ic

Battery pack with integral non-contact discharging means and electronic device including the same

A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.




ic

Wireless self-sufficient monitoring system for a door lock mechanism

The invention relates to a monitoring system for monitoring a state of a door lock mechanism of a door or of a closure of a storage space of a means of transportation, comprising a generator and a sensor/actuator. The generator produces electrical energy from vibration energy, and the sensor detects the state of the door lock mechanism. The sensor uses the kinetic energy that is produced by the actuation of the door lock to generate an electrical signal, which is then transmitted to a microcontroller.




ic

Discharge device and discharge method for the active discharge of a capacitor for use in the electric-power system of an electric-drive vehicle

A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.




ic

Aggregation server for grid-integrated vehicles

Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.




ic

Battery module, electric vehicle, authentication apparatus, and discharging control method for battery module

There is provided a battery module including: a power storage unit storing power; a first authentication unit carrying out first authentication via a first authentication route; a second authentication unit carrying out second authentication via a second authentication route; and a discharging control unit controlling discharging from the power storage unit to an external appliance, wherein the first authentication unit is operable, when the first authentication has succeeded, to share key information to be used in the second authentication with an authentication party for the second authentication, the second authentication unit carries out the second authentication using the key information shared with the authentication party, and the discharging control unit is operable, when the second authentication has succeeded, to permit discharging from the power storage unit.




ic

Available charging/discharging current calculation method and power supply device

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.




ic

Charging device, image forming apparatus, and computer program product

An charging device includes: capacitors connected in series; a charging unit that charges the capacitors; bypass units, each respectively connects in parallel to each capacitors, wherein each bypass unit causes, when a charged voltage of any capacitor has reached a set voltage, a charging current to bypass the capacitor whose charged voltage has reached the set voltage; and a control unit that controls the charging unit to charge the capacitors in such a manner that, when a charging voltage of the any capacitor has reached the set voltage, the control unit causes the charging unit to reduce the charging current, and if a predetermined period has elapsed since the charging voltage has reached the set voltage, and if a charging voltage of any of the other capacitors has not reached the set voltage after the predetermined period, the control unit causes the charging unit to increase the charging current.




ic

Electricity generation device and permanent-magnet electric generator

An electricity generation device includes a permanent-magnet electric generator with three or more phase windings each having an output terminal and connected to a neutral point, and bidirectional semiconductor switching circuits capable of interrupting connections between the respective phase windings and the neutral point. Each switching circuit allows current to flow in both directions. A gate signal generation circuit outputs to one of the switching circuits during a period including the time at which the AC voltage excited in the corresponding phase winding turns from positive to negative and during a period including the time at which the AC voltage excited in the corresponding phase winding turns from negative to positive. A startup gate signal output circuit outputs a startup gate signal to all of the bidirectional semiconductor switching circuits when the permanent-magnet electric generator is to be started.




ic

Automatic start/stop device for engine-driven power generator

Starting and stopping an engine is automatically controlled based on a load without using a relay. An inverter engine-driven power generator has an alternator, a rectifying circuit, a DC/DC converter, and an inverter circuit. A load detection circuit is connected to an output of the inverter circuit in parallel. A load detection line of the load detection circuit is connected to an output line of the inverter circuit in parallel via resistors. A power supply formed of a battery is connected to the load detection line. A decision circuit outputs a load detection signal when a current having a preset value or more flows through the load detection line. A drive/stop CPU starts the engine in response to the load detection. The resistors are set at a resistance value which does not influence a load to which a generator output is supplied.




ic

Automatic start and stop of a portable engine driven power source

The present embodiments provide a control system and method that is able to automatically start and/or stop a portable engine-driven power source. For example, in one embodiment, a system includes an engine-driven power source having an engine, a compressor driven by the engine, a sensor configured to generate a first signal indicative of a demand for air pressure from the compressor and a second signal indicative of no demand for air pressure from the compressor. The engine-driven power source also includes a controller configured to stop the engine in response to the second signal.




ic

Doubly-fed generator and doubly-fed electric machine

The excitation overcurrent detection unit for the doubly-fed electric machine is provided with a function to determine an excitation current magnitude relationship among three phases. The firing pulse is held to on-state or off-state to cause the largest-current phase and the second-largest-current phase to charge the DC capacitor by the operation of diodes. The conduction ratio of the third-largest-current phase or minimum current phase is controlled according to the detected current value to protect against a possible short-circuit across the DC capacitor. When the voltage of the DC capacitor exceeds a preset value, the voltage is suppressed by operating active or passive power devices.




