ram

A Framework for Ranking Critical Success Factors of Business Intelligence Based on Enterprise Architecture and Maturity Model

Aim/Purpose: The aim of this study is to identify Critical Success Factors (CSF) of Business Intelligence (BI) and provide a framework to classify CSF into layers or perspectives using an enterprise architecture approach, then rank CSF within each perspective and evaluate the importance of each perspective at different BI maturity levels as well. Background: Although the implementation of the BI project has a significant impact on creating analytical and competitive capabilities, the lack of evaluation of CSF holistically is still a challenge. Moreover, the BI maturity level of the organization has not been considered in the BI implementation project. Identifying BI critical success factors and their importance can help the project team to move to a higher maturity level in the organization. Methodology: First, a list of distinct CSF is identified through a literature review. Second, a framework is provided for categorizing these CSF using enterprise architecture. Interviewing is the research method used to evaluate the importance of CSF and framework layers with two questionnaires among experts. The first questionnaire was done by Analytical Hierarchy Process (AHP), a quantitative method of decision-making to calculate the weight of the CSF according to the importance of CSF in each of the framework layers. The second one was conducted to evaluate framework layers at different BI maturity levels using a Likert scale. Contribution: This paper contributes to the implementation of BI projects by identifying a comprehensive list of CSF in the form of a holistic multi-layered framework and ranking the importance of CSF and layers at BI maturity levels. Findings: The most important CSF in BI implementation projects include senior management support, process identification, data quality, analytics quality, hardware quality, security standards, scope management, documentation, project team skills, and customer needs transformation, which received the highest scores in framework layers. In addition, it was observed that as the organization moves to higher levels of maturity, the average importance of strategic business and security perspectives or layers increases. But the average importance of data, applications, infrastructure, and network, the project management layers in the proposed framework is the same regardless of the level of business intelligence maturity. Recommendations for Practitioners: The results of this paper can be used by academicians and practitioners to improve BI project implementation through understanding a comprehensive list of CSF and their importance. This awareness causes us to focus on the most important CSF and have better planning to reach higher levels of maturity according to the maturity level of the organization. Future Research: For future research, the interaction of critical success factors of business intelligence and framework layers can be examined with different methods.




ram

A Systematic Literature Review of Business Intelligence Framework for Tourism Organizations: Functions and Issues

Aim/Purpose: The main goal of this systematic literature review was to look for studies that provide information relevant to business intelligence’s (BI) framework development and implementation in the tourism sector. This paper tries to classify the tourism sectors where BI is implemented, group various BI functionalities, and identify common problems encountered by previous research. Background: There has been an increased need for BI implementation to support decision-making in the tourism sector. Tourism stakeholders such as management of destination, accommodation, transportation, and public administration need a guideline to understand functional requirements before implementation. This paper addresses the problem by comprehensively reviewing the functionalities and issues that need to be considered based on previous business intelligence framework development and implementation in tourism sectors. Methodology: We have conducted a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Guidelines for Meta-Analysis (PRISMA) method. The search is conducted using online academic database platforms, resulting in 543 initial articles published from 2002 to 2022. Contribution: The paper could be of interest to relevant stakeholders in the tourism industry because it provides an overview of the capabilities and limitations of business intelligence for tourism. To our knowledge, this is the first study to identify and classify the BI functionalities needed for tourism sectors and implementation issues related to organizations, people, and technologies that need to be considered. Findings: BI functionalities identified in this study include basic functions such as data analysis, reports, dashboards, data visualization, performance metrics, and key performance indicator, and advanced functions such as predictive analytics, trend indicators, strategic planning tools, profitability analysis, benchmarking, budgeting, and forecasting. When implementing BI, the issues that need to be considered include organizational, people and process, and technological issues. Recommendations for Practitioners: As data is a major issue in BI implementation, tourism stakeholders, especially in developing countries, may need to build a tourism data center or centralized coordination regulated by the government. They can implement basic functions first before implementing more advanced features later. Recommendation for Researchers: We recommend further studying the BI implementation barriers by employing a perspective of an adoption framework such as the technology, organization, and environment (TOE) framework. Impact on Society: This research has a potential impact on improving the tourism industry’s performance by providing insight to stakeholders about what is needed to help them make more accurate decisions using business intelligence. Future Research: Future research may involve collaboration between practitioners and academics in developing various BI architectures specific to each tourism industry, such as destination management, hospitality, or transportation.




ram

Towards a Framework on the Use of Infomediaries in Maternal mHealth in Rural Malawi

