de

Enabling Cross-chain Transactions: A Decentralized Cryptocurrency Exchange Protocol. (arXiv:2005.03199v1 [cs.CR])

Inspired by Bitcoin, many different kinds of cryptocurrencies based on blockchain technology have turned up on the market. Due to the special structure of the blockchain, it has been deemed impossible to directly trade between traditional currencies and cryptocurrencies or between different types of cryptocurrencies. Generally, trading between different currencies is conducted through a centralized third-party platform. However, it has the problem of a single point of failure, which is vulnerable to attacks and thus affects the security of the transactions. In this paper, we propose a distributed cryptocurrency trading scheme to solve the problem of centralized exchanges, which can achieve trading between different types of cryptocurrencies. Our scheme is implemented with smart contracts on the Ethereum blockchain and deployed on the Ethereum test network. We not only implement transactions between individual users, but also allow transactions between multiple users. The experimental result proves that the cost of our scheme is acceptable.




de

Distributed Stabilization by Probability Control for Deterministic-Stochastic Large Scale Systems : Dissipativity Approach. (arXiv:2005.03193v1 [eess.SY])

By using dissipativity approach, we establish the stability condition for the feedback connection of a deterministic dynamical system $Sigma$ and a stochastic memoryless map $Psi$. After that, we extend the result to the class of large scale systems in which: $Sigma$ consists of many sub-systems; and $Psi$ consists of many "stochastic actuators" and "probability controllers" that control the actuator's output events. We will demonstrate the proposed approach by showing the design procedures to globally stabilize the manufacturing systems while locally balance the stock levels in any production process.




de

Determinantal Point Processes in Randomized Numerical Linear Algebra. (arXiv:2005.03185v1 [cs.DS])

Randomized Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc. Determinantal Point Processes (DPPs), a seemingly unrelated topic in pure and applied mathematics, is a class of stochastic point processes with probability distribution characterized by sub-determinants of a kernel matrix. Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms that are of interest to both areas. We provide an overview of this exciting new line of research, including brief introductions to RandNLA and DPPs, as well as applications of DPPs to classical linear algebra tasks such as least squares regression, low-rank approximation and the Nystr"om method. For example, random sampling with a DPP leads to new kinds of unbiased estimators for least squares, enabling more refined statistical and inferential understanding of these algorithms; a DPP is, in some sense, an optimal randomized algorithm for the Nystr"om method; and a RandNLA technique called leverage score sampling can be derived as the marginal distribution of a DPP. We also discuss recent algorithmic developments, illustrating that, while not quite as efficient as standard RandNLA techniques, DPP-based algorithms are only moderately more expensive.




de

Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE])

Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two.




de

Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR])

Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem.




de

A Parameterized Perspective on Attacking and Defending Elections. (arXiv:2005.03176v1 [cs.GT])

We consider the problem of protecting and manipulating elections by recounting and changing ballots, respectively. Our setting involves a plurality-based election held across multiple districts, and the problem formulations are based on the model proposed recently by~[Elkind et al, IJCAI 2019]. It turns out that both of the manipulation and protection problems are NP-complete even in fairly simple settings. We study these problems from a parameterized perspective with the goal of establishing a more detailed complexity landscape. The parameters we consider include the number of voters, and the budgets of the attacker and the defender. While we observe fixed-parameter tractability when parameterizing by number of voters, our main contribution is a demonstration of parameterized hardness when working with the budgets of the attacker and the defender.




de

Fact-based Dialogue Generation with Convergent and Divergent Decoding. (arXiv:2005.03174v1 [cs.CL])

Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end Fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses.




de

Nonlinear model reduction: a comparison between POD-Galerkin and POD-DEIM methods. (arXiv:2005.03173v1 [physics.comp-ph])