ic

Vehicle rotary electric machine capable of safely starting synchronous rectification

A rotary electric machine for a vehicle that is capable of starting synchronous rectification through switching elements after having ensured absence of a short circuit fault. The rotary electric machine includes a multi-phase armature winding, a switching element set that includes a plurality of pairs of upper-arm and lower-arm switching elements to form a bridge rectification circuit together with the armature winding, an on/off-timing setter that sets on/off-timing of each switching element, a switching element driver that drives each switching element at the on/off-timing set by the on/off-timing setter; and a synchronous control start determiner that determines timing when an energization period for the upper-arm switching element and an energization period for the lower-arm switching element occur alternately as start timing of the synchronous rectification.




ic

System and method for non-sinusoidal current waveform excitation of electrical generators

An electrical generator includes a stator having fractional-slot concentrated windings and a rotor having field windings. A drive is provided having a circuit to control current flow to the field windings and a controller to input an initial DC field current demand to the circuit to cause the circuit to output an initial DC field current representative of a DC field current demand that would cause an electrical generator having sinusoidal stator windings to output a desired AC power. The controller receives feedback on the magnetic field generated by the initial DC field current, isolates an ideal fundamental component of the magnetic field based on the feedback and to generate a modified DC field current demand, and inputs the modified DC field current demand to the circuit, thereby causing the circuit to output an instantaneous non-sinusoidal current to the field windings to generate a sinusoidal rotating air gap magnetic field.




ic

Method and device for primary frequency regulation based on bang-bang control

The present invention provides a method and a device for primary frequency regulation based on bang-bang control, the method comprises: obtaining in real-time a power grid frequency of a steam turbine generator set; performing a subtraction operation on a rated power grid frequency and said power grid frequency to generate a power grid frequency difference; performing a dead zone process on the power grid frequency difference according to a dead zone fixed value to generate a frequency difference; performing a frequency difference compensation operation on the frequency difference to generate a frequency difference compensation instruction; and combining an original primary frequency regulation output instruction with the frequency difference compensation instruction and outputting the result to a steam turbine speed regulation system when a selecting switch is 1.




ic

Fault tolerant electrical machine

A fault tolerant electrical machine including: a plurality of phases; a detector arranged to detect a fault in at least one of the phases; and a controller arranged to intentionally cause a fault in at least one other of the phases such that the vector sum of the second harmonic power vectors of the remaining phases is zero.




ic

Wind energy plant with dynamic power distribution between the pitch system and supplementary electrical load

A wind energy plant comprising a rotor having blades and a generator driven by said rotor for generating electric energy. The pitch of the blades can be adjusted and a pitch system for adjusting the pitch angle of the blades is provided, which is supplied by a hub power source. An additional electric load is provided on the hub. A pitch power control device is provided which dynamically distributes the power of the hub power source between the pitch system and the additional electric load and further acts on the pitch system such that its power consumption during high-load operation is reduced. Thus, the power consumption of the pitch system during high-load operation can be reduced and additional power provided for operating the additional load. Even large additional loads, such as a blade heater, can be operated in this way, without having to boost the hub power source.




ic

Electric rotary machine for motor vehicle

An alternator has rectifying module groups. The rectifying module groups form a bridge circuit. The rectifying module groups have a load dump protection judgment section for monitoring an output voltage of rectifying module groups. When the monitored output voltage exceeds a first threshold voltage, the load dump protection judgment section provides to a control section an instruction to turn on MOS transistors in a lower arm of the bridge circuit at a time when a predetermined delay time has elapsed. When a second threshold voltage is lower than the first threshold voltage and the monitored output voltage becomes less than the second threshold voltage after the monitored output voltage exceeds the first threshold voltage, the load dump protection judgment section provides to the control circuit an instruction to turn on the MOS transistors in the lower arm after the MOS transistors are turned off during a predetermined time length.




ic

On-demand electric power system

An on-demand electric power system for providing on-demand electric power in remote locations. The on-demand electric power system generally includes a protective housing, an engine-generator within the protective housing, a control switch electrically positioned between the engine-generator and an electric load, and a control unit in communication with the engine-generator and the control switch to control operation of the engine-generator along with electrical power to the electric load. The control unit detects when electrical power is required by an electric load and then first starts the engine-generator. After a period of time, the control unit then closes the control switch to provide electrical power to the electric load.