Aim/Purpose: The aim of the study is to explore factors that affect how healthcare clients in rural areas use infomediaries in maternal mHealth interventions. The study focuses on maternal healthcare clients who do not own mobile phones but use the mHealth intervention. Background: Maternal mHealth interventions in poor-resource settings are bedevilled by inequalities in mobile phone ownership. Clients who do not own mobile phones risk being excluded from benefiting from the interventions. Some maternal mHealth providers facilitate the access of mobile phones for those who do not own them using “infomediaries”. Infomediaries, in this case, refer to individuals who have custody of mobile phones that other potential beneficiaries may use. However, the use of infomediaries to offer access to the “have nots” may be influenced by a number of factors. Methodology: The study uses a case of a maternal mHealth intervention project in Malawi, as well as a qualitative research method and interpretive paradigm. Data was collected using secondary data from the implementing agency, semi-structured interviews, and focus group discussions. Empirical data was collected from maternal healthcare clients who do not own mobile phones and infomediaries. Data were analysed inductively using thematic analysis. Contribution: The study proposed a theoretical framework for studying infomediaries in ICT4D. The study may inform mHealth designers, implementers, and policymakers on how infomediaries could be implemented in a rural setting. Consequently, understanding the factors that affect the use of infomediaries may inform mHealth intervention implementers on how they could overcome the challenges by implementing mHealth interventions that reduce the challenges on the mHealth infomediaries side, and the maternal healthcare clients’ side. Findings: Characteristics of the maternal healthcare client, characteristics of the mHealth infomediary, perceived value of mHealth intervention, and socio-environmental factors affect maternal healthcare clients’ use of mHealth infomediaries. Recommendations for Practitioners: Implementers of interventions ought to manage the use of infomediaries to avoid volunteer fatigue and infomediaries who may not be compatible with the potential users of the intervention. Implementers could leverage traditional systems of identifying and using infomediaries instead of reinventing the wheel. Recommendation for Researchers: This research adopted a single case study to develop the theoretical framework for mHealth infomediary use. We recommend future studies are conducted in order to test and develop this framework further, not only in ICT4D, but also in other areas of application. Impact on Society: People still lack access. The lack of ownership of technology may still exclude them from participating in an information society. The use of infomediaries may help to provide access to technologies to those who do not have them thereby bridging the digital divide gap. Future Research: We propose herein that traditional systems may offer a good starting point for designing a system that would work for communities. We, therefore, recommend that future research may explore these possibilities.




ram

Antecedents of Business Analytics Adoption and Impacts on Banks’ Performance: The Perspective of the TOE Framework and Resource-Based View

Aim/Purpose: This study utilized a comprehensive framework to investigate the adoption of Business Analytics (BA) and its effects on performance in commercial banks in Jordan. The framework integrated the Technological-Organizational-Environmental (TOE) model, the Diffusion of Innovation (DOI) theory, and the Resource-Based View (RBV). Background: The recent trend of utilizing data for business operations and decision-making has positively impacted organizations. Business analytics (BA) is a leading technique that generates valuable insights from data. It has gained considerable attention from scholars and practitioners across various industries. However, guidance is lacking for organizations to implement BA effectively specific to their business contexts. This research aims to evaluate factors influencing BA adoption by Jordanian commercial banks and examine how its implementation impacts bank performance. The goal is to provide needed empirical evidence surrounding BA adoption and outcomes in the Jordanian banking sector. Methodology: The study gathered empirical data by conducting an online questionnaire survey with senior and middle managers from 13 commercial banks in Jordan. The participants were purposefully selected, and the questionnaire was designed based on relevant and well-established literature. A total of 307 valid questionnaires were collected and considered for data analysis. Contribution: This study makes a dual contribution to the BA domain. Firstly, it introduces a research model that comprehensively examines the factors that influence the adoption of BA. The proposed model integrates the TOE framework, DOI theory, and RBV theory. Combining these frameworks allows for a comprehensive examination of BA adoption in the banking industry. By analyzing the technological, organizational, and environmental factors through the TOE framework, understanding the diffusion process through the DOI theory, and assessing the role of resources and capabilities through the RBV theory, researchers and practitioners can better understand the complex dynamics involved. This integrated approach enables a more nuanced assessment of the factors that shape BA adoption and its subsequent impact on business performance within the banking industry. Secondly, it uncovers the effects of BA adoption on business performance. These noteworthy findings stem from a rigorous analysis of primary data collected from commercial banks in Jordan. By presenting a holistic model and delving into the implications for business performance, this research offers valuable insights to researchers and practitioners alike in the field of BA. Findings: The findings revealed that various technological (data quality, complexity, compatibility, relative advantage), organizational (top management support, organizational readiness), and environmental (external support) factors are crucial in shaping the decision to adopt BA. Furthermore, the study findings demonstrated a positive relationship between BA adoption and performance outcomes in Jordanian commercial banks. Recommendations for Practitioners: The findings suggest that Jordanian commercial banks should enforce data quality practices, provide clear standards, invest in data quality tools and technologies, and conduct regular data audits. Top management support is crucial for fostering a data-driven decision-making culture. Organizational readiness involves having the necessary resources and skilled personnel, as well as promoting continuous learning and improvement. Highlighting the benefits of BA helps overcome resistance to technological innovation and encourages adoption by demonstrating improved decision-making processes and operational efficiency. Furthermore, external support is crucial for banks to adopt Business Analytics (BA). Banks should partner with experienced vendors to gain expertise and incorporate best practices. Vendors also provide training and technical support to overcome technological barriers. Compatibility is essential for optimal performance, requiring managers to modify workflows and IT infrastructure. Complexity, including data, organizational, and technical complexities, is a major obstacle to BA adoption. Banks should take a holistic approach, focusing on people, processes, and technology, and prioritize data quality and governance. Building a skilled team, fostering a data-driven culture, and investing in technology and infrastructure are essential. Recommendation for Researchers: The integration of the TOE framework, the DOI theory, and the RBV theory can prove to be a powerful approach for comprehensively analyzing the various factors that influence BA adoption within the dynamic banking industry. Furthermore, this combined framework enables us to gain deeper insights into the subsequent impact of BA adoption on overall business performance. Impact on Society: Examining the factors influencing BA adoption in the banking industry and its subsequent impact on business performance can have wide-ranging societal implications. It can promote data-driven decision-making, enhance customer experiences, strengthen fraud detection, foster financial inclusion, contribute to economic growth, and trigger discussions on ethical considerations. Future Research: To further advance future research, there are several avenues to consider. One option is to broaden the scope by including a larger sample size, allowing for a more comprehensive analysis. Another possibility is to investigate the impact of BA adoption on various performance indicators beyond the ones already examined. Additionally, incorporating qualitative research methods would provide a more holistic understanding of the organizational dynamics and challenges associated with the adoption of BA in Jordanian commercial banks.