Several nonlinear model reduction techniques are compared for the three cases of the non-parallel version of the Kuramoto-Sivashinsky equation, the transient regime of flow past a cylinder at $Re=100$ and fully developed flow past a cylinder at the same Reynolds number. The linear terms of the governing equations are reduced by Galerkin projection onto a POD basis of the flow state, while the reduced nonlinear convection terms are obtained either by a Galerkin projection onto the same state basis, by a Galerkin projection onto a POD basis representing the nonlinearities or by applying the Discrete Empirical Interpolation Method (DEIM) to a POD basis of the nonlinearities. The quality of the reduced order models is assessed as to their stability, accuracy and robustness, and appropriate quantitative measures are introduced and compared. In particular, the properties of the reduced linear terms are compared to those of the full-scale terms, and the structure of the nonlinear quadratic terms is analyzed as to the conservation of kinetic energy. It is shown that all three reduction techniques provide excellent and similar results for the cases of the Kuramoto-Sivashinsky equation and the limit-cycle cylinder flow. For the case of the transient regime of flow past a cylinder, only the pure Galerkin techniques are successful, while the DEIM technique produces reduced-order models that diverge in finite time.




de

On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY])

This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies.




de

NTIRE 2020 Challenge on Image Demoireing: Methods and Results. (arXiv:2005.03155v1 [cs.CV])

This paper reviews the Challenge on Image Demoireing that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2020. Demoireing is a difficult task of removing moire patterns from an image to reveal an underlying clean image. The challenge was divided into two tracks. Track 1 targeted the single image demoireing problem, which seeks to remove moire patterns from a single image. Track 2 focused on the burst demoireing problem, where a set of degraded moire images of the same scene were provided as input, with the goal of producing a single demoired image as output. The methods were ranked in terms of their fidelity, measured using the peak signal-to-noise ratio (PSNR) between the ground truth clean images and the restored images produced by the participants' methods. The tracks had 142 and 99 registered participants, respectively, with a total of 14 and 6 submissions in the final testing stage. The entries span the current state-of-the-art in image and burst image demoireing problems.




de

Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies. (arXiv:2005.03153v1 [cs.RO])

In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in $SE(3)$. The robots have no explicit communication network among them, and they do no know the mass or friction properties of the object, or where they are attached to the object. However, we assume they share data from a common IMU placed arbitrarily on the object. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, and with hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodelled effects, such as discretization errors and complex frictional interactions.




de

Catch Me If You Can: Using Power Analysis to Identify HPC Activity. (arXiv:2005.03135v1 [cs.CR])

Monitoring users on large computing platforms such as high performance computing (HPC) and cloud computing systems is non-trivial. Utilities such as process viewers provide limited insight into what users are running, due to granularity limitation, and other sources of data, such as system call tracing, can impose significant operational overhead. However, despite technical and procedural measures, instances of users abusing valuable HPC resources for personal gains have been documented in the past cite{hpcbitmine}, and systems that are open to large numbers of loosely-verified users from around the world are at risk of abuse. In this paper, we show how electrical power consumption data from an HPC platform can be used to identify what programs are executed. The intuition is that during execution, programs exhibit various patterns of CPU and memory activity. These patterns are reflected in the power consumption of the system and can be used to identify programs running. We test our approach on an HPC rack at Lawrence Berkeley National Laboratory using a variety of scientific benchmarks. Among other interesting observations, our results show that by monitoring the power consumption of an HPC rack, it is possible to identify if particular programs are running with precision up to and recall of 95\% even in noisy scenarios.




de

Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV])

Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101).




de

Constrained de Bruijn Codes: Properties, Enumeration, Constructions, and Applications. (arXiv:2005.03102v1 [cs.IT])

The de Bruijn graph, its sequences, and their various generalizations, have found many applications in information theory, including many new ones in the last decade. In this paper, motivated by a coding problem for emerging memory technologies, a set of sequences which generalize sequences in the de Bruijn graph are defined. These sequences can be also defined and viewed as constrained sequences. Hence, they will be called constrained de Bruijn sequences and a set of such sequences will be called a constrained de Bruijn code. Several properties and alternative definitions for such codes are examined and they are analyzed as generalized sequences in the de Bruijn graph (and its generalization) and as constrained sequences. Various enumeration techniques are used to compute the total number of sequences for any given set of parameters. A construction method of such codes from the theory of shift-register sequences is proposed. Finally, we show how these constrained de Bruijn sequences and codes can be applied in constructions of codes for correcting synchronization errors in the $ell$-symbol read channel and in the racetrack memory channel. For this purpose, these codes are superior in their size on previously known codes.




