ms

COVID-19: Return of Bundesliga in fresh jeopardy as Dynamo Dresden confirms two new coronavirus cases ahead of restart

The Bundesliga and Bundesliga 2 are set to be back underway on May 16.




ms

'Ye bewakoof kisi aur ko banana': Mohammed Shami recalls instance when MS Dhoni told him off over a bouncer

The incident took place back in 2014 during India's test match against New Zealand.




ms

Delhi govt asks DMs to release 2,446 Tablighis

The district magistrates will explore the possibility of sending those Tablighi members, who belong to other states, in buses to their designated places in accordance with social distancing norms and other protocols, Delhi Disaster Management Authority (DDMA) Special CEO K S Meena said in a letter to deputy commissioners (administration).




ms

'The main challenge is social distancing in slums'

'When we talk about social distancing, it almost impossible to maintain this in slums.' 'So we had to talk to the people about cleanliness.' 'It was a task because everybody uses public toilets. So our volunteers targeted those spots to spread awareness.'





ms

Andy Serkis says The Batman will be darker than previous films




ms

WhatsApp for Web gets Messenger Rooms support: How it works and other details




ms

Investigating increasingly complex macromolecular systems with small-angle X-ray scattering

A review of recent and ongoing development and results within the field of biological solution small-angle X-ray scattering (BioSAXS), with a focus on the increasing complexity of biological samples, data collection and data evaluation strategies.




ms

Capability of X-ray diffraction for the study of microstructure of metastable thin films

PLEASE REDUCE TO 1-2 SENTENCES. The capability of X-ray diffraction for the microstructure investigations of metastable systems is illustrated on the example of thin films of titanium aluminium nitrides with high aluminium content, which are supersaturated and partially decomposed. In addition to the chemical composition, the surface mobility of the deposited species was employed as a factor influencing the microstructure of the thin films. It is shown how the micromechanical properties of the partially decomposed (Ti,Al)N thin films, which were deduced from the synchrotron diffraction experiments, are related to the thin film microstructure and to the decomposition mechanism. The prominent role of the crystallographic anisotropy of the macroscopic and microscopic lattice deformations in the understanding of the micromechanical properties is addressed.






ms

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

A new scaling program is presented with new features to support multi-sweep workflows and analysis within the DIALS software package.




ms

Redetermination of the crystal structure of BaTeO3(H2O), including the localization of the hydrogen atoms

The redetermination of the crystal structure of barium oxidotellurate(IV) monohydrate allowed the localization of the hydrogen atoms that were not determined in the previous study [Nielsen, Hazell & Rasmussen (1971). Acta Chem. Scand. 25, 3037–3042], thus making an unambiguous assignment of the hydrogen-bonding scheme possible. The crystal structure shows a layered arrangement parallel to (001), consisting of edge-sharing [BaO6(H2O)] polyhedra and flanked by isolated [TeO3] trigonal pyramids on the top and bottom. O—H⋯O hydrogen bonds of medium strength link adjacent layers along [001].




ms

Syntheses and structures of piperazin-1-ium ABr2 (A = Cs or Rb): hybrid solids containing `curtain wall' layers of face- and edge-sharing ABr6 trigonal prisms

The isostructural title compounds, poly[piperazin-1-ium [di-μ-bromido-caesium]], {(C4H11N2)[CsBr2]}n, and poly[piperazin-1-ium [di-μ-bromido-rubidium]], {(C4H11N2)[RbBr2]}n, contain singly-protonated piperazin-1-ium cations and unusual ABr6 (A = Cs or Rb) trigonal prisms. The prisms are linked into a distinctive `curtain wall' arrangement propagating in the (010) plane by face and edge sharing. In each case, a network of N—H⋯N, N—H⋯Br and N—H⋯(Br,Br) hydrogen bonds consolidates the structure.




