from

Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data

Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data.




from

Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling

Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual.




from

The competition between cocrystallization and separated crystallization based on crystallization from solution

Because researchers do not understand the formation mechanism of cocrystals, the preparation of cocrystals is mostly done by trial and error. This study focuses on the cocrystal formation mechanism to improve the efficiency of cocrystal preparation.




from

Nanometre-sized droplets from a gas dynamic virtual nozzle

This work describes a method to characterize the size distribution of individual aqueous droplets in a high-density and polydisperse aerosol. It is shown that droplets smaller than 120 nm can be generated by purely mechanical means using a gas dynamic virtual nozzle, and theoretical models are provided for the different flow regimes investigated.




from

Diffracting-grain identification from electron backscatter diffraction maps during residual stress measurements: a comparison between the sin2ψ and cosα methods

The sin2ψ and cosα methods are compared via diffracting-grain identification from electron backscatter diffraction maps. Artificial textures created by the X-ray diffraction measurements are plotted and X-ray elastic constants of the diffracting-grain sets are computed.




from

Calculation of total scattering from a crystalline structural model based on experimental optics parameters

A calculation procedure for X-ray total scattering and the pair distribution function from a crystalline structural model is presented. It allows one to easily and precisely deal with diffraction-angle-dependent parameters such as the atomic form factor and the resolution of the optics.




from

Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector

Detailed analysis of the high-flux deficiencies of pixel-array detectors leads to a protocol for the measurement of structure factors of unprecedented accuracy even for inorganic materials, and this significantly advances the prospects for experimental electron-density investigations.




from

sasPDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data

The sasPDF method, an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime, is presented. The method is applied to characterize the structure of nanoparticle assemblies with different levels of structural order.




from

Takagi–Taupin dynamical X-ray diffraction simulations of asymmetric X-ray diffraction from crystals: the effects of surface undulations

Dynamical X-ray diffraction simulations of very asymmetric diffraction from single crystals of silicon were made to accompany an experimental rocking-curve topography study reported in a seperate paper. Effects on rocking curves were found and are reported. The development of Uragami [(1969), J. Phys. Soc. Jpn, 27, 147–154] for Takagi–Taupin simulations was followed and applied to the case of both convex and concave surface undulations.




from

The mechanism of solvent-mediated desolvation transformation of lenvatinib mesylate from dimethyl sulfoxide solvate to form D

In this work, the mechanism of solvent-mediated desolvation transformation of lenvatinib mesylate (LM) was investigated. Two new solid forms of LM, a dimethyl sulfoxide (DMSO) solvate and an unsolvated form defined as form D, were discovered and characterized using powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, polarized light microscopy and Raman spectroscopy. To investigate the thermodynamic mechanism of solvent-mediated desolvation transformation (SMDT) from LM DMSO solvate to form D, solubilities of LM DMSO solvate and form D in binary solvent mixtures of DMSO and water at different water volume fractions and temperatures (293.15–323.15 K) were measured and correlated by non-random two liquids model. The solubility data were used to evaluate the thermodynamic driving force of the SMDT process from DMSO solvate to form D and the effect of the activities of water and DMSO on the transformation process. Raman spectroscopy was used to monitor in situ the solid phase compositions during the SMDT process from LM DMSO solvate to form D while the solution concentration was measured by the gravimetric method. The overall desolvation transformation experiments demonstrated that the SMDT process was controlled by the nucleation and growth of form D. Moreover, effects of operating factors on the SMDT process were studied and the results illustrated that water activity in solution was the paramount parameter in the SMDT process. Finally, a new SMDT mechanism was suggested and discussed.




from

Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database?

A detailed study on chiral compound structures found in the Cambridge Structural Database (CSD) is presented. Solvates, salts and co-crystals have intentionally been excluded, in order to focus on the most basic structures of single enantiomers, scalemates and racemates. Similarity between the latter and structures of achiral monomolecular compounds has been established and utilized to arrive at important conclusions about crystallization of chiral compounds. For example, the fundamental phenomenon of conglomerate formation and, in particular, their frequency of occurrence is addressed. In addition, rarely occurring kryptoracemates and scalemic compounds (anomalous racemates) are discussed. Finally, an extended search of enantiomer solid solutions in the CSD is performed to show that there are up to 1800 instances most probably hiding among the deposited crystal structures, while only a couple of dozen have been previously known and studied.




from

Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database?