de

Scale-Equalizing Pyramid Convolution for Object Detection. (arXiv:2005.03101v1 [cs.CV])

Feature pyramid has been an efficient method to extract features at different scales. Development over this method mainly focuses on aggregating contextual information at different levels while seldom touching the inter-level correlation in the feature pyramid. Early computer vision methods extracted scale-invariant features by locating the feature extrema in both spatial and scale dimension. Inspired by this, a convolution across the pyramid level is proposed in this study, which is termed pyramid convolution and is a modified 3-D convolution. Stacked pyramid convolutions directly extract 3-D (scale and spatial) features and outperforms other meticulously designed feature fusion modules. Based on the viewpoint of 3-D convolution, an integrated batch normalization that collects statistics from the whole feature pyramid is naturally inserted after the pyramid convolution. Furthermore, we also show that the naive pyramid convolution, together with the design of RetinaNet head, actually best applies for extracting features from a Gaussian pyramid, whose properties can hardly be satisfied by a feature pyramid. In order to alleviate this discrepancy, we build a scale-equalizing pyramid convolution (SEPC) that aligns the shared pyramid convolution kernel only at high-level feature maps. Being computationally efficient and compatible with the head design of most single-stage object detectors, the SEPC module brings significant performance improvement ($>4$AP increase on MS-COCO2017 dataset) in state-of-the-art one-stage object detectors, and a light version of SEPC also has $sim3.5$AP gain with only around 7% inference time increase. The pyramid convolution also functions well as a stand-alone module in two-stage object detectors and is able to improve the performance by $sim2$AP. The source code can be found at https://github.com/jshilong/SEPC.




de

Inference with Choice Functions Made Practical. (arXiv:2005.03098v1 [cs.AI])

We study how to infer new choices from previous choices in a conservative manner. To make such inferences, we use the theory of choice functions: a unifying mathematical framework for conservative decision making that allows one to impose axioms directly on the represented decisions. We here adopt the coherence axioms of De Bock and De Cooman (2019). We show how to naturally extend any given choice assessment to such a coherent choice function, whenever possible, and use this natural extension to make new choices. We present a practical algorithm to compute this natural extension and provide several methods that can be used to improve its scalability.




de

Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT])

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation.




de

Exploratory Analysis of Covid-19 Tweets using Topic Modeling, UMAP, and DiGraphs. (arXiv:2005.03082v1 [cs.SI])

This paper illustrates five different techniques to assess the distinctiveness of topics, key terms and features, speed of information dissemination, and network behaviors for Covid19 tweets. First, we use pattern matching and second, topic modeling through Latent Dirichlet Allocation (LDA) to generate twenty different topics that discuss case spread, healthcare workers, and personal protective equipment (PPE). One topic specific to U.S. cases would start to uptick immediately after live White House Coronavirus Task Force briefings, implying that many Twitter users are paying attention to government announcements. We contribute machine learning methods not previously reported in the Covid19 Twitter literature. This includes our third method, Uniform Manifold Approximation and Projection (UMAP), that identifies unique clustering-behavior of distinct topics to improve our understanding of important themes in the corpus and help assess the quality of generated topics. Fourth, we calculated retweeting times to understand how fast information about Covid19 propagates on Twitter. Our analysis indicates that the median retweeting time of Covid19 for a sample corpus in March 2020 was 2.87 hours, approximately 50 minutes faster than repostings from Chinese social media about H7N9 in March 2013. Lastly, we sought to understand retweet cascades, by visualizing the connections of users over time from fast to slow retweeting. As the time to retweet increases, the density of connections also increase where in our sample, we found distinct users dominating the attention of Covid19 retweeters. One of the simplest highlights of this analysis is that early-stage descriptive methods like regular expressions can successfully identify high-level themes which were consistently verified as important through every subsequent analysis.




de

AVAC: A Machine Learning based Adaptive RRAM Variability-Aware Controller for Edge Devices. (arXiv:2005.03077v1 [eess.SY])

