ca

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




ca

Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED)

Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.




ca

Differentiable Sparsification for Deep Neural Networks. (arXiv:1910.03201v2 [cs.LG] UPDATED)

A deep neural network has relieved the burden of feature engineering by human experts, but comparable efforts are instead required to determine an effective architecture. On the other hands, as the size of a network has over-grown, a lot of resources are also invested to reduce its size. These problems can be addressed by sparsification of an over-complete model, which removes redundant parameters or connections by pruning them away after training or encouraging them to become zero during training. In general, however, these approaches are not fully differentiable and interrupt an end-to-end training process with the stochastic gradient descent in that they require either a parameter selection or a soft-thresholding step. In this paper, we propose a fully differentiable sparsification method for deep neural networks, which allows parameters to be exactly zero during training, and thus can learn the sparsified structure and the weights of networks simultaneously using the stochastic gradient descent. We apply the proposed method to various popular models in order to show its effectiveness.




ca

Additive Bayesian variable selection under censoring and misspecification. (arXiv:1907.13563v3 [stat.ME] UPDATED)

We study the interplay of two important issues on Bayesian model selection (BMS): censoring and model misspecification. We consider additive accelerated failure time (AAFT), Cox proportional hazards and probit models, and a more general concave log-likelihood structure. A fundamental question is what solution can one hope BMS to provide, when (inevitably) models are misspecified. We show that asymptotically BMS keeps any covariate with predictive power for either the outcome or censoring times, and discards other covariates. Misspecification refers to assuming the wrong model or functional effect on the response, including using a finite basis for a truly non-parametric effect, or omitting truly relevant covariates. We argue for using simple models that are computationally practical yet attain good power to detect potentially complex effects, despite misspecification. Misspecification and censoring both have an asymptotically negligible effect on (suitably-defined) false positives, but their impact on power is exponential. We portray these issues via simple descriptions of early/late censoring and the drop in predictive accuracy due to misspecification. From a methods point of view, we consider local priors and a novel structure that combines local and non-local priors to enforce sparsity. We develop algorithms to capitalize on the AAFT tractability, approximations to AAFT and probit likelihoods giving significant computational gains, a simple augmented Gibbs sampler to hierarchically explore linear and non-linear effects, and an implementation in the R package mombf. We illustrate the proposed methods and others based on likelihood penalties via extensive simulations under misspecification and censoring. We present two applications concerning the effect of gene expression on colon and breast cancer.




ca

Multi-scale analysis of lead-lag relationships in high-frequency financial markets. (arXiv:1708.03992v3 [stat.ME] UPDATED)

We propose a novel estimation procedure for scale-by-scale lead-lag relationships of financial assets observed at high-frequency in a non-synchronous manner. The proposed estimation procedure does not require any interpolation processing of original datasets and is applicable to those with highest time resolution available. Consistency of the proposed estimators is shown under the continuous-time framework that has been developed in our previous work Hayashi and Koike (2018). An empirical application to a quote dataset of the NASDAQ-100 assets identifies two types of lead-lag relationships at different time scales.




ca

Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED)

Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute).




ca

Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. (arXiv:2005.03654v1 [eess.IV])

The paper focuses on a novel approach for false-positive reduction (FPR) of nodule candidates in Computer-aided detection (CADe) system after suspicious lesions proposing stage. Unlike common decisions in medical image analysis, the proposed approach considers input data not as 2d or 3d image, but as a point cloud and uses deep learning models for point clouds. We found out that models for point clouds require less memory and are faster on both training and inference than traditional CNN 3D, achieves better performance and does not impose restrictions on the size of the input image, thereby the size of the nodule candidate. We propose an algorithm for transforming 3d CT scan data to point cloud. In some cases, the volume of the nodule candidate can be much smaller than the surrounding context, for example, in the case of subpleural localization of the nodule. Therefore, we developed an algorithm for sampling points from a point cloud constructed from a 3D image of the candidate region. The algorithm guarantees to capture both context and candidate information as part of the point cloud of the nodule candidate. An experiment with creating a dataset from an open LIDC-IDRI database for a feature of the FPR task was accurately designed, set up and described in detail. The data augmentation technique was applied to avoid overfitting and as an upsampling method. Experiments are conducted with PointNet, PointNet++ and DGCNN. We show that the proposed approach outperforms baseline CNN 3D models and demonstrates 85.98 FROC versus 77.26 FROC for baseline models.




ca

Local Cascade Ensemble for Multivariate Data Classification. (arXiv:2005.03645v1 [cs.LG])

We present LCE, a Local Cascade Ensemble for traditional (tabular) multivariate data classification, and its extension LCEM for Multivariate Time Series (MTS) classification. LCE is a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the usual bias-variance tradeoff faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation firstly shows that the hybrid ensemble method LCE outperforms the state-of-the-art classifiers on the UCI datasets and that LCEM outperforms the state-of-the-art MTS classifiers on the UEA datasets. Furthermore, LCEM provides explainability by design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).