A study on chiral monomolecular compound structures found in the Cambridge Structural Database is presented.




from

The mechanism of solvent-mediated desolvation transformation of lenvatinib mesylate from di­methyl sulfoxide solvate to form D

The solvent-mediated desolvation process of newly discovered lenvatinib DMSO solvate to form II at different water volume fractions and temperatures was investigated. It is confirmed that the activity of water is the most important factor affecting the desolvation process: the desolvation process only occurs when the activity of water is greater than the activity of DMSO, and one new mechanism of solvent-mediated desolvation process was proposed.




from

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

Insights were obtained into the structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway for the biosynthesis of lysine.




from

Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum

The crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum is reported. It has high structural similarity to other gluconate 5-dehydrogenase proteins, demonstrating that this enzyme is highly conserved.




from

Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa

The crystal structure of Pseudomonas aeruginosa Fis is composed of an N-terminal flexible loop and a C-terminal helix–turn–helix motif.




from

Structure of the Prx6-subfamily 1-Cys peroxiredoxin from Sulfolobus islandicus

Aerobic thermoacidophilic archaea belonging to the genus Sulfolobus harbor peroxiredoxins, thiol-dependent peroxidases that assist in protecting the cells from oxidative damage. Here, the crystal structure of the 1-Cys peroxiredoxin from Sulfolobus islandicus, named 1-Cys SiPrx, is presented. A 2.75 Å resolution data set was collected from a crystal belonging to space group P212121, with unit-cell parameters a = 86.8, b = 159.1, c = 189.3 Å, α = β = γ = 90°. The structure was solved by molecular replacement using the homologous Aeropyrum pernix peroxiredoxin (ApPrx) structure as a search model. In the crystal structure, 1-Cys SiPrx assembles into a ring-shaped decamer composed of five homodimers. This quaternary structure corresponds to the oligomeric state of the protein in solution, as observed by size-exclusion chromatography. 1-Cys SiPrx harbors only a single cysteine, which is the peroxidatic cysteine, and lacks both of the cysteines that are highly conserved in the C-terminal arm domain in other archaeal Prx6-subfamily proteins such as ApPrx and that are involved in the association of dimers into higher-molecular-weight decamers and dodecamers. It is thus concluded that the Sulfolobus Prx6-subfamily protein undergoes decamerization independently of arm-domain cysteines.




from

The crystal structure of haemoglobin from Atlantic cod

The crystal structure of haemoglobin from Atlantic cod has been solved to 2.54 Å resolution. The structure consists of two tetramers in the crystallographic asymmetric unit. The structure of haemoglobin obtained from one individual cod suggests polymorphism in the tetrameric assembly.




from

Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target

A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg−1 min−1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.




from

Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant

The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipo­amide succinyltransferase isolated without an expression tag and in this novel crystal form.




from

The thermodynamic profile and molecular interactions of a C(9)-cytisine derivative-binding acetylcholine-binding protein from Aplysia californica

Cytisine, a natural product with high affinity for clinically relevant nicotinic acetylcholine receptors (nAChRs), is used as a smoking-cessation agent. The compound displays an excellent clinical profile and hence there is an interest in derivatives that may be further improved or find use in the treatment of other conditions. Here, the binding of a cytisine derivative modified by the addition of a 3-(hydroxypropyl) moiety (ligand 4) to Aplysia californica acetylcholine-binding protein (AcAChBP), a surrogate for nAChR orthosteric binding sites, was investigated. Isothermal titration calorimetry revealed that the favorable binding of cytisine and its derivative to AcAChBP is driven by the enthalpic contribution, which dominates an unfavorable entropic component. Although ligand 4 had a less unfavorable entropic contribution compared with cytisine, the affinity for AcAChBP was significantly diminished owing to the magnitude of the reduction in the enthalpic component. The high-resolution crystal structure of the AcAChBP–4 complex indicated close similarities in the protein–ligand interactions involving the parts of 4 common to cytisine. The point of difference, the 3-(hydroxypropyl) substituent, appears to influence the conformation of the Met133 side chain and helps to form an ordered solvent structure at the edge of the orthosteric binding site.




from

New Acquisition: Corrective instruments from the Hubble Space Telescope

The Smithsonian’s National Air and Space Museum recently obtained two monumental instruments on loan from NASA’s Goddard Space Flight Center.

The post New Acquisition: Corrective instruments from the Hubble Space Telescope appeared first on Smithsonian Insider.




from

From the Bay of Bengal, a dinoflagellate makes its way to the Smithsonian

It’s not an exaggeration to say Hedrick was ecstatic when she peered into her inverted phase contrast microscope and found "Amphisolenia quadrispina" floating in her sample. “For 20 years I’ve been hoping to see something like this,” she says.

The post From the Bay of Bengal, a dinoflagellate makes its way to the Smithsonian appeared first on Smithsonian Insider.




from

Astronomers see supernova from a new angle

"Just like mirrors in a changing room show you a clothing outfit from all sides, interstellar dust clouds act like mirrors to show us different sides of the supernova," Rest explains.