ms

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-tri­meth­oxy­benzyl­idene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intra­molecular inter­actions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the mol­ecules of coumarin are linked by C—H⋯O and C—H⋯π inter­actions, and form tubes into which the DMSO mol­ecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and inter­molecular inter­action energy calculations of compound (4: R = C6H5).




ms

Crystal structures and Hirshfeld surface analyses of (E)-N'-benzyl­idene-2-oxo-2H-chromene-3-carbo­hydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimeth­oxybenzyl­idene)-2H-chromene-3-carbohydrazide: lattice ene

In the paper by Gomes et al. [Acta Cryst. (2019), E75, 1403–1410], there was an error and omission in the author and affiliation list.




ms

Resolution and dose dependence of radiation damage in biomolecular systems

The local Fourier-space relation between diffracted intensity I, diffraction wavevector q and dose D, ilde I(q,D), is key to probing and understanding radiation damage by X-rays and energetic particles in both diffraction and imaging experiments. The models used in protein crystallography for the last 50 years provide good fits to experimental I(q) versus nominal dose data, but have unclear physical significance. More recently, a fit to diffraction and imaging experiments suggested that the maximum tolerable dose varies as q−1 or linearly with resolution. Here, it is shown that crystallographic data have been strongly perturbed by the effects of spatially nonuniform crystal irradiation and diffraction during data collection. Reanalysis shows that these data are consistent with a purely exponential local dose dependence, ilde I(q,D) = I0(q)exp[−D/De(q)], where De(q) ∝ qα with α ≃ 1.7. A physics-based model for radiation damage, in which damage events occurring at random locations within a sample each cause energy deposition and blurring of the electron density within a small volume, predicts this exponential variation with dose for all q values and a decay exponent α ≃ 2 in two and three dimensions, roughly consistent with both diffraction and imaging experiments over more than two orders of magnitude in resolution. The B-factor model used to account for radiation damage in crystallographic scaling programs is consistent with α = 2, but may not accurately capture the dose dependencies of structure factors under typical nonuniform illumination conditions. The strong q dependence of radiation-induced diffraction decays implies that the previously proposed 20–30 MGy dose limit for protein crystallography should be replaced by a resolution-dependent dose limit that, for atomic resolution data sets, will be much smaller. The results suggest that the physics underlying basic experimental trends in radiation damage at T ≃ 100 K is straightforward and universal. Deviations of the local I(q, D) from strictly exponential behavior may provide mechanistic insights, especially into the radiation-damage processes responsible for the greatly increased radiation sensitivity observed at T ≃ 300 K.




ms

Investigation of growth characteristics and semimetal–semiconductor transition of polycrystalline bis­muth thin films

The preferred orientation growth characteristics and surface roughness of polycrystalline bis­muth (Bi) thin films fabricated on glass substrates using the molecular beam epitaxy method were investigated at temperatures ranging from 18 to 150°C. The crystallization and morphology were analyzed in detail and the polycrystalline metal film structure-zone model (SZM) was modified to fit the polycrystalline Bi thin film. The boundary temperature between Zone T and Zone II in the SZM shifted to higher temperatures with the increase in film thickness or the decrease of growth rate. Furthermore, the effect of the thickness and surface roughness on the transport properties was investigated, especially for Bi thin films in Zone II. A two-transport channels model was adopted to reveal the influence of the film thickness on the competition between the metallic surface states and the semiconducting bulk states, which is consistent with the results of Bi single-crystal films. Therefore, the polycrystalline Bi thin films are expected to replace the single-crystal films in the application of spintronic devices.




ms

Isomorphism: `molecular similarity to crystal structure similarity' in multicomponent forms of analgesic drugs tolfenamic and mefenamic acid