ca

Nonparametric Estimation of the Fisher Information and Its Applications. (arXiv:2005.03622v1 [cs.IT])

This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$. First, an estimator proposed by Bhattacharya is revisited and improved convergence rates are derived. Second, a new estimator, termed a clipped estimator, is proposed. Superior upper bounds on the rates of convergence can be shown for the new estimator compared to the Bhattacharya estimator, albeit with different regularity conditions. Third, both of the estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown's identity, which relates the Fisher information and the minimum mean squared error (MMSE) in Gaussian noise, two corresponding consistent estimators for the MMSE are proposed. Simulation examples for the Bhattacharya estimator and the clipped estimator as well as the MMSE estimators are presented. The examples demonstrate that the clipped estimator can significantly reduce the required sample size to guarantee a specific confidence interval compared to the Bhattacharya estimator.




ca

Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG])

We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.




ca

Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach. (arXiv:2005.03582v1 [cs.LG])

Early detection of patients vulnerable to infections acquired in the hospital environment is a challenge in current health systems given the impact that such infections have on patient mortality and healthcare costs. This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units by means of machine-learning methods. The aim is to support decision making addressed at reducing the incidence rate of infections. In this field, it is necessary to deal with the problem of building reliable classifiers from imbalanced datasets. We propose a clustering-based undersampling strategy to be used in combination with ensemble classifiers. A comparative study with data from 4616 patients was conducted in order to validate our proposal. We applied several single and ensemble classifiers both to the original dataset and to data preprocessed by means of different resampling methods. The results were analyzed by means of classic and recent metrics specifically designed for imbalanced data classification. They revealed that the proposal is more efficient in comparison with other approaches.




ca

Non-asymptotic Convergence Analysis of Two Time-scale (Natural) Actor-Critic Algorithms. (arXiv:2005.03557v1 [cs.LG])

As an important type of reinforcement learning algorithms, actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies. In the first nested-loop design, actor's one update of policy is followed by an entire loop of critic's updates of the value function, and the finite-sample analysis of such AC and NAC algorithms have been recently well established. The second two time-scale design, in which actor and critic update simultaneously but with different learning rates, has much fewer tuning parameters than the nested-loop design and is hence substantially easier to implement. Although two time-scale AC and NAC have been shown to converge in the literature, the finite-sample convergence rate has not been established. In this paper, we provide the first such non-asymptotic convergence rate for two time-scale AC and NAC under Markovian sampling and with actor having general policy class approximation. We show that two time-scale AC requires the overall sample complexity at the order of $mathcal{O}(epsilon^{-2.5}log^3(epsilon^{-1}))$ to attain an $epsilon$-accurate stationary point, and two time-scale NAC requires the overall sample complexity at the order of $mathcal{O}(epsilon^{-4}log^2(epsilon^{-1}))$ to attain an $epsilon$-accurate global optimal point. We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling and for analyzing the convergence rate of the linear critic with dynamically changing base functions and transition kernel.




ca

Sequential Aggregation of Probabilistic Forecasts -- Applicaton to Wind Speed Ensemble Forecasts. (arXiv:2005.03540v1 [stat.AP])

In the field of numerical weather prediction (NWP), the probabilistic distribution of the future state of the atmosphere is sampled with Monte-Carlo-like simulations, called ensembles. These ensembles have deficiencies (such as conditional biases) that can be corrected thanks to statistical post-processing methods. Several ensembles exist and may be corrected with different statistiscal methods. A further step is to combine these raw or post-processed ensembles. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. This article adapts this theory to the case of probabilistic forecasts issued as step-wise cumulative distribution functions (CDF). The theory is applied to wind speed forecasting, by combining several raw or post-processed ensembles, considered as CDFs. The second goal of this study is to explore the use of two forecast performance criteria: the Continous ranked probability score (CRPS) and the Jolliffe-Primo test. Comparing the results obtained with both criteria leads to reconsidering the usual way to build skillful probabilistic forecasts, based on the minimization of the CRPS. Minimizing the CRPS does not necessarily produce reliable forecasts according to the Jolliffe-Primo test. The Jolliffe-Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. It is proposed to use both criterion to achieve reliable and skillful probabilistic forecasts.




ca

Diffusion Copulas: Identification and Estimation. (arXiv:2005.03513v1 [econ.EM])