ic

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from condensers

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated by extracting thermal energy from a gas to condense the gas into a liquid and transferring the thermal energy to the electrically polarizable material. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material in thermal communication with a heat source, wherein the heat source is a condenser. An apparatus is also described which comprises a chamber, one or more conduits inside the chamber for conveying a cooling fluid and an electrically polarizable material sandwiched between electrodes on an outer surface of the conduit. A gas introduced into the chamber condenses on the conduits and thermal energy is thereby transferred from the gas to the electrically polarizable material.




ic

Magnetic controlled power generator

A magnetic controlled power generator provides a magnetic controlled loading device, power generator and flywheel device to form two independent modules which are easily assembled and disassembled for easy manufacture and maintenance. Besides, the magnetic controlled power generator has simple installation and lightweight components to generate a radial displacement for magnetic flux control, achieving continuous adjustment of the load resistance, thereby having the effect of reducing the cost and weight.




ic

Method and device to compensate for a dip in the output voltage of a motor-vehicle alternator

A dip in the output voltage of a motor-vehicle alternator, owing to a connecting of a load or a change in speed, is compensated with the aid of an alternator regulator which provides a control signal that has a duty factor and increases the excitation current of the motor-vehicle alternator. After the occurrence of the voltage dip, in a first step, the duty factor of the control signal is increased by a differential amount, and in a subsequent second step, the rate of correction is limited. After the occurrence of the voltage dip, parameters describing the instantaneous working point of the motor-vehicle alternator are determined, and in the first step, the differential amount is set as a function of the working point.




ic

Acyclic exciter for an alternator

A self-excited alternator for generating electrical energy. The alternator includes a stator, a rotor, and an exciter. The rotor includes conductors which are integrated within the rotor via one of a casting process, a welding process, or a fastening process. The exciter includes a magnet producing a static magnetic field, and a rotatable conductive member coupled to the shaft and electrically coupled to the one or more conductors. The rotatable conductive member is operable to output the direct current to the one or more conductors upon rotation within the static magnetic field, thus exciting the alternator.




ic

Temperature detection device that detects temperature of rotor of motor

A temperature detection device that detects a temperature of a rotor of a motor. The temperature detection device has a current detection unit configured to detect a current value of a current flowing through a winding with which any one of a stator and the rotor of the motor is provided, an iron loss estimation unit configured to estimate an iron loss of the rotor using the current value, and a rotor temperature estimation unit configured to estimate the temperature of the rotor using the iron loss.




ic

Overvoltage limiter in an aircraft electrical power generation system

A generator includes a permanent magnet generator, an exciter and a main generator mounted for rotation on a shaft. The main generator is configured to produce a voltage output. A generator control unit includes a circuit configured to provide current from the permanent magnet generator to the exciter. A switch is provided in the circuit and is configured to change between open and closed conditions. The switch is configured to flow current in the circuit in the closed condition and interrupt current flow in the open condition. An overvoltage limit controller is programmed to determine an amount of overvoltage of the output voltage exceeding a desired voltage. Either a fixed reference threshold is used or a reference threshold voltage is calculated based upon the duration in over voltage condition, and the switch is modulated between the open and closed conditions according to error between the actual output voltage and the reference threshold voltage to limit the output voltage to the desired reference threshold voltage.




ic

Power supply system for motor vehicle provided with control device of voltage applied to field coil of generator

A power supply system for a motor vehicle includes a generator that includes a rotor having a field coil and a stator having an armature coil; a rectifier that rectifies AC power generated in the armature coil; an excitation control circuit that takes control of a voltage applied to the field coil; a capacitor that is connected to the DC side of the rectifier, and receives and transfers the rectified power; a battery connected to an electric load of the motor vehicle; a DC-DC converter that is connected between the capacitor and the battery and capable of converting unidirectionally or bidirectionally an input DC voltage into any DC voltage; and a selection switch which connects the capacitor or the battery to the excitation control circuit as a power supply source.




ic

Regulator/brush-holder assembly for a motor-vehicle alternator, manufacturing process and corresponding alternator

The regulator/brush-holder assembly (1) comprises a support (2) and an electrical circuit (5, 6) comprising a regulating element (5) connected by microwires to a trace circuit (6). The electrical circuit further includes a filtering circuit (10) separate from the regulating element and connected by microwires to the trace circuit. According to one particular embodiment, the filtering circuit comprises an insulating substrate (11) and surface-mounted components (C1, C2, S1, S2, V). A ground plane (19) and/or one or more ground pads may be provided for connection to a ground trace of the trace circuit. The filtration frequencies of the filter circuit extend from 100 kHz to 1 GHz.




ic

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from various sources and a vehicle comprising the apparatus