The non-steroidal anti-inflammatory drugs mefenamic acid (MFA) and tolfenamic acid (TFA) have a close resemblance in their molecular scaffold, whereby a methyl group in MFA is substituted by a chloro group in TFA. The present study demonstrates the isomorphous nature of these compounds in a series of their multicomponent solids. Furthermore, the unique nature of MFA and TFA has been demonstrated while excavating their alternate solid forms in that, by varying the drug (MFA or TFA) to coformer [4-di­methyl­amino­pyridine (DMAP)] stoichiometric ratio, both drugs have produced three different types of multicomponent crystals, viz. salt (1:1; API to coformer ratio), salt hydrate (1:1:1) and cocrystal salt (2:1). Interestingly, as anticipated from the close similarity of TFA and MFA structures, these multicomponent solids have shown an isomorphous relation. A thorough characterization and structural investigation of the new multicomponent forms of MFA and TFA revealed their similarity in terms of space group and structural packing with isomorphic nature among the pairs. Herein, the experimental results are generalized in a broader perspective for predictably identifying any possible new forms of comparable compounds by mapping their crystal structure landscapes. The utility of such an approach is evident from the identification of polymorph VI of TFA from hetero-seeding with isomorphous MFA form I from acetone–methanol (1:1) solution. That aside, a pseudopolymorph of TFA with di­methyl­formamide (DMF) was obtained, which also has some structural similarity to that of the solvate MFA:DMF. These new isostructural pairs are discussed in the context of solid form screening using structural landscape similarity.




ms

Comparing the backfilling of mesoporous titania thin films with hole conductors of different sizes sharing the same mass density

Efficient infiltration of a mesoporous titania matrix with conducting organic polymers or small molecules is one key challenge to overcome for hybrid photovoltaic devices. A quantitative analysis of the backfilling efficiency with time-of-flight grazing incidence small-angle neutron scattering (ToF-GISANS) and scanning electron microscopy (SEM) measurements is presented. Differences in the morphology due to the backfilling of mesoporous titania thin films are compared for the macromolecule poly[4,8-bis­(5-(2-ethyl­hexyl)­thio­phen-2-yl)benzo[1,2-b;4,5-b']di­thio­phene-2,6-diyl-alt-(4-(2-ethyl­hexyl)-3-fluoro­thieno[3,4-b]thio­phene-)-2-carboxyl­ate-2-6-diyl)] (PTB7-Th) and the heavy-element containing small molecule 2-pinacol­boronate-3-phenyl­phen­anthro[9,10-b]telluro­phene (PhenTe-BPinPh). Hence, a 1.7 times higher backfilling efficiency of almost 70% is achieved for the small molecule PhenTe-BPinPh compared with the polymer PTB7-Th despite sharing the same volumetric mass density. The precise characterization of structural changes due to backfilling reveals that the volumetric density of backfilled materials plays a minor role in obtaining good backfilling efficiencies and interfaces with large surface contact.




ms

Structures of substrate- and product-bound forms of a multi-domain copper nitrite reductase shed light on the role of domain tethering in protein complexes

Copper-containing nitrite reductases (CuNiRs) are found in all three kingdoms of life and play a major role in the denitrification branch of the global nitro­gen cycle where nitrate is used in place of di­oxy­gen as an electron acceptor in respiratory energy metabolism. Several C- and N-terminal redox domain tethered CuNiRs have been identified and structurally characterized during the last decade. Our understanding of the role of tethered domains in these new classes of three-domain CuNiRs, where an extra cytochrome or cupredoxin domain is tethered to the catalytic two-domain CuNiRs, has remained limited. This is further compounded by a complete lack of substrate-bound structures for these tethered CuNiRs. There is still no substrate-bound structure for any of the as-isolated wild-type tethered enzymes. Here, structures of nitrite and product-bound states from a nitrite-soaked crystal of the N-terminal cupredoxin-tethered enzyme from the Hyphomicrobium denitrificans strain 1NES1 (Hd1NES1NiR) are provided. These, together with the as-isolated structure of the same species, provide clear evidence for the role of the N-terminal peptide bearing the conserved His27 in water-mediated anchoring of the substrate at the catalytic T2Cu site. Our data indicate a more complex role of tethering than the intuitive advantage for a partner-protein electron-transfer complex by narrowing the conformational search in such a combined system.