We propose a new semiparametric approach for modelling nonlinear univariate diffusions, where the observed process is a nonparametric transformation of an underlying parametric diffusion (UPD). This modelling strategy yields a general class of semiparametric Markov diffusion models with parametric dynamic copulas and nonparametric marginal distributions. We provide primitive conditions for the identification of the UPD parameters together with the unknown transformations from discrete samples. Likelihood-based estimators of both parametric and nonparametric components are developed and we analyze the asymptotic properties of these. Kernel-based drift and diffusion estimators are also proposed and shown to be normally distributed in large samples. A simulation study investigates the finite sample performance of our estimators in the context of modelling US short-term interest rates. We also present a simple application of the proposed method for modelling the CBOE volatility index data.




ca

Robust location estimators in regression models with covariates and responses missing at random. (arXiv:2005.03511v1 [stat.ME])

This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some of covariates. The target is a marginal location parameter which is given through an $M-$functional. To obtain robust Fisher--consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values by assuming a missing at random condition. Three methods are considered to estimate the marginal distribution function which allows to obtain the $M-$location of interest: the well-known inverse probability weighting, a convolution--based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. The robust proposed estimators and the classical ones are compared through a numerical study under different missing models including clean and contaminated samples. We illustrate the estimators behaviour under a nonlinear model. A real data set is also analysed.




ca

Generative Feature Replay with Orthogonal Weight Modification for Continual Learning. (arXiv:2005.03490v1 [cs.LG])

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.




ca

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




ca

Transfer Learning for sEMG-based Hand Gesture Classification using Deep Learning in a Master-Slave Architecture. (arXiv:2005.03460v1 [eess.SP])

Recent advancements in diagnostic learning and development of gesture-based human machine interfaces have driven surface electromyography (sEMG) towards significant importance. Analysis of hand gestures requires an accurate assessment of sEMG signals. The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels. The performance of the master-slave network is augmented by leveraging additional synthetic feature data generated by long short term memory networks. Performance of the proposed network is compared to that of a conventional DNN prior to and after the addition of synthetic data. Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach.




ca

Deep learning of physical laws from scarce data. (arXiv:2005.03448v1 [cs.LG])

Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. Recent advances in sparse identification show encouraging success in distilling closed-form governing equations from data for a wide range of nonlinear dynamical systems. However, the fundamental bottleneck of this approach lies in the robustness and scalability with respect to data scarcity and noise. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated on discovering a variety of PDE systems with different levels of data scarcity and noise. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.




ca

Curious Hierarchical Actor-Critic Reinforcement Learning. (arXiv:2005.03420v1 [cs.LG])

Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity approximately doubles the learning performance and success rates for most of the investigated benchmarking problems.




ca

A Locally Adaptive Interpretable Regression. (arXiv:2005.03350v1 [stat.ML])

Machine learning models with both good predictability and high interpretability are crucial for decision support systems. Linear regression is one of the most interpretable prediction models. However, the linearity in a simple linear regression worsens its predictability. In this work, we introduce a locally adaptive interpretable regression (LoAIR). In LoAIR, a metamodel parameterized by neural networks predicts percentile of a Gaussian distribution for the regression coefficients for a rapid adaptation. Our experimental results on public benchmark datasets show that our model not only achieves comparable or better predictive performance than the other state-of-the-art baselines but also discovers some interesting relationships between input and target variables such as a parabolic relationship between CO2 emissions and Gross National Product (GNP). Therefore, LoAIR is a step towards bridging the gap between econometrics, statistics, and machine learning by improving the predictive ability of linear regression without depreciating its interpretability.




ca

Reducing Communication in Graph Neural Network Training. (arXiv:2005.03300v1 [cs.LG])

Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to high concurrencies than convolutional or fully-connected neural networks.

We present a family of parallel algorithms for training GNNs. These algorithms are based on their counterparts in dense and sparse linear algebra, but they had not been previously applied to GNN training. We show that they can asymptotically reduce communication compared to existing parallel GNN training methods. We implement a promising and practical version that is based on 2D sparse-dense matrix multiplication using torch.distributed. Our implementation parallelizes over GPU-equipped clusters. We train GNNs on up to a hundred GPUs on datasets that include a protein network with over a billion edges.




ca

CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion. (arXiv:2005.03288v1 [cs.LG])

Motion synthesis in a dynamic environment has been a long-standing problem for character animation. Methods using motion capture data tend to scale poorly in complex environments because of their larger capturing and labeling requirement. Physics-based controllers are effective in this regard, albeit less controllable. In this paper, we present CARL, a quadruped agent that can be controlled with high-level directives and react naturally to dynamic environments. Starting with an agent that can imitate individual animation clips, we use Generative Adversarial Networks to adapt high-level controls, such as speed and heading, to action distributions that correspond to the original animations. Further fine-tuning through the deep reinforcement learning enables the agent to recover from unseen external perturbations while producing smooth transitions. It then becomes straightforward to create autonomous agents in dynamic environments by adding navigation modules over the entire process. We evaluate our approach by measuring the agent's ability to follow user control and provide a visual analysis of the generated motion to show its effectiveness.