Recently, the Edge Computing paradigm has gained significant popularity both in industry and academia. Researchers now increasingly target to improve performance and reduce energy consumption of such devices. Some recent efforts focus on using emerging RRAM technologies for improving energy efficiency, thanks to their no leakage property and high integration density. As the complexity and dynamism of applications supported by such devices escalate, it has become difficult to maintain ideal performance by static RRAM controllers. Machine Learning provides a promising solution for this, and hence, this work focuses on extending such controllers to allow dynamic parameter updates. In this work we propose an Adaptive RRAM Variability-Aware Controller, AVAC, which periodically updates Wait Buffer and batch sizes using on-the-fly learning models and gradient ascent. AVAC allows Edge devices to adapt to different applications and their stages, to improve computation performance and reduce energy consumption. Simulations demonstrate that the proposed model can provide up to 29% increase in performance and 19% decrease in energy, compared to static controllers, using traces of real-life healthcare applications on a Raspberry-Pi based Edge deployment.




de

Guided Policy Search Model-based Reinforcement Learning for Urban Autonomous Driving. (arXiv:2005.03076v1 [cs.RO])

In this paper, we continue our prior work on using imitation learning (IL) and model free reinforcement learning (RL) to learn driving policies for autonomous driving in urban scenarios, by introducing a model based RL method to drive the autonomous vehicle in the Carla urban driving simulator. Although IL and model free RL methods have been proved to be capable of solving lots of challenging tasks, including playing video games, robots, and, in our prior work, urban driving, the low sample efficiency of such methods greatly limits their applications on actual autonomous driving. In this work, we developed a model based RL algorithm of guided policy search (GPS) for urban driving tasks. The algorithm iteratively learns a parameterized dynamic model to approximate the complex and interactive driving task, and optimizes the driving policy under the nonlinear approximate dynamic model. As a model based RL approach, when applied in urban autonomous driving, the GPS has the advantages of higher sample efficiency, better interpretability, and greater stability. We provide extensive experiments validating the effectiveness of the proposed method to learn robust driving policy for urban driving in Carla. We also compare the proposed method with other policy search and model free RL baselines, showing 100x better sample efficiency of the GPS based RL method, and also that the GPS based method can learn policies for harder tasks that the baseline methods can hardly learn.




de

Two-Grid Deflated Krylov Methods for Linear Equations. (arXiv:2005.03070v1 [math.NA])

An approach is given for solving large linear systems that combines Krylov methods with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate eigenvalues on the fine grid. GMRES-type methods are first used on both the coarse and fine grids. Then another approach is given that has a restarted BiCGStab (or IDR) method on the fine grid. While BiCGStab is generally considered to be a non-restarted method, it works well in this context with deflating and restarting. Tests show this new approach can be very efficient for difficult linear equations problems.




de

I Always Feel Like Somebody's Sensing Me! A Framework to Detect, Identify, and Localize Clandestine Wireless Sensors. (arXiv:2005.03068v1 [cs.CR])

The increasing ubiquity of low-cost wireless sensors in smart homes and buildings has enabled users to easily deploy systems to remotely monitor and control their environments. However, this raises privacy concerns for third-party occupants, such as a hotel room guest who may be unaware of deployed clandestine sensors. Previous methods focused on specific modalities such as detecting cameras but do not provide a generalizable and comprehensive method to capture arbitrary sensors which may be "spying" on a user. In this work, we seek to determine whether one can walk in a room and detect any wireless sensor monitoring an individual. As such, we propose SnoopDog, a framework to not only detect wireless sensors that are actively monitoring a user, but also classify and localize each device. SnoopDog works by establishing causality between patterns in observable wireless traffic and a trusted sensor in the same space, e.g., an inertial measurement unit (IMU) that captures a user's movement. Once causality is established, SnoopDog performs packet inspection to inform the user about the monitoring device. Finally, SnoopDog localizes the clandestine device in a 2D plane using a novel trial-based localization technique. We evaluated SnoopDog across several devices and various modalities and were able to detect causality 96.6% percent of the time, classify suspicious devices with 100% accuracy, and localize devices to a sufficiently reduced sub-space.




de

CovidCTNet: An Open-Source Deep Learning Approach to Identify Covid-19 Using CT Image. (arXiv:2005.03059v1 [eess.IV])