The post Astronomers see supernova from a new angle appeared first on Smithsonian Insider.




from

NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education

The funding will allow the National Science Resources Center to validate its LASER (Leadership Assistance for Science Education Reform) Model. LASER, a systemic approach to reform, is a set of processes and strategies designed to help state, district and school leadership teams effectively implement and sustain
high-quality science education for elementary, middle and secondary school students.

The post NSRC to receive $25 million Investing in Innovation grant from U.S. Department of Education appeared first on Smithsonian Insider.




from

New species of bat named from central coastal Ecuador

A diminutive bat with cinnamon-brown coloring collected in 1979 in Ecuador by mammalogist Don Wilson of the Smithsonian’s National Museum of Natural History represents a new species a recent paper in the journal “Mammalian Biology” has revealed.

The post New species of bat named from central coastal Ecuador appeared first on Smithsonian Insider.




from

Sneak attacks from the Sun

Our Sun can be a menace when it sends out powerful blasts of radiation towards the Earth. Astronomers keenly watch the Sun in hopes of being able to predict these eruptions. New research shows that one-third of the Sun’s blasts are “sneak attacks” that may occur without warning.

The post Sneak attacks from the Sun appeared first on Smithsonian Insider.




from

Thepytus carmen, a newly described species of butterfly from Brazil

Thepytus carmen, a newly described species of butterfly from Brazil, was recently named in memory of Carmen Lúcia Buck in recognition of the gracious support […]

The post Thepytus carmen, a newly described species of butterfly from Brazil appeared first on Smithsonian Insider.




from

Skeletal casts of early hominin ancestor from Africa donated to National Museum of Natural History

A. sediba was discovered in 2008 in the Malapa Cave at the Cradle of Humankind World Heritage Site located outside Johannesburg.

The post Skeletal casts of early hominin ancestor from Africa donated to National Museum of Natural History appeared first on Smithsonian Insider.




from

From chewing tough insects to soft fruit, bat teeth are highly specialized


They found that the molars of fruit-eating species had sharp outer edges that likely allow them to pierce tough fruit skin and pulp... By contrast, the molars of insect-eating species were less complex, possibly because of their smoother shearing surfaces.

The post From chewing tough insects to soft fruit, bat teeth are highly specialized appeared first on Smithsonian Insider.




from

Bone fragment is only Ice Age artwork from America to show a “proboscidean”

Researchers from the Smithsonian Institution and the University of Florida have announced the discovery of a bone fragment, approximately 13,000 years old, in Florida with an incised image of a mammoth or mastodon.

The post Bone fragment is only Ice Age artwork from America to show a “proboscidean” appeared first on Smithsonian Insider.




from

Fossil skull of an extinct toothed whale excavated from Panamanian sediments

A scientist from the Smithsonian Tropical Research Institute uses a pick to dislodge the fossil skull of an extinct toothed whale from sediments on the […]

The post Fossil skull of an extinct toothed whale excavated from Panamanian sediments appeared first on Smithsonian Insider.




from

Newly discovered supermassive black holes are just 160 million light years from Earth

Astronomers using NASA's Chandra X-ray Observatory discovered the first pair of supermassive black holes in a spiral galaxy similar to the Milky Way. Approximately 160 million light years from Earth, the pair is the nearest known such phenomenon.

The post Newly discovered supermassive black holes are just 160 million light years from Earth appeared first on Smithsonian Insider.




from

Hitchhiking snails fly from ocean to ocean

Just as people use airplanes to fly overseas, marine snails may use birds to fly over land,” said Mark Torchin, staff scientist at the Smithsonian.

The post Hitchhiking snails fly from ocean to ocean appeared first on Smithsonian Insider.




from

From Star Wars to science fact: Tatooine-like planet discovered

Although cold and gaseous rather than a desert world, the newfound planet Kepler-16b is still the closest astronomers have come to discovering Luke Skywalker's home world of Tatooine.

The post From Star Wars to science fact: Tatooine-like planet discovered appeared first on Smithsonian Insider.




from

New dinosaur species named from hatchling fossil donated to National Museum of Natural History

The fossil represents the youngest nodosaur ever discovered, and the only known specimen of a new genus and species of dinosaur that lived approximately 110 million years ago during the Early Cretaceous Era.

The post New dinosaur species named from hatchling fossil donated to National Museum of Natural History appeared first on Smithsonian Insider.




from

Fossil feathers from a Hawaiian cave help reveal lineage of extinct, flightless ibis

Ornithologists Carla Dove and Storrs Olson used 700- to 1,100-year-old feathers from a long extinct species of Hawaiian ibis to help determine the bird’s place in the ibis family tree. The feathers are the only known plumage of any of the prehistorically extinct birds that once inhabited the Hawaiian Islands.