ram

Student Acceptance of LMS in Indonesian High Schools: The SOR and Extended GETAMEL Frameworks

Aim/Purpose: This study aims to develop a theoretical model based on the SOR (Stimulus – Organism – Response) framework and GETAMEL, which cover environmental, personal, and learning quality aspects to identify factors influencing students’ acceptance of the use of LMS in high schools, especially after COVID-19 pandemic. Background: After the COVID-19 pandemic, many high schools reopened for in-person classes, which led to a decreased reliance on e-learning. The shift from online to traditional face-to-face learning has influenced students’ perceptions of the importance of e-learning in their academic activities. Consequently, high schools are facing the challenge of ensuring that LMS can still be integrated into the teaching-learning process even after the pandemic ends. Therefore, this study proposes a model to investigate the factors that affect students’ actual use of LMS in the high school environment. Methodology: This study used 890 high school students to validate the theoretical model using Structural Equation Modeling (SEM) analysis to deliver direct, indirect, and moderating effect analysis. Contribution: This study combines SOR and acceptance theory to provide a model to explain high school students’ intention to use technology. The involvement of direct, indirect, and moderating effects analysis offers an alternative result and discussion and is considered another contribution of this study from a technical perspective. Findings: The findings show that perceived satisfaction is the most influential factor affecting the use of LMS, followed by perceived usefulness. Meanwhile, from indirect effect analysis, subjective norms and computer self-efficacy were found to indirectly affect actual use through perceived usefulness as a mediator. Content quality was also an indirect predictor of the actual use of LMS through perceived satisfaction. Further, the moderating effect of age influenced perceived satisfaction’s direct effect on actual use. Recommendations for Practitioners: This study provides practical recommendations that can be useful to high schools and other stakeholders in improving the use of LMS in educational environments. Specifically, exploring the implementation of LMS in high schools prior to and following the COVID-19 outbreak can offer valuable insights into the changing educational environment. Recommendation for Researchers: The results of this study present a significant theoretical contribution by employing a comprehensive approach to explain the adoption of LMS among high school students after the COVID-19 pandemic. This contribution extends the GETAMEL framework by incorporating environmental, personal, and learning quality aspects while also analyzing both direct and indirect effects, which have not been previously explored in this context. Impact on Society: This study provides knowledge to high schools for improving the use of LMS in educational environments post-COVID-19, leading to an enhanced teaching-learning process. Future Research: This study, however, is limited to collecting responses exclusively from Indonesian respondents. Therefore, the replication of the finding needs to consider the characteristics and culture similar to Indonesian students, which is regarded as the limitation of this study.




ram

A Smart Agricultural Knowledge Management Framework to Support Emergent Farmers in Developmental Settings

Aim/Purpose: This research aims to develop a smart agricultural knowledge management framework to empower emergent farmers and extension officers (advisors to farmers) in developing countries as part of a smart farming lab (SFL). The framework utilizes knowledge objects (KOs) to capture information and knowledge of different forms, including indigenous knowledge. It builds upon a foundation of established agricultural knowledge management (AKM) models and serves as the cornerstone for an envisioned SFL. This framework facilitates optimal decision support by fostering linkages between these KOs and relevant organizations, knowledge holders, and knowledge seekers within the SFL environment. Background: Emergent farmers and extension officers encounter numerous obstacles in their knowledge operations and decision-making. This includes limited access to agricultural information and difficulties in applying it effectively. Many lack reliable sources of support, and even when information is available, understanding and applying it to specific situations can be challenging. Additionally, extension offices struggle with operational decisions and knowledge management due to agricultural organizations operating isolated in silos, hindering their access to necessary knowledge. This research introduces an SFL with a proposed AKM process model aimed at transforming emergent farmers into smart, innovative entities by addressing these challenges. Methodology: This study is presented as a theory-concept paper and utilizes a literature review to evaluate and synthesize three distinct AKM models using several approaches. The results of the analysis are used to design a new AKM process model. Contribution: This research culminates in a new AKM process framework that incorporates the strengths of various existing AKM models and supports emergent farmers and extension officers to become smart, innovative entities. One main difference between the three models analyzed, and the one proposed in this research, is the deployment and use of knowledge assets in the form of KOs. The proposed framework also incorporates metadata and annotations to enhance knowledge discoverability and enable AI-powered applications to leverage captured knowledge effectively. In practical terms, it contributes by further motivating the use of KOs to enable the transfer and the capturing of organizational knowledge. Findings: A model for an SFL that incorporates the proposed agricultural knowledge management framework is presented. This model is part of a larger knowledge factory (KF). It includes feedback loops, KOs, and mechanisms to facilitate intelligent decision-making. The significance of fostering interconnected communities is emphasized through the creation of linkages. These communities consist of knowledge seekers and bearers, with information disseminated through social media and other communication integration platforms. Recommendations for Practitioners: Practitioners and other scholars should consider implementing the proposed AKM process model as part of a larger SFL to support emergent farmers and extension officers in making operational decisions and applying knowledge management strategies. Recommendation for Researchers: The AKM process model is only presented in conceptual form. Therefore, researchers can practically test and assess the new framework in an agricultural setting. They can also further explore the potential of social media integration platforms to connect knowledge seekers with knowledge holders. Impact on Society: The proposed AKM process model has the potential to support emergent farmers and extension officers in becoming smart, innovative entities, leading to improved agricultural practices and potentially contributing to food security. Future Research: This paper discusses the AKM process model in an agrarian setting, but it can also be applied in other domains, such as education and the healthcare sector. Future research can evaluate the model’s effectiveness and explore and further investigate the semantic web and social media integration.