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated using thermal energy obtained from: a combustion reaction; solar energy; a nuclear reaction; ocean water; geothermal energy; or thermal energy recovered from an industrial process. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material. The heat source used to heat the material can be: a combustion apparatus; a solar thermal collector; or a component of a furnace exhaust device. Alternatively, the heat exchanger can be a device for extracting thermal energy from the earth, the sun, ocean water, an industrial process, a combustion reaction or a nuclear reaction. A vehicle is also described which comprises an apparatus for converting heat to electrical energy connected to an electric motor.




ic

Thermionic generator

A thermionic generator for converting thermal energy to electric energy includes: an emitter electrode for emitting thermal electrons from a thermal electron emitting surface when heat is applied to the emitter electrode; a collector electrode facing the emitter electrode spaced apart from the emitter electrode by a predetermined distance, and receiving the thermal electrons from the emitter electrode via a facing surface of the collector electrode; and a substrate having one surface. The emitter electrode and the collector electrode are disposed on the one surface of the substrate, and are electrically insulated from each other. The thermal electron emitting surface and the facing surface are perpendicular to the one surface.




ic

Power control method and device

The present invention discloses a method and an apparatus for power control. An apparatus for power control in accordance with an embodiment of the present invention can include: a voltage comparing part configured to compute an error voltage by using a measured voltage measured at the generator and a reference voltage that is designated; a control module configured to compute a first reactive power value for power control of the generator by being inputted with the error voltage; and a driving module configured to compute a reference reactive power value by using the first reactive power value and a second reactive power value computed using an active power value of the power converter and configured to control the power converter in correspondence with the computed reference reactive power value.




ic

Method and system for automatically adapting end user power usage

A system, method and apparatus for automatically adapting power grid usage by controlling internal and/or external power-related assets of one or more users in response to power regulation and/or frequency regulation functions in a manner beneficial to both the power grid itself and the users of the power grid.




ic

Electromagnetic device for generating electrical current and methods thereof

An AC current generator for generating an CA current and method therefor and includes a stator and a rotor. The stator includes an outer shell of non-magnetic material enclosing an evacuated chamber and having a distribution of a plurality of ferromagnets attached thereto. The rotor includes an inner core of non-magnetic material located at a stability location within said evacuated chamber and having a distribution of a plurality of diamagnets attached thereto. In addition, the AC current generator includes at least one magnetic flux detection unit located within at least one magnetic field generated by at least one group of ferromagnets of the plurality of ferromagnets. Displacing the rotor from the stability location towards the at least one group of ferromagnets generates a change in magnetic flux in the magnetic field thereby generating an AC current in the at least one magnetic flux detection unit.




ic

Rotary electrical machine with excitation provided with a digital regulator device

The rotary electrical machine is capable of functioning as a generator and outputs a continuous output voltage (Ub+) that is adjustable by an excitation current. The digital regulator (2) of the machine comprises an excitation current control means (7) and a control loop (6) that includes a device (10) for measurement, by sampling, of the output voltage (Ub+), the measurement device generating a signal sampled at a predetermined first sampling frequency (F1 e). The machine has a bandwidth that is limited by a predetermined first cutoff frequency (F1 c). The measurement device includes an apparatus for oversampling such that the first sampling frequency (F1 e) is greater than twice the first cutoff frequency (F1 c), and the control loop also includes an apparatus (12) for decimating the sampled signal.




ic

System adapted for one or more electrically propellable vehicles (letting water pass by electrical conductors)

An arrangement adapted for letting water pass by electrical conductors and their contact surfaces related to a track of a system adapted for electrically driving a vehicle along a roadway. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be supplied with current and put under voltage. At least two or three tracks are disposed parallel to each other in a common rail structure, with at least two of these tracks being adapted to support and contain individual electrical conductors with contact surfaces put under voltage, and wherein at least one track is disposed closer to the highest point of the roadway and adjacent to a track containing one of said conductors with contact surfaces, which may be put under voltage.




ic

System adapted for one or more vehicles, which may be driven forward electrically

The present invention has its application to a system for driving an electric and by one or more batteries powered vehicle along a roadway, comprising “a” one or more vehicles, which may be driven by an individual electric motor or motors and where in the respective vehicles exhibit a power-controlling control circuit for creating the necessary power and/or speed control and wherein required power i.a. can be provided primarily by a chargeable can be provided primarily by a chargeable battery set associated with the vehicle and “b” a plurality of road sections road portions divisible for the roadway, each being allotted one or more vehicle external electric stations for charging the battery set thereby and/or for supplying necessary power and energy for driving the vehicle. The underneath side of the mentioned vehicle is provided with a contact means displaceably positioned up and down and sideways, counted in the direction of transportation. Said roadway and its road sections or portions exhibits an elongated track or groove, each road section is supporting two rails in the groove and disposed under the driving path of the road section or portion. The rails being supplied with current and voltage. Said contact means is coordinated with a control equipment for creating simple adaptation of the contact means for registering the contact means for mechanical and electrical contact against said two rails.