The post Fossil feathers from a Hawaiian cave help reveal lineage of extinct, flightless ibis appeared first on Smithsonian Insider.




from

“Molynocoelia erwini,” a new species of fruit fly from Ecuador

Molynocoelia erwini, is a new species of fruit fly from Ecuador recently described by USDA entomologist Allen Norrbom, who works in the Systematic Entomology Laboratory […]

The post “Molynocoelia erwini,” a new species of fruit fly from Ecuador appeared first on Smithsonian Insider.




from

First Eld’s deer born from in vitro fertilization with help of Smithsonian Conservation Biology Institute scientists

Nearly 20 years after the Smithsonian Conservation Biology Institute became the first to produce an Eld’s deer fawn through artificial insemination, SCBI scientists have now contributed to the birth of the first Eld’s deer via in vitro fertilization.

The post First Eld’s deer born from in vitro fertilization with help of Smithsonian Conservation Biology Institute scientists appeared first on Smithsonian Insider.




from

New exhibition looks at fishes from the “Inside Out”

"X-Ray Vision: Fish Inside Out," is a new exhibition of striking x-rays that reveal the complex bone structure of fishes in the collections of the Smithsonian's National Museum of Natural History.

The post New exhibition looks at fishes from the “Inside Out” appeared first on Smithsonian Insider.




from

First fish App from the Smithsonian free on iTunes. “The Smithsonian Guide to the Shore Fishes of the Tropical Eastern Pacific”

The Smithsonian Tropical Research Institute has released the first completely portable bilingual species identification guide for the shore fishes of the tropical Eastern Pacific as a free iPhone application.

The post First fish App from the Smithsonian free on iTunes. “The Smithsonian Guide to the Shore Fishes of the Tropical Eastern Pacific” appeared first on Smithsonian Insider.




from

Black hole came from a shredded galaxy

Astronomers using NASA's Hubble Space Telescope have found a cluster of young, blue stars encircling the first intermediate-mass black hole ever discovered. The presence of the star cluster suggests that the black hole was once at the core of a now-disintegrated dwarf galaxy.

The post Black hole came from a shredded galaxy appeared first on Smithsonian Insider.




from

New species of deep-sea catshark described from the Galapagos

Scientists conducting deep-sea research in the Galapagos have described a new species of catshark. The new shark is approximately a foot long and has a chocolate-brown coloration with pale, irregularly distributed spots on its body. The spotted patterns appear to be unique to each individual.

The post New species of deep-sea catshark described from the Galapagos appeared first on Smithsonian Insider.




from

Invasive pythons in Florida now stealing bird eggs straight from the nest

The snakes are not only eating the area’s birds, but also the birds’ eggs straight from the nest.

The post Invasive pythons in Florida now stealing bird eggs straight from the nest appeared first on Smithsonian Insider.




from

Giant prehistoric turtle from Colombia chomped everything in sight–including crocodiles!

The specimen’s skull measures 24 centimeters, roughly the size of a regulation NFL football. The shell which was recovered nearby – and is believed to belong to the same species – measures 172 centimeters, or about 5 feet 7 inches, long.

The post Giant prehistoric turtle from Colombia chomped everything in sight–including crocodiles! appeared first on Smithsonian Insider.




from

Ghostly gamma-ray beams blast from Milky Way’s center

The newfound jets may be related to mysterious gamma-ray bubbles that Fermi detected in 2010. Those bubbles also stretch 27,000 light-years from the center of the Milky Way.

The post Ghostly gamma-ray beams blast from Milky Way’s center appeared first on Smithsonian Insider.




from

Coronal mass ejection from July 12 solar flare headed toward Earth; minor geomagnetic storm activity predicted

A July 12 news alert from NASA indicates a X1.4 class solar flare erupted from the center of the Sun, peaking July 12 at 12:52 P.M.

The post Coronal mass ejection from July 12 solar flare headed toward Earth; minor geomagnetic storm activity predicted appeared first on Smithsonian Insider.




from

Astronomers discover X-rays from a young supernova remnant

Astronomers using NASA's Chandra X-ray Observatory have detected X-rays emitted by the debris from the explosion of supernova 1957D.

The post Astronomers discover X-rays from a young supernova remnant appeared first on Smithsonian Insider.




from

Female spiders produce mating plugs to prevent unwanted sex from males

They observed that no plugs were ever formed during mating trials, but instead, females exposed to many males produced the amorphous plugs during the egg-laying process.

The post Female spiders produce mating plugs to prevent unwanted sex from males appeared first on Smithsonian Insider.




from

Mississippi State borrows grasshopper collection from Smithsonian

JoVonn Hill, a research associate with the Mississippi Agricultural and Forestry Experiment Station at Mississippi State University, recently borrowed 32,000 grasshoppers from the Smithsonian’s National […]

The post Mississippi State borrows grasshopper collection from Smithsonian appeared first on Smithsonian Insider.