ram

Impact of User Satisfaction With E-Government Services on Continuance Use Intention and Citizen Trust Using TAM-ISSM Framework

Aim/Purpose: This study investigates the drivers of user satisfaction in e-government services and its influence on continued use intention and citizen trust in government. It employs the integration of the Technology Acceptance Model (TAM) and the Information System Success Model (ISSM). Background: Electronic government, transforming citizen-state interactions, has gained momentum worldwide, including in India, where the aim is to leverage technology to improve citizen services, streamline administration, and engage the public. While prior research has explored factors influencing citizen satisfaction with e-government services globally, this area of study has been relatively unexplored in India, particularly in the post-COVID era. Challenges to widespread e-government adoption in India include a large and diverse population, limited digital infrastructure in rural areas, low digital literacy, and weak data protection regulations. Additionally, global declines in citizen trust, attributed to economic concerns, corruption, and information disclosures, further complicate the scenario. This study seeks to investigate the influence of various factors on user satisfaction and continuance usage of e-government services in India. It also aims to understand how these services contribute to building citizens’ trust in government. Methodology: The data were collected by utilizing survey items on drivers of e-government services, user satisfaction, citizen trust, and continuance use intention derived from existing literature on information systems and e-government. Responses from 501 Indian participants, collected using an online questionnaire, were analyzed using PLS-SEM. Contribution: This study makes a dual contribution to the e-government domain. First, it introduces a comprehensive research model that examines factors influencing users’ satisfaction and continuance intention with e-government services. The proposed model integrates the TAM and ISSM. Combining these models allows for a comprehensive examination of e-government satisfaction and continued intention. By analyzing the impact of user satisfaction on continuance intention and citizen trust through an integrated model, researchers and practitioners gain insights into the complex dynamics involved. Second, the study uncovers the effects of residential status on user satisfaction, trust, and continuance intention regarding e-government services. Findings reveal disparities in the influence of system and service quality on user satisfaction across different user segments. Researchers and policymakers should consider these insights when designing e-government services to ensure user satisfaction, continuance intention, and the building of citizen trust. Findings: The findings indicate that the quality of information, service, system, and perceived usefulness play important roles in user satisfaction with e-government services. All hypothesized paths were significant, except for perceived ease of use. Furthermore, the study highlights that user satisfaction significantly impacts citizen trust and continuance use intention. Recommendations for Practitioners: The findings suggest that government authorities should focus on delivering accurate, comprehensive, and timely information in a secure, glitch-free, and user-friendly digital environment. Implementing an interactive and accessible interface, ensuring compatibility across devices, and implementing swift query resolution mechanisms collectively contribute to improving users’ satisfaction. Conducting awareness and training initiatives, providing 24×7 access to online tutorials, helpdesks, technical support, clear FAQs, and integrating AI-driven customer service support can further ensure a seamless user experience. Government institutions should leverage social influence, community engagement, and social media campaigns to enhance user trust. Promotional campaigns, incentive programs, endorsements, and user testimonials should be used to improve users’ satisfaction and continuance intention. Recommendation for Researchers: An integrated model combining TAM and ISSM offers a robust approach for thoroughly analyzing the diverse factors influencing user satisfaction and continuance intention in the evolving digitalization landscape of e-government services. This expansion, aligning with ISSM’s perspective, enhances the literature by demonstrating how user satisfaction impacts continuance usage intention and citizen trust in e-government services in India and other emerging economies. Impact on Society: Examining the factors influencing user satisfaction and continuance intention in e-government services and their subsequent impact on citizen trust carries significant societal implications. The findings can contribute to the establishment of transparent and accountable governance practices, fostering a stronger connection between governments and their citizens. Future Research: There are several promising avenues to explore to enhance future research. Expanding the scope by incorporating a larger sample size could enable a more thorough analysis. Alternatively, delving into the performance of specific e-government services would offer greater precision, considering that this study treats e-government services generically. Additionally, incorporating in-depth interviews and longitudinal studies would yield a more comprehensive understanding of the dynamic evolution of digitalization.




ram

Automatic pectoral muscles and artefacts removal in mammogram images for improved breast cancer diagnosis

Breast cancer is leading cause of mortality among women compared to other types of cancers. Hence, early breast cancer diagnosis is crucial to the success of treatment. Various pathological and imaging tests are available for the diagnosis of breast cancer. However, it may introduce errors during detection and interpretation, leading to false-negative and false-positive results due to lack of pre-processing of it. To overcome this issue, we proposed a effective image pre-processing technique-based on Otsu's thresholding and single-seeded region growing (SSRG) to remove artefacts and segment the pectoral muscle from breast mammograms. To validate the proposed method, a publicly available MIAS dataset was utilised. The experimental finding showed that proposed technique improved 18% breast cancer detection accuracy compared to existing methods. The proposed methodology works efficiently for artefact removal and pectoral segmentation at different shapes and nonlinear patterns.




ram

An integrated framework for the alignment of stakeholder expectations with student learning outcomes

In this paper, two hypothetical frameworks are proposed through the application of quality function deployment (QFD) to integrate the current institutional level and program level student learning focus areas with the relevant institutional and program specific stakeholder expectations. A generic skillset proficiency expected of all the graduating students at the institutional level by the stakeholders is considered in the first QFD application example and a program specific knowledge proficiency expected at the program level by the stakeholders is considered in the second QFD application example. Operations management major/option is considered for illustration purposes at the program level. In addition, an assurance of learning based approach rooted in continuous improvement philosophy is proposed to align the stakeholder expectations with the relevant student learning outcomes at different learning tiers.