ca

An Empirical Study of Incremental Learning in Neural Network with Noisy Training Set. (arXiv:2005.03266v1 [cs.LG])

The notion of incremental learning is to train an ANN algorithm in stages, as and when newer training data arrives. Incremental learning is becoming widespread in recent times with the advent of deep learning. Noise in the training data reduces the accuracy of the algorithm. In this paper, we make an empirical study of the effect of noise in the training phase. We numerically show that the accuracy of the algorithm is dependent more on the location of the error than the percentage of error. Using Perceptron, Feed Forward Neural Network and Radial Basis Function Neural Network, we show that for the same percentage of error, the accuracy of the algorithm significantly varies with the location of error. Furthermore, our results show that the dependence of the accuracy with the location of error is independent of the algorithm. However, the slope of the degradation curve decreases with more sophisticated algorithms




ca

On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO])

Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access.




ca

Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q. (arXiv:2005.03247v1 [cs.LG])

Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes' data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD.




ca

Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS])

This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.




ca

Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP])

An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation.




ca

Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG])

Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data.




ca

Learning on dynamic statistical manifolds. (arXiv:2005.03223v1 [math.ST])

Hyperbolic balance laws with uncertain (random) parameters and inputs are ubiquitous in science and engineering. Quantification of uncertainty in predictions derived from such laws, and reduction of predictive uncertainty via data assimilation, remain an open challenge. That is due to nonlinearity of governing equations, whose solutions are highly non-Gaussian and often discontinuous. To ameliorate these issues in a computationally efficient way, we use the method of distributions, which here takes the form of a deterministic equation for spatiotemporal evolution of the cumulative distribution function (CDF) of the random system state, as a means of forward uncertainty propagation. Uncertainty reduction is achieved by recasting the standard loss function, i.e., discrepancy between observations and model predictions, in distributional terms. This step exploits the equivalence between minimization of the square error discrepancy and the Kullback-Leibler divergence. The loss function is regularized by adding a Lagrangian constraint enforcing fulfillment of the CDF equation. Minimization is performed sequentially, progressively updating the parameters of the CDF equation as more measurements are assimilated.




ca

Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG])

Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.




ca

Call for nominations: NSW Premier’s History Awards 2020

Wednesday 19 February 2020
The State Library announces the opening of nominations for the NSW Premier’s History Awards 2020.

 




ca

mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data

We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package.




ca

Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 7 November. Speaker: Dr Michael Brown (University of Roehampton), ‘Anxiety and compassion: emotions and the surgical encounter in early 19th-century Britain’ The historical study of the… Continue reading




ca

Broadcasting Health and Disease conference

Broadcasting Health and Disease: Bodies, markets and television, 1950s–1980s An ERC BodyCapital international conference to be held at the Wellcome Trust, 19–21 February 2018 In the television age, health and the body have been broadcasted in many ways: in short… Continue reading




ca

Smell and medical efficacy in 18th-century England

The next seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 13 February. Speaker: Dr William Tullett (Institute of Historical Research, University of London) Smell and medical efficacy in 18th-century England Abstract: In recent years a growing scholarship… Continue reading




ca

Arabo-Persian physiological theories in late Imperial China

The last seminar in the 2017–18 History of Pre-Modern Medicine seminar series takes place on Tuesday 27 February. Speaker: Dr Dror Weil (Max Planck Institute for the History of Science, Berlin) Bodies translated: the circulation of Arabo-Persian physiological theories in late… Continue reading




ca

Wood microbiology : decay and its prevention

Zabel, R. A. (Robert A.), author
9780128205730 (electronic bk.)




ca

Wintrobe's atlas of clinical hematology

9781605476148 hardcover




ca

Wine science : principles and applications

Jackson, Ron S., author.
9780128161180




ca

Urban landscape entomology

Held, David W. (David Wayne), 1972- author
9780128130728 (electronic bk.)




ca

Trends in biomedical research

9783030412197 (electronic bk.)




ca

Treatment of skin diseases : a practical guide

Zaidi, Zohra, author.
9783319895819 (electronic bk.)




ca

Tissue engineering : principles, protocols, and practical exercises

9783030396985




ca

Theranostics approaches to gastric and colon cancer

9789811520174 (electronic bk.)




ca

The root canal anatomy in permanent dentition

9783319734446 (electronic bk.)




ca

The behavioral ecology of the Tibetan macaque

9783030279202 (electronic bk.)




ca

The Scientific basis of oral health education

Levine, R. S., Dr., author.
9783319982076 (electronic bk.)




ca

The Best and Worst Places to be a Woman in Canada 2019 : The Gender Gap in Canada’s 26 Biggest Cities

9781771254434 (print)




ca

Textbook of palliative care

9783319317380 (electronic bk.)