Coronavirus disease 2019 (Covid-19) is highly contagious with limited treatment options. Early and accurate diagnosis of Covid-19 is crucial in reducing the spread of the disease and its accompanied mortality. Currently, detection by reverse transcriptase polymerase chain reaction (RT-PCR) is the gold standard of outpatient and inpatient detection of Covid-19. RT-PCR is a rapid method, however, its accuracy in detection is only ~70-75%. Another approved strategy is computed tomography (CT) imaging. CT imaging has a much higher sensitivity of ~80-98%, but similar accuracy of 70%. To enhance the accuracy of CT imaging detection, we developed an open-source set of algorithms called CovidCTNet that successfully differentiates Covid-19 from community-acquired pneumonia (CAP) and other lung diseases. CovidCTNet increases the accuracy of CT imaging detection to 90% compared to radiologists (70%). The model is designed to work with heterogeneous and small sample sizes independent of the CT imaging hardware. In order to facilitate the detection of Covid-19 globally and assist radiologists and physicians in the screening process, we are releasing all algorithms and parametric details in an open-source format. Open-source sharing of our CovidCTNet enables developers to rapidly improve and optimize services, while preserving user privacy and data ownership.




de

Extracting Headless MWEs from Dependency Parse Trees: Parsing, Tagging, and Joint Modeling Approaches. (arXiv:2005.03035v1 [cs.CL])

An interesting and frequent type of multi-word expression (MWE) is the headless MWE, for which there are no true internal syntactic dominance relations; examples include many named entities ("Wells Fargo") and dates ("July 5, 2020") as well as certain productive constructions ("blow for blow", "day after day"). Despite their special status and prevalence, current dependency-annotation schemes require treating such flat structures as if they had internal syntactic heads, and most current parsers handle them in the same fashion as headed constructions. Meanwhile, outside the context of parsing, taggers are typically used for identifying MWEs, but taggers might benefit from structural information. We empirically compare these two common strategies--parsing and tagging--for predicting flat MWEs. Additionally, we propose an efficient joint decoding algorithm that combines scores from both strategies. Experimental results on the MWE-Aware English Dependency Corpus and on six non-English dependency treebanks with frequent flat structures show that: (1) tagging is more accurate than parsing for identifying flat-structure MWEs, (2) our joint decoder reconciles the two different views and, for non-BERT features, leads to higher accuracies, and (3) most of the gains result from feature sharing between the parsers and taggers.




de

Evaluating text coherence based on the graph of the consistency of phrases to identify symptoms of schizophrenia. (arXiv:2005.03008v1 [cs.CL])

Different state-of-the-art methods of the detection of schizophrenia symptoms based on the estimation of text coherence have been analyzed. The analysis of a text at the level of phrases has been suggested. The method based on the graph of the consistency of phrases has been proposed to evaluate the semantic coherence and the cohesion of a text. The semantic coherence, cohesion, and other linguistic features (lexical diversity, lexical density) have been taken into account to form feature vectors for the training of a model-classifier. The training of the classifier has been performed on the set of English-language interviews. According to the retrieved results, the impact of each feature on the output of the model has been analyzed. The results obtained can indicate that the proposed method based on the graph of the consistency of phrases may be used in the different tasks of the detection of mental illness.




de

Fault Tree Analysis: Identifying Maximum Probability Minimal Cut Sets with MaxSAT. (arXiv:2005.03003v1 [cs.AI])

In this paper, we present a novel MaxSAT-based technique to compute Maximum Probability Minimal Cut Sets (MPMCSs) in fault trees. We model the MPMCS problem as a Weighted Partial MaxSAT problem and solve it using a parallel SAT-solving architecture. The results obtained with our open source tool indicate that the approach is effective and efficient.




de

The Desire to Stay in the Game

Retired soccer star Briana Scurry talks about how frustrating and complicated it is trying to explain what it feels like to have symptoms from a concussion and why bouncing back is not always an option.




de

Retired Soccer Star Briana Scurry on Her Post-Concussion Depression

Was her depression physiological from the hit to her head or because her professional soccer career was over?