ram

Resource monitoring framework for big raw data processing

Scientific experiments, simulations, and modern applications generate large amounts of data. Analysing resources required to process such big datasets is essential to identify application running costs for cloud or in-house deployments. Researchers have proposed keeping data in raw formats to avoid upfront utilisation of resources. However, it poses reparsing issues for frequently accessed data. The paper discusses detailed comparative analysis of resources required by in-situ engines and traditional database management systems to process a real-world scientific dataset. A resource monitoring framework has been developed and incorporated into the raw data query processing framework to achieve this goal. The work identified different query types best suited to a given data processing tool in terms of data to result time and resource requirements. The analysis of resource utilisation patterns has led to the development of query complexity aware (QCA) and resource utilisation aware (RUA) data partitioning techniques to process big raw data efficiently. Resource utilisation data have been analysed to estimate the data processing capacity of a given machine.




ram

A Framework for Metadata Creation Tools




ram

Scoping and Sequencing Educational Resources and Speech Acts: A Unified Design Framework for Learning Objects and Educational Discourse




ram

Addressing the eLearning Contradiction: A Collaborative Approach for Developing a Conceptual Framework Learning Object




ram

An Engagement Model for Learning: Providing a Framework to Identify Technology Services




ram

Learning Object Patterns for Programming




ram

Building a Framework to Support Project-Based Collaborative Learning Experiences in an Asynchronous Learning Network




ram

Initial Development of a Learners’ Ratified Acceptance of Multibiometrics Intentions Model (RAMIM)




ram

Teachers for "Smart Classrooms": The Extent of Implementation of an Interactive Whiteboard-based Professional Development Program on Elementary Teachers' Instructional Practices




ram

Teachers' Openness to Change and Attitudes towards ICT: Comparison of Laptop per Teacher and Laptop per Student Programs




ram

A Framework for Assessing the Pedagogical Effectiveness of Wiki-Based Collaborative Writing: Results and Implications




ram

Developing a Conceptual Framework for Evaluation of E-Content of Virtual Courses: E-Learning Center of an Iranian University Case Study




ram

Software Quality and Security in Teachers' and Students' Codes When Learning a New Programming Language

In recent years, schools (as well as universities) have added cyber security to their computer science curricula. This topic is still new for most of the current teachers, who would normally have a standard computer science background. Therefore the teachers are trained and then teaching their students what they have just learned. In order to explore differences in both populations’ learning, we compared measures of software quality and security between high-school teachers and students. We collected 109 source files, written in Python by 18 teachers and 31 students, and engineered 32 features, based on common standards for software quality (PEP 8) and security (derived from CERT Secure Coding Standards). We use a multi-view, data-driven approach, by (a) using hierarchical clustering to bottom-up partition the population into groups based on their code-related features and (b) building a decision tree model that predicts whether a student or a teacher wrote a given code (resulting with a LOOCV kappa of 0.751). Overall, our findings suggest that the teachers’ codes have a better quality than the students’ – with a sub-group of the teachers, mostly males, demonstrate better coding than their peers and the students – and that the students’ codes are slightly better secured than the teachers’ codes (although both populations show very low security levels). The findings imply that teachers might benefit from their prior knowledge and experience, but also emphasize the lack of continuous involvement of some of the teachers with code-writing. Therefore, findings shed light on computer science teachers as lifelong learners. Findings also highlight the difference between quality and security in today’s programming paradigms. Implications for these findings are discussed.




ram

Analyzing the Quality of Students Interaction in a Distance Learning Object-Oriented Programming Discipline

Teaching object-oriented programming to students in an in-classroom environment demands well-thought didactic and pedagogical strategies in order to guarantee a good level of apprenticeship. To teach it on a completely distance learning environment (e-learning) imposes possibly other strategies, besides those that the e-learning model of Open University of Portugal dictates. This article analyses the behavior of the students of the 1st cycle in Computer Science while interacting with the object-oriented programming (OOP) discipline available to them on the Moodle platform. Through the evaluation of the level of interaction achieved in a group of relevant selected actions by the students, it is possible to identify their relevancy to the success of the programming learning process. Data was extracted from Moodle, numerically analyzed, and, with the use of some charts, behavior patterns of students were identified. This paper points out potential new approaches to be considered in e-learning in order to enhance programming learning results, besides confirming a high level of drop-out and a low level of interaction, thus finding no clear correlation between students’ success and the number of online actions (especially in forums), which reveals a possible failure of the main pillar on which the e-learning model relies.




ram

The Impact of the National Program to Integrate ICT in Teaching in Pre-Service Teacher Training