ms

Structures of the substrate-binding protein YfeA in apo and zinc-reconstituted holo forms

In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).




ms

Crystal structures of the Bacillus subtilis prophage lytic cassette proteins XepA and YomS

As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPβ were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.3 Å, respectively. XepA consists of two antiparallel β-sandwich domains connected by a 30-amino-acid linker region. A pentamer of this protein adopts a unique dumbbell-shaped architecture consisting of two discs and a central tunnel. YomS (12.9 kDa per monomer), which is less than half the size of XepA (30.3 kDa), shows homology to the C-terminal part of XepA and exhibits a similar pentameric disc arrangement. Each β-sandwich entity resembles the fold of typical cytoplasmic membrane-binding C2 domains. Only XepA exhibits distinct cytotoxic activity in vivo, suggesting that the N-terminal pentameric domain is essential for this biological activity. The biological and structural data presented here suggest that XepA disrupts the proton motive force of the cytoplasmatic membrane, thus supporting cell lysis.




ms

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

In processing X-ray diffraction data, the intensities obtained from integration of the diffraction images must be corrected for experimental effects in order to place all intensities on a common scale both within and between data collections. Scaling corrects for effects such as changes in sample illumination, absorption and, to some extent, global radiation damage that cause the measured intensities of symmetry-equivalent observations to differ throughout a data set. This necessarily requires a prior evaluation of the point-group symmetry of the crystal. This paper describes and evaluates the scaling algorithms implemented within the DIALS data-processing package and demonstrates the effectiveness and key features of the implementation on example macromolecular crystallographic rotation data. In particular, the scaling algorithms enable new workflows for the scaling of multi-crystal or multi-sweep data sets, providing the analysis required to support current trends towards collecting data from ever-smaller samples. In addition, the implementation of a free-set validation method is discussed, which allows the quantification of the suitability of scaling-model and algorithm choices.




ms

Linearly polarized X-ray fluorescence computed tomography based on a Thomson scattering light source: a Monte Carlo study

A Thomson scattering X-ray source can provide quasi-monochromatic, continuously energy-tunable, polarization-controllable and high-brightness X-rays, which makes it an excellent tool for X-ray fluorescence computed tomography (XFCT). In this paper, we examined the suppression of Compton scattering background in XFCT using the linearly polarized X-rays and the implementation feasibility of linearly polarized XFCT based on this type of light source, concerning the influence of phantom attenuation and the sampling strategy, its advantage over K-edge subtraction computed tomography (CT), the imaging time, and the potential pulse pile-up effect by Monte Carlo simulations. A fan beam and pinhole collimator geometry were adopted in the simulation and the phantom was a polymethyl methacrylate cylinder inside which were gadolinium (Gd)-loaded water solutions with Gd concentrations ranging from 0.2 to 4.0 wt%. Compared with the case of vertical polarization, Compton scattering was suppressed by about 1.6 times using horizontal polarization. An accurate image of the Gd-containing phantom was successfully reconstructed with both spatial and quantitative identification, and good linearity between the reconstructed value and the Gd concentration was verified. When the attenuation effect cannot be neglected, one full cycle (360°) sampling and the attenuation correction became necessary. Compared with the results of K-edge subtraction CT, the contrast-to-noise ratio values of XFCT were improved by 2.03 and 1.04 times at low Gd concentrations of 0.2 and 0.5 wt%, respectively. When the flux of a Thomson scattering light source reaches 1013 photons s−1, it is possible to finish the data acquisition of XFCT at the minute or second level without introducing pulse pile-up effects.




ms

Fast fitting of reflectivity data of growing thin films using neural networks

X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and α-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed.




ms

Detailed surface analysis of V-defects in GaN films on patterned silicon(111) substrates by metal–organic chemical vapour deposition. Corrigendum

An error in the article by Gao, Zhang, Zhu, Wu, Mo, Pan, Liu & Jiang [J. Appl. Cryst. (2019), 52, 637–642] is corrected.




