelerate Photonic Simulations

PITTSBURGH, Sept. 24, 2024 — Ansys and TSMC today announced a successful pilot with Microsoft that significantly speeds-up the simulation and analysis of silicon photonic components. Together, the companies achieved […]

The post TSMC Collaborates with Ansys and Microsoft to Accelerate Photonic Simulations appeared first on HPCwire.




sim

PSC: Anton Simulations Reveal How Alzheimer’s Fibril Growth May Accelerate

Oct. 25, 2024 — Aggregation of proteins underlies many human disorders, including Alzheimer’s. Teams from the New Jersey Institute of Technology and Princeton University joined forces to study how the amyloid […]

The post PSC: Anton Simulations Reveal How Alzheimer’s Fibril Growth May Accelerate appeared first on HPCwire.






sim

CMG Targets Faster Simulation Solutions with NVIDIA for Enhanced Reservoir Modeling

CALGARY, Alberta, Nov. 5, 2024 — Computer Modelling Group Ltd. (CMG) has announced it is collaborating with NVIDIA to further develop and optimize CMG subsurface simulation solutions for increased speed, […]

The post CMG Targets Faster Simulation Solutions with NVIDIA for Enhanced Reservoir Modeling appeared first on HPCwire.




sim

People Have Very Different Understandings of Even the Simplest Words

Distinctive meanings for a word like “risk” can have a big impact on public messaging, especially when it comes to issues like climate change




sim

Recipe for Scaling: ARQUIN Framework for Simulating a Distributed Quantum Computing System

One of the most difficult problems with quantum computing relates to increasing the size of the quantum computer. Researchers globally are seeking to solve this “challenge of scale.” To bring […]

The post Recipe for Scaling: ARQUIN Framework for Simulating a Distributed Quantum Computing System appeared first on HPCwire.




sim

Aliro Quantum Debuts Aliro Simulator, Enhancing Quantum Network Simulation and Visualization

BOSTON, Dec. 12, 2023 — Aliro Quantum today announced the controlled availability of Aliro Simulator, a versatile, modular quantum network simulator equipped to model all portions of a quantum network from […]

The post Aliro Quantum Debuts Aliro Simulator, Enhancing Quantum Network Simulation and Visualization appeared first on HPCwire.




sim

Stressed? 24 Simple, Science-Backed Ways To Calm Your Mind Fast (P)

From hugging to hypnosis, these stress relievers are backed by serious research—find out which one works best for you.




sim

The Simple Question That Could Save Your Relationship

When negative feelings accumulate in a relationship, it can become a problem.




sim

The Simplest Way To Help Someone In Pain

It has incredible psychological and physiological power.




sim

The Simple Trick To Cheer Someone Up Instantly (M)

These little treats may be the secret to boosting someone’s mood.




sim

Indiana Teachers Sue Law Enforcement Over 'Active Shooter' Simulation

The teachers say they've suffered emotional distress and anxiety for months after being shot at with plastic bullets in a voluntary active-shooter drill in 2019.




sim

Simon Johnson on Over-the-Counter Derivatives

The MIT professor believes many of the financial products sold today will be rightly regarded as not in the best interest of consumers




sim

Need a New Organ? Surgeon Anthony Atala Sees a Future Where You Can Simply Print It Out

Anthony Atala | Smithsonian Magazine’s 2016 American Ingenuity Award Winner for Life Sciences The director of the Wake Forest Institute for Regenerative Medicine, Atala is a surgeon and leading expert in creating living human tissues and organs to replace those that are defective or damaged. He has spent the past decade attempting to construct living organs using 3-D printing technology. Atala implanted the world’s first laboratory-grown organ into a human in 1999 and, this year, he and his colleagues “printed” cartilage, bone and muscle tissue before successfully implanting them into a lab animal. That’s a crucial first step toward Atala’s long-term goal of overcoming the dire shortage of donated organs with custom-made body parts. Read more about Atala's work: http://smithmag.co/SiiV2J | #IngenuityAwards And more about the American Ingenuity Awards: http://smithmag.co/77xPqy




sim

A Simple Chemical Shift Explains Why Parrots Are So Colorful, Study Suggests

Unlike other birds, which get pigments from their diets, parrots produce their own—but scientists never fully understood the underlying mechanisms, until now




sim

This 19th-Century 'Toy Book' Used Science to Prove That Ghosts Were Simply an Illusion

"Spectropia" demystified the techniques used by mediums who claimed they could speak to the dead, revealing the "absurd follies of Spiritualism"




sim

The Last Post is a simple melody. But nailing it is harder than it looks

Canadians hear the Last Post every year during Remembrance Day ceremonies. Warrant Officer Jeremy Maitland breaks down what it takes to play the melody perfectly.




sim

Microsoft and DS SolidWorks Enhance Robot Simulation

Robotics programmers can now use SolidWorks 3D CAD models for more powerful simulations




sim

COSMOS 2006 software spotlights technological innovations and simplified analysis for every engineer's desktop

World's #1 mainstream analysis software adds 100-plus new features that put powerful design validation in easy-to-use packages




sim

University of Warwick simplifies product design for engineering students with SolidWorks Education Edition

Students cut 20 percent out of initial project development time with SolidWorks 3D modeling and COSMOS design analysis software




sim

COSMOS 2007's simplicity and ease of use encourages designers to innovate by validating how their designs will perform in actual use

Extensive automation of time-consuming tasks gives designers fast, accurate tools for testing their ideas




sim

Homeowners Go Green with Wind Turbines Designed in SolidWorks 3D CAD and Simulation Software

Windsave Turbines are Small, and Can Help Customers Save up to 30 percent on Electricity Costs




sim

Cambridge University Students Racing to Design Solar Car in SolidWorks and SIMULIA Abaqus Software

Student Team to Compete in Cross-Australia Race in 2009




sim

Donkervoort Automobielen BV Improves Design, Cuts Costs with SolidWorks Simulation

World-Class Sports Car Manufacturer Reduces Number of Prototypes by Half for Newly Redesigned, Hand-crafted D8 GTO




sim

Dassault Systèmes Simplifies 3D Design with SolidWorks 2013

Latest Release of Leading 3D Design Solution Enables Faster Model Creation, Optimized Performance, Enhanced Collaboration




sim

Simple ways to a profound love

Singapore :: A Frenchman makes friends with a community of foreign workers in Singapore.