Aim/Purpose: This study examines the impact of the Israeli National Program on pre-service teachers’ skills in the integration of ICT in teaching and discusses the influential factors of successful implementation of practices in the field. Background: In the current Information Age, many countries relate to education as an im-portant factor for national growth. Teacher education plays a significant role in coping with the challenge of educating a new generation of school students to compete in a technology-driven society. In 2011, the Israel Ministry of Education initiated the National Program for transforming teacher education colleges to meet the demands of the 21st century. Methodology: The study focuses on two research questions: (1) What was the impact of the National Program on pre-service teacher training concerning the integration of ICT in their teaching? (2) What are the predictors of the pre-service teachers’ practice of ICT integration in teaching? It is a quantitative study, based on data collected in two rounds two years apart that compares several indices of pre-service teachers’ preparation to teach with ICT. Contribution: The findings offer insights regarding influential factors of successful integration of ICT in education. Findings: Analyses showed a significant increase in most of the indices of teacher training according to the National Program, in particular in the number of ICT-based lessons that pre-service teachers taught in their teaching practice at schools. Predictors of ICT integration in teaching were modeling by faculty members and school mentor teachers, the number of ICT-based lessons taught by pre-service teachers, and pre-requisite conditions at schools and colleges. Recommendations for Practitioners: The current challenge is to promote innovative ICT-based teaching methods among teacher educators, school teacher mentors, and pre-service teachers. Recommendation for Researchers: The findings underscore the importance of modelling by the school mentors as well as pre-requisite conditions at schools. Impact on Society: Being acquainted with the most influential factors of successful integration of ICT in teaching by pre-service teachers can improve teacher education as well as the education system in educating future generations. Future Research: More research is needed to learn about the dissemination of innovative models of ICT integration in teaching by pre-service teachers and their educators.




ram

Positive vs. Negative Framing of Scientific Information on Facebook Using Peripheral Cues: An Eye-Tracking Study of the Credibility Assessment Process

Aim/Purpose: To examine how positive/negative message framing – based on peripheral cues (regarding popularity, source, visuals, and hyperlink) – affects perceptions of credibility of scientific information posted on social networking sites (in this case, Facebook), while exploring the mechanisms of viewing the different components. Background: Credibility assessment of information is a key skill in today's information society. However, it is a demanding cognitive task, which is impossible to perform for every piece of online information. Additionally, message framing — that is, the context and approach used to construct information— may impact perceptions of credibility. In practice, people rely on various cues and cognitive heuristics to determine whether they think a piece of content is true or not. In social networking sites, content is usually enriched by additional information (e.g., popularity), which may impact the users' perceived credibility of the content. Methodology: A quantitative controlled experiment was designed (N=19 undergraduate students), collecting fine grained data with an eye tracking camera, while analyzing it using transition graphs. Contribution: The findings on the mechanisms of that process, enabled by the use of eye tracking data, point to the different roles of specific peripheral cues, when the message is overall peripherally positive or negative. It also contributes to the theoretical literature on framing effects in science communication, as it highlights the peripheral cues that make a strong frame. Findings: The positively framed status was perceived, as expected from the Elaboration Likelihood Model, more credible than the negatively framed status, demonstrating the effects of the visual framing. Differences in participants' mechanisms of assessing credibility between the two scenarios were evident in the specific ways the participants examined the various status components. Recommendations for Practitioners: As part of digital literacy education, major focus should be given to the role of peripheral cues on credibility assessment in social networking sites. Educators should emphasize the mechanisms by which these cues interact with message framing, so Internet users would be encouraged to reflect upon their own credibility assessment skills, and eventually improve them. Recommendation for Researchers: The use of eye tracking data may help in collecting and analyzing fine grained data on credibility assessment processes, and on Internet behavior at large. The data shown here may shed new light on previously studied phenomena, enabling a more nuanced understanding of them. Impact on Society: In an era when Internet users are flooded with information that can be created by virtually anyone, credibility assessment skills have become ever more important, hence the prominence of this skill. Improving citizens' assessment of information credibility — to which we believe this study contributes — results on a greater impact on society. Future Research: The role of peripheral cues and of message framing should be studied in other contexts (not just scientific news) and in other platforms. Additional peripheral cues not tested here should be also taken into consideration (e.g., connections between the information consumer and the information sharer, or the type of the leading image).




ram

Toward a Theoretical Framework for Information Science




ram

A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications




ram

Web-enabled Information and Referral Services: A Framework for Analysis




ram

Role of Information Professionals in Knowledge Management Programs: Empirical Evidence from Canada




ram

Developing a Framework for Assessing Information Quality on the World Wide Web




ram

Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem




ram

Are We Really Having an Impact? A Comprehensive Approach to Assessing Improvements in Critical Thinking in an MBA Program




ram

Online Learning and Case Teaching: Implications in an Informing Systems Framework




ram

Shifting Paradigms in Information Flow: An Open Science Framework (OSF) for Knowledge Sharing Teams

Aim/Purpose: This paper explores the implications of machine-mediated communication on human interaction in cross-disciplinary teams. The authors explore the relationships between Open Science Theory, its contributions to team science, and the opportunities and challenges associated with adopting open science principles. Background: Open Science Theory impacts many aspects of human interaction throughout the scholarly life cycle and can be seen in action through various technologies, which each typically touch only one such aspect. By serving multiple aspects of Open Science Theory at once, the Open Science Framework (OSF) serves as an exemplar technology. As such it illustrates how Open Science Theory can inform and expand cognitive and behavioral dynamics in teams at multiple levels in a single tool. Methodology: This concept paper provides a theoretical rationale for recommendations for exploring the connections between an open science paradigm and the dynamics of team communication. As such theory and evidence have been culled to initiate a synthesis of the nascent literature, current practice and theory. Contribution: This paper aims to illuminate the shared goals between open science and the study of teams by focusing on science team activities (data management, methods, algorithms, and outputs) as focal objects for further combined study. Findings: Team dynamics and characteristics that will affect successful human/machine assisted interactions through mediators of workflow culture, attitudes about ownership of knowledge, readiness to share openly, shifts from group-driven to user-driven functionality, group-organizing to self-organizing structures, and the development of trust as teams regulate between traditional and open science dissemination. Recommendations for Practitioners: Participation in open science practices through machine-assisted technologies in team projects/scholarship should be encouraged. Recommendation for Researchers: The information provided highlights areas in need of further study in team science as well as new primary sources of material in the study of teams utilizing machine-assisted methods in their work. Impact on Society: As researchers take on more complex social problems, new technology and open science practices can complement the work of diverse stakeholders while also providing opportunities to broaden impact and intensify scholarly contributions. Future Research: Future investigation into the cognitive and behavioral research conducted with teams that employ machine-assisted technologies in their workflows would offer researchers the opportunity to understand better the relationships between intelligent machines and science teams’ impacts on their communities as well as the necessary paradigmatic shifts inherent when utilizing these technologies.