ms

ACMS: a database of alternate conformations found in the atoms of main and side chains of protein structures

An online knowledge base on the alternate conformations adopted by main-chain and side-chain atoms in protein structures solved by X-ray crystallography is described.




ms

Significant texture improvement in single-crystalline-like materials on low-cost flexible metal foils through growth of silver thin films

Single-crystalline-like thin films composed of crystallographically aligned grains are a new prototype of 2D materials developed recently for low-cost and high-performance flexible electronics as well as second-generation high-temperature superconductors. In this work, significant texture improvement in single-crystalline-like materials is achieved through growth of a 330 nm-thick silver layer.




ms

Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt

An X-ray cross-correlation study of the impact of ligand composition and salt content on the self-assembly of soft-shell nanoparticles is presented, indicating symmetry-selective formation of order.




ms

Appalachian Trail survey aims hidden cameras at large predators

Describing his project of counting bears, bobcats and other predatory mammals along the Appalachian Trail, National Zoological Park wildlife ecologist William McShea looks to American literature for a comparison.

The post Appalachian Trail survey aims hidden cameras at large predators appeared first on Smithsonian Insider.




ms

Study aims to give endangered Shenandoah salamander better odds at survival

Each year thousands of vacationers enjoy the scenery along Virginia’s Skyline Drive, little knowing that for a few brief moments they are passing through the territory of an endangered […]

The post Study aims to give endangered Shenandoah salamander better odds at survival appeared first on Smithsonian Insider.




ms

Cosmic “baby photos” of distant solar systems lend insight as to how planets form

New observations by the Smithsonian’s Submillimeter Array, a radio telescope atop Mauna Kea in Hawaii, are shedding light on planet formation. The array provides sharp views by combining eight antennas into the equivalent of a single, large telescope. It can resolve details as small as a dime seen from seven miles away.

The post Cosmic “baby photos” of distant solar systems lend insight as to how planets form appeared first on Smithsonian Insider.




ms

Astronomers discover merging star systems that might explode

Today, researchers who found the first hypervelocity stars escaping the Milky Way announced that their search also turned up a dozen double-star systems. Half of those are merging and might explode as supernovae in the astronomically near future.

The post Astronomers discover merging star systems that might explode appeared first on Smithsonian Insider.




ms

Archaeological evidence confirms mass hunting of gazelles 5,000 years ago

A remarkable 5,000-year-old deposit of bones representing an entire herd of Persian gazelles recently discovered in northeastern Syria is firm evidence, scientists say, of an ancient hunting practice largely responsible for the near extinction of gazelles in this region today.

The post Archaeological evidence confirms mass hunting of gazelles 5,000 years ago appeared first on Smithsonian Insider.




ms

Study reveals environmental impact of American Indian farms centuries before Europeans arrived in North America

The new research reveals that from the period between 1100-1600 small agricultural settlements up and down the Delaware River Valley caused a 50-percent increase in sediment runoff into the Delaware River.

The post Study reveals environmental impact of American Indian farms centuries before Europeans arrived in North America appeared first on Smithsonian Insider.




ms

The Kepler spacecraft’s astounding haul of multiple-planet systems

NASA's Kepler spacecraft is proving itself to be a prolific planet hunter. Within just the first four months of data, astronomers have found evidence for more than 1,200 planetary candidates. Of those, 408 reside in systems containing two or more planets, and most of those look very different than our solar system.

The post The Kepler spacecraft’s astounding haul of multiple-planet systems appeared first on Smithsonian Insider.




ms

Genetic study confirms American crocodiles and critically endangered Cuban crocodiles are hybridizing in the wild

A new genetic study by a team of Cuban and American researchers confirms that American crocodiles are hybridizing with wild populations of critically endangered Cuban crocodiles, which may cause a population decline of this species found only in the Cuban Archipelago.

The post Genetic study confirms American crocodiles and critically endangered Cuban crocodiles are hybridizing in the wild appeared first on Smithsonian Insider.




ms

Will global warming be hell on the hellbender? Smithsonian study aims to find out.