de

The Hit That Ended Briana Scurry's Soccer Career

"I knew I was in trouble ... I didn't know how much trouble," says retired soccer star Briana Scurry.




de

CTE pathology in a neurodegenerative disorders brain bank




de

Despite risks, many in small town continue to support youth football

Despite multiple concussions, a high school freshman continues to play football. Will family tradition outweigh the risks?




de

24 Must-Know Graphic Design Terms

Graphic design is everywhere — it’s used in traditional marketing efforts like billboards and fliers, and more importantly, it’s used in nearly every single digital marketing initiative from web design to social media marketing. If you’re a business that’s working with a digital marketing agency for any number of marketing campaigns (especially web design), it’s […]

The post 24 Must-Know Graphic Design Terms appeared first on WebFX Blog.




de

Website Redesign Checklist + 7 Handy Website Redesign Tips

Does your website feature design straight out of the ’90s and functionality from the stone age? If so, it’s time for an upgrade — and WebFX can help. When it comes to website redesign checklists, we’re at the top of our game, and we know how to get things done. But where do you start […]

The post Website Redesign Checklist + 7 Handy Website Redesign Tips appeared first on WebFX Blog.




de

Pay Attention to These Web Design Trends for 2020 [7+ Trends]

If you’re not already thinking about 2020 web design, the time is now. Already, web design trends for 2020 have started to emerge, and if you want to stay on-trend and engage site visitors, it’s crucial to pay attention. But what is the future of web design in 2020? Will everything change? Well — not […]

The post Pay Attention to These Web Design Trends for 2020 [7+ Trends] appeared first on WebFX Blog.




de

5 Lead Generation Website Design Best Practices

Are you looking to generate more leads and revenue with your website? If so, it’s time to consider web design for lead generation to help you create a website that caters to your audience and encourages them to become leads for your business.  On this page, we’ll provide you with five lead generation website design […]

The post 5 Lead Generation Website Design Best Practices appeared first on WebFX Blog.




de

Category Page Design Examples: 6 Category Page Inspirations

Dozens of people find your business when looking for a type of product but aren’t sure which product fits their needs best. With a well-designed and organized category page, you’ll help people browse products easier and find what they want. To help you get inspired, let’s take a look at some excellent category page design […]

The post Category Page Design Examples: 6 Category Page Inspirations appeared first on WebFX Blog.




de

6 Best CMS Software for Website Development & SMBs

Are you looking for a content management system (CMS) that will help you create the digital content you need? With so many options on the market, it’s challenging to know which one is the best CMS software for your business. On this page, we’ll take a look at the six best CMS’s for website development […]

The post 6 Best CMS Software for Website Development & SMBs appeared first on WebFX Blog.




de

10 Modern Web Design Trends for 2020

Web design is responsible for nearly 95% of a visitor’s first impression of your business. That’s why it’s more important than ever to incorporate modern web design into your marketing strategy. But what modern web design trends are on the horizon for 2020 — and how can you use them to freshen up your site? […]

The post 10 Modern Web Design Trends for 2020 appeared first on WebFX Blog.




de

6 Service Page Web Design Examples to Inspire You

Did you know that 75% of opinions on website credibility comes from design? If you want people to look at your services and find you credible, you must invest in web design for services pages to provide your audience with a positive experience. By looking at some web design examples for service pages, you’ll get […]

The post 6 Service Page Web Design Examples to Inspire You appeared first on WebFX Blog.




de

20 Company Website Designs to Inspire Your Small Business

As a small or midsize business (SMB), your company website is often the first touchpoint for potential clients — and you want it to make a great first impression. The secret to hitting home with your audience is to have a sophisticated and lively website design that’s aesthetically pleasing and provides great user experience (UX). […]

The post 20 Company Website Designs to Inspire Your Small Business appeared first on WebFX Blog.




de

Top 6 Company Website Design Templates

Are you looking to build a new site for your business? If so, company website design templates can help you create the website you want. With so many templates available, how do you determine which one is best for your business? On this page, we’ll provide you with the top six company website design templates, […]

The post Top 6 Company Website Design Templates appeared first on WebFX Blog.