ram

Challenges in Designing Curriculum for Trans-Disciplinary Education: On Cases of Designing Concentration on Informing Science and Master Program on Data Science

Aim/Purpose: The growing complexity of the business environment and business processes as well as the Big Data phenomenon has an impact on every area of human activity nowadays. This new reality challenges the effectiveness of traditional narrowly oriented professional education. New areas of competences emerged as a synergy of multiple knowledge areas – transdisciplines. Informing Science and Data Science are just the first two such new areas we may identify as transdisciplines. Universities are facing the challenge to educate students for those new realities. Background: The purpose of the paper is to share the authors’ experience in designing curriculum for training bachelor students in Informing Science as a concentration within an Information Brokerage major, and a master program on Data Science. Methodology: Designing curriculum for transdisciplines requires diverse expertise obtained by both academia and industries and passed through several stages - identifying objectives, conceptualizing curriculum models, identifying content, and development pedagogical priorities. Contribution: Sharing our experience acquired in designing transdiscipline programs will contribute to a transition from a narrow professional education towards addressing 21st-century challenges. Findings: Analytical skills, combined with training in all categories of so-called “soft skills”, are essential in preparing students for a successful career in a transdiciplinary area of activities. Recommendations for Practitioners: Establishing a working environment encouraging not only sharing but close cooperation is essential nowadays. Recommendations for Researchers: There are two aspects of training professionals capable of succeeding in a transdisciplinary environment: encouraging mutual respect and developing out-of-box thinking. Impact on Society: The transition of higher education in a way to meet current challenges. Future Research The next steps in this research are to collect feedback regarding the professional careers of students graduating in these two programs and to adjust the curriculum accordingly.




ram

University-Industry Collaboration in Higher Education: Exploring the Informing Flows Framework in Industrial PhD Education

Aim/Purpose: The aim is to explore the informing flows framework as interactions within a PhD education practicing a work-integrated learning approach in order to reveal both the perspectives of industrial PhD students and of industry. Background: An under-researched field of university-industry collaboration is explored revealing both the perspectives of industrial PhD students and of industry. Methodology: Qualitative methods were applied including interviews and document studies. In total ten semi-structured interviews in two steps were conducted. The empirical context is a Swedish PhD program in informatics with a specialization in work-integrated learning. Contribution: By broadening the concept of work-integrated learning, this paper contributes empirical results on benefits and challenges in university-industry collaboration focusing on industrial PhD students and industry by applying the informing flows framework. Findings: Findings expose novel insights for industry as well as academia. The industrial PhD students are key stakeholders and embody the informing flows between practice and university and between practice and research. They are spanning boundaries between university and industry generating continuous opportunities for validation and testing of empirical results and models in industry. This may enable increased research quality and short-lag dissemination of research results as well as strengthened organizational legitimacy. Recommendation for Researchers: Academia is recommended to recognize the value of the industrial PhD students’ pre-understanding of the industry context in the spirit of work-integrated learning approach. The conditions for informing flows between research and practice need to continuously be maintained to enable short-term societal impact of research for both academia and industry. For practitioners: This explorative study show that it is vital for practice to recognize that challenges do exist and need to be considered to strengthen industrial PhD pro-grams as well as university-industry collaborations. Additionally, it is of importance to formalize a continuously dissemination of research in the industries. Future Research: Future international and/or transdisciplinary research within this field is encouraged to include larger samples covering other universities and a mix of industrial contexts or comparing industrial PhD students in different phases of their PhD education.




ram

Organizing Information Obtained From Literature Reviews – A Framework for Information System Area Researchers

Aim/Purpose: A literature review is often criticized for the absence of coherent construction, synthesis of topics, and well-reasoned analysis. A framework is needed for novice researchers to organize and present information obtained from the literature review. Background: Information and communication technologies advancement have yielded overwhelming information. The massive availability of information poses several challenges, including storage, processing, meaningful organization, and presentation for future consumption. Information System Researchers have developed frameworks, guidelines, and tools for gathering, filtering, processing, storing, and organizing information. Interestingly, information system researchers have vast information that needs meaningful organization and presentation to the research fraternity while conducting a literature review on a research topic. Methodology: This paper describes a framework called LACTiC (Location, Author, Continuum, Time, and Category) that we adapted from another framework called LATCH (Location, Alphabetical, Time, Category, and Hierarchy). LATCH was used to organize and present information on e-commerce websites for seamless navigation. We evaluated the LACTiC framework. Contribution: Information System Researchers can use the LACTiC framework to organize information obtained from literature review. Findings: The evaluation reveals that most researchers from information systems organize information obtained from the literature review category-wise, followed by continuum, author, time, and location. Recommendation for Researchers: Overall, the framework works well and can be helpful for researchers for an initial idea for organizing information obtained from the literature review. Future Research: To conceptualize the framework, the study was carried out using Information Systems related literature. To generalize the proposed framework, we may suggest that the study can be extended to other areas of business management, such as marketing, finance, operation, decision sciences, accounting, and economics.