Now, a new study of hellbenders by scientists at the Smithsonian Conservation Biology Institute will place these amphibians at the center of the conservation of Appalachian salamanders.

The post Will global warming be hell on the hellbender? Smithsonian study aims to find out. appeared first on Smithsonian Insider.




ms

Crab pulsar dazzles astronomers with its gamma-ray beams

The same object that dazzled skygazers in 1054 C.E. continues to dazzle astronomers today by pumping out radiation at higher energies than anyone expected.

The post Crab pulsar dazzles astronomers with its gamma-ray beams appeared first on Smithsonian Insider.




ms

New genetic evidence confirms coyote migration route to Virginia and hybridization with wolves

In a new study researchers from the Smithsonian Conservation Biology Institute’s Center for Conservation and Evolutionary Genetics used DNA from coyote scat (feces) to trace the route that led some of the animals to colonize in Northern Virginia.

The post New genetic evidence confirms coyote migration route to Virginia and hybridization with wolves appeared first on Smithsonian Insider.




ms

Earthworms to blame for decline of Ovenbirds in northern Midwest forests, study reveals

A recent decline in Ovenbirds (Seiurus aurocapilla), a ground-nesting migratory songbird, in forests in the northern Midwest United States is being linked by scientists to a seemingly unlikely culprit: earthworms.

The post Earthworms to blame for decline of Ovenbirds in northern Midwest forests, study reveals appeared first on Smithsonian Insider.




ms

Ghostly gamma-ray beams blast from Milky Way’s center

The newfound jets may be related to mysterious gamma-ray bubbles that Fermi detected in 2010. Those bubbles also stretch 27,000 light-years from the center of the Milky Way.

The post Ghostly gamma-ray beams blast from Milky Way’s center appeared first on Smithsonian Insider.




ms

Close encounters between planetary systems of Kepler-36 stun astrophysicists

Imagine a gas giant planet spanning three times more sky than the Moon looming over the molten landscape of a lava world. This alien vista exists in the newly discovered two-planet system of Kepler-36.

The post Close encounters between planetary systems of Kepler-36 stun astrophysicists appeared first on Smithsonian Insider.




ms

Browsing suburbia: Virginia’s parceled-up farms and forests are ideal refuge for white-tailed deer

Forget the deep forest, “today the highest densities of deer in the state of Virginia are in suburbia,” says William McShea, ecologist and research scientist at the Smithsonian’s Conservation Biology Institute in Front Royal, Va.

The post Browsing suburbia: Virginia’s parceled-up farms and forests are ideal refuge for white-tailed deer appeared first on Smithsonian Insider.




ms

Powerful computer simulations show how spiral galaxies get their arms

Spiral galaxies are some of the most beautiful and photogenic residents of the universe. Our own Milky Way is a spiral. Our solar system and […]

The post Powerful computer simulations show how spiral galaxies get their arms appeared first on Smithsonian Insider.





ms

Smithsonian secretary on the future of museums, libraries and archives

To download the free e-book Best of Both Worlds: Museums, Libraries, and Archives in a Digital Age, by G. Wayne Clough, Secretary of the Smithsonian, […]

The post Smithsonian secretary on the future of museums, libraries and archives appeared first on Smithsonian Insider.




ms

Zoo scientists find sudden stream temperature changes boost hellbender immune systems

Hellbenders, aquatic salamanders from the eastern United States, are surprisingly good at dealing with unpredictable weather. In a recent study published in the Journal of […]

The post Zoo scientists find sudden stream temperature changes boost hellbender immune systems appeared first on Smithsonian Insider.




ms

Smithsonian scientist confirms missing link in big cat evolution

After years of sleuthing for clues about where and when pantherine felids (“big cats”) originated, a Smithsonian scientist and an international team of researchers are […]

The post Smithsonian scientist confirms missing link in big cat evolution appeared first on Smithsonian Insider.