de

Website Statistics for 2020: 10 Critical Stats to Know for Web Design

Are you looking to start 2020 with a fresh web design for your business? If so, you must know what you need to do in 2020 to have a website that drives success for your business. With website statistics for 2020, you can see what to do and what to avoid, which will help you […]

The post Website Statistics for 2020: 10 Critical Stats to Know for Web Design appeared first on WebFX Blog.




de

Website Redesign Process: Your Website Redesign Strategy in 5 Steps

Your website is your virtual business card and it often provides the first impression of your business to future customers — making it one of the most important aspects of your company. But if your website still has cobwebs from the 2000s, it’s time to put together a website redesign process. A website redesign process […]

The post Website Redesign Process: Your Website Redesign Strategy in 5 Steps appeared first on WebFX Blog.




de

New Report Details Path to 100% Renewables by 2050

By Jon Queally Common Dreams Greenpeace says world leaders must not let the fossil fuel industry stand in the way of the necessary—and attainable—transition to a clean and safe energy future With scientists and experts from around the world telling … Continue reading




de

Energy Department Reports Show Strong Growth of U.S. Wind Power

By Energy.Gov Annual reports analyzing the wind energy industry released today by the Energy Department show continued rapid growth in wind power installations in 2015, demonstrating market resilience and underscoring the vitality of the U.S. wind energy market on a … Continue reading




de

Design Patterns Demystified - Template Design Pattern

Welcome to the Design Patterns Demystified (DPD) series, in this edition we are going to discuss Template Design Pattern. So let us understand the why, how, what, and where of Template Design Pattern.

The Why

Let us understand first, why we need this pattern with the help of an example. Let's you are building a reusable library which is orchestrating the operation of buying an item on an e-commerce platformNow, irrespective of what you are buying, you will follow the same sequence of steps like building your cart, adding an address, filling in payment details, and then finishing the payment. The details in these steps will vary based on what you are buying, how much you are buying, the delivery address, and the preferred mode of payment, but the complete orchestration of steps remains the same.



  • design patterns for beginners
  • design patterns uncovered
  • design patterns in java
  • template design pattern

de

I Built a VS Code Extension: Ngrok for VS Code

Over the Easter weekend, a four day weekend characterized by lockdowns all over the world, I decided to use the extra time I had at home to start a new project and learn a new skill. By the end of the weekend, I was proud to release my first VSCode extension: ngrok for VSCode.

What’s That Now?

ngrok is a command-line tool built by Alan Shreve that you can use to expose your localhost server with a publicly available URL. It’s great for sharing access to an application running on your own machine, testing web applications on mobile devices, or testing webhook integrations. For example, I’m a big fan of using ngrok to test my webhooks when I am working with Twilio applications.




de

Destination Heroku

[In the second part of his series, a Zone Leader begins the process of using Heroku for the very first time. In this article, he walks through the new account process, then performs the necessary setup of a database and RESTful API for use with the application built for a family member.]

In the "Moving Away From AWS and Onto Heroku" article, I provided an introduction of the application I wanted to migrate from Amazon's popular AWS solution to Heroku. While AWS is certainly meeting the needs of my customer (my mother-in-law), I am hoping for a solution that allows my limited time to be focused on providing business solutions instead of getting up to speed with DevOps processes.




de

Syncing Local Alexa Skills JSON Files With Alexa Developer Console Settings

In the Alexa Skills for Node.JS ASK SDK development world, the Alexa Skills Kit (ASK) Command-Line Interface (CLI) is one of the most overlooked tools.

Boosting Developer Productivity

With proper use, one could really increase productivity when developing Alexa Skills. This is especially so if you are creating many Alexa Skills, either because you are in the learning process or you are just managing multiple Alexa Skills projects for yourself or your clients.




de

.NET Development Tools for Smart Development in 2020

.NET is indeed an important application development platform, as it's secure, robust, and quite easy to learn and implement. Developers are widely using the .NET framework to build web applications and even modernize legacy programming based applications into .NET-based ones. .NET developers also use many third-party tools to carry out development. These tools have proven to provide the best support for development.

Here are some of the top useful tools being used by many.NET development teams, .NET developers, individual .NET programmers, etc.