ram

Q-DenseNet for heart disease prediction in spark framework

This paper presents a novel deep learning technique called quantum dilated convolutional neural network-DenseNet (Q-DenseNet) for prediction of heart disease in spark framework. At first, the input data taken from the database is allowed for data partitioning using fast fuzzy C-means clustering (FFCM). The partitioned data is fed into spark framework, where pre-processed by missing data imputation and quantile normalisation. The pre-processed data is further allowed for selection of suitable features. Then, the selected features from the slave nodes are merged and fed into master node. The Q-DenseNet is used in master node for the prediction of heart disease. The performance improvement of the designed Q-DenseNet model is validated by comparing with traditional prediction models. Here, the Q-DenseNet method achieved superior performance with maximum of 92.65% specificity, 91.74% sensitivity, and 90.15% accuracy.




ram

Healthcare industry input parameters for a deterministic model that optimally locates additive manufacturing hubs

Recent innovations in additive manufacturing (AM) have proven its efficacy for not only the manufacturing industry but also the healthcare industry. Researchers from Cal Poly, San Luis Obispo, and California State University Long Beach are developing a model that will determine the optimal locations for additive manufacturing hubs that can effectively serve both the manufacturing and healthcare industries. This paper will focus on providing an overview of the healthcare industry's unique needs for an AM hub and summarise the specific inputs for the model. The methods used to gather information include extensive literature research on current practices of AM models in healthcare and an inclusive survey of healthcare practitioners. This includes findings on AM's use for surgical planning and training models, the workflow to generate them, sourcing methods, and the AM techniques and materials used. This paper seeks to utilise the information gathered through literature research and surveys to provide guidance for the initial development of an AM hub location model that locates optimal service locations.




ram

Programmatic Ad Targeting Types

Programmatic Ad Targeting Types This article delves into how programmatic advertising employs automated technology to target precise audiences effectively. It examines the different data types leveraged, the array of targeting techniques available, and approaches for gauging the success of a campaign. Key Takeaways Programmatic advertising automates ad buying using machine learning and workflow [...]




ram

How Does Contextual Targeting in Programmatic Work?

How Does Contextual Targeting in Programmatic Work? This article delves into contextual programmatic advertising, which strategically positions ads on web pages by analyzing the content to ensure that these advertisements are pertinent and considerate of privacy. Discover what this method entails and how it operates. Key Takeaways Contextual programmatic advertising combines the automation [...]




ram

What is Programmatic OTT Advertising?

What is Programmatic OTT Advertising? OTT programmatic advertising revolutionizes how brands reach viewers on streaming platforms. Automating ad buying and leveraging real-time data offers precise audience targeting and enhanced campaign efficiency. This method stands out compared to traditional TV ads. In this article, we’ll break down what OTT programmatic advertising is, its key [...]




ram

Best Programmatic Advertising Strategies

Best Programmatic Advertising Strategies Looking to craft a successful programmatic advertising strategy? This guide will outline key steps like setting goals, identifying your audience, and leveraging technology to boost your campaigns. Key Takeaways Programmatic advertising automates the ad buying process using machine learning and data analytics, significantly increasing efficiency and enabling precise targeting. [...]




ram

What is Programmatic Direct?

What is Programmatic Direct? In this article, we will delve into Programmatic Direct, a technique by which advertisers utilize automated technology to buy digital advertising space directly from publishers. By doing so, the middlemen are eliminated, resulting in more focused and effective ad placements. Programmatic Direct simplifies sales processes, making it easier for [...]




ram

What is Programmatic OOH?

What is Programmatic OOH? Programmatic Out-of-Home (OOH) refers to the automated buying and selling of Digital Out-of-Home (DOOH) advertising spaces using data-driven technology. Unlike traditional OOH, which requires manual negotiations, programmatic OOH utilizes software to optimize ad placements efficiently and target specific audiences based on data. This article explores the benefits, workings, and [...]




ram

What is Programmatic TV Advertising?

What is Programmatic TV Advertising? Programmatic TV advertising uses data and automated technology to buy and place TV ads more effectively. Unlike traditional methods relying on show ratings, it targets audience data, optimizing ad placements in real time. This introduction will explore what programmatic TV advertising is, its benefits, and steps to start [...]




ram

Programmatic Guaranteed vs. PMP

Programmatic Guaranteed vs. PMP Deciding between Programmatic Guaranteed and PMP (Private Marketplace) deals? Programmatic advertising has revolutionized digital advertising by using advanced technology and data to streamline the buying and selling of digital ad space. Unlike traditional methods, programmatic buying enables advertisers to target audiences more effectively and distribute ads on a large [...]




ram

AI in Programmatic Advertising

AI in Programmatic Advertising AI in programmatic advertising automates and optimizes ad buying using advanced technology. This article explains how AI improves targeting, reduces costs, and boosts efficiency. You’ll learn about current trends, benefits, and real-world examples. Dive in to see how AI can transform your advertising strategies. Key Takeaways AI significantly enhances [...]




ram

Cross-Device Targeting With Programmatic Ads

Cross-Device Targeting With Programmatic Ads Cross-device advertising allows advertisers to target users across multiple devices like phones, laptops, and TVs. This method improves ad targeting, user engagement, and campaign measurement. In this article, we’ll explain how cross-device advertising works and its benefits. Key Takeaways Cross-device advertising enables marketers to reach users across multiple [...]




ram

Programmatic Ad Mediation Explained

Programmatic Ad Mediation Explained Programmatic ad mediation allows publishers to manage multiple ad networks from a single platform, maximizing revenue and efficiency. This article explores how it works, its benefits, and tips for selecting the right platform. Key Takeaways Programmatic ad mediation streamlines the management of multiple ad networks through a unified platform, [...]