ic

Mobile device case with retractor reel assembly for user-provided headphones

A mobile device case includes a reel assembly, including a reel, a supporting plate, and a hub between the reel and the supporting plate. The hub includes a first cavity between the hub and the supporting plate for housing a spring, and a second cavity between the hub and the reel for housing a flat flexible cable (FFC). The spring is wound in a first direction, while the FFC is wound in a second direction. The FFC includes a first end for electrically coupling to a female jack connector of a device. A female connector is electrically coupled to a second end of the FFC for engaging a male jack connector of user-provided headphones. When the reel rotates in the first direction, the spring tightens and the FFC loosens. When the reel rotates in the second direction, the spring loosens and the FFC tightens.




ic

Power supply device, power acquisition device and safety system for electromagnetic induction-powered electric vehicle

It is provided a power supply device and a power acquisition device for an electromagnetic induction-powered electric vehicle that increase a power transfer efficiency by maximizing a lateral deviation tolerance and by minimizing a gap between the power acquisition device and the power supply device while preventing the power acquisition device from colliding with an obstacle present on a road and being damaged by the collision.




ic

Device and method for inductively transmitting electric energy to displaceable consumers

The invention relates to a device for inductively transmitting electrical energy to displaceable consumers (F1-F13) that can be moved along a track, having a primary conductor arrangement (2) divided into route segments (3-7) that are electrically separated from each other, and extending along the track, wherein individual route segments (3-7) are each associated with at least one current source (3'-7') for imprinting a continuous current into each of the route segments (3-7), and to a corresponding method. The aim of the invention is to supply the displaceable consumers in an energy-saving manner with electric energy matched to demand, and to allow short reaction times when operating the device. This aim is achieved by providing the device with a means (11) for determining the total power of the displaceable consumers (F1-F13) present in each of the individual route segments (3-7) and with a means (11) for actuating the current sources (3'-7') for applying the electrical continuous current corresponding to the total power required for each route segment (3-7), or by determining, according to the method, the required total power of the displaceable consumers (F1-F13) present in each route segment and applying an electrical continuous current to each route segment (3-7) by means of the associated current source (3'-7'), said current corresponding to the total power required therein.




ic

Electrical appliance holder system

An appliance holder system for electrical handheld appliances of the type having a flexible electrical power cord attached thereto is provided. The appliance holder system includes an appliance holder assembly having at least one receptacle for receiving and storing at least one electrical handheld appliance having a flexible electrical power cord attached thereto. A power cord storage assembly of the system has a pair of spaced apart cord wrapping elements about which the flexible electrical power cord may be wrapped for storage. At least one of the cord wrapping elements is movable between a storage and release position. The cord wrapping elements are configured to retain the wrapped power cord upon the power cord storage assembly when the at least one of the cord wrapping elements is in the storage position and wherein the wrapped power cord may be removed from the power cord storage assembly without unwrapping the wrapped power cord when the at least one of the cord wrapping elements is moved to the release position.




ic

Umbilical cart and system

Disclosed is a conduit cart for supporting conduits above at least one rail. The conduit cart has a base; and at least two right-side protrusions, namely, a right-side sub-rail protrusion extending horizontally from the base; and a right-side super-rail protrusion extending horizontally from the base. The right-side sub-rail protrusion and right-side super-rail protrusion are adapted to straddle a flange of a first rail and the first rail is one among the at least one rail. Further, the base has at least two left-side protrusions, namely, a left-side sub-rail protrusion extending in a direction opposite to the right-side sub-rail protrusion from the base; and a left-side super-rail protrusion extending to the right-side super-rail protrusion from the base. The left-side sub-rail protrusion and left-side super-rail protrusion can straddle a substantially horizontal flange of a second rail, and the second rail is among the at least one rail.




ic

Auxiliary and motive electric power pick-up structure for land vehicles

An auxiliary and motive electric power pick-up structure for articulated and non-articulated land vehicles, such as electric public transport vehicles, that pass close to a collector-shoe-type power supply member mounted on a stationary support (17) along the route of the vehicle and positioned at intervals along the length of the route in order to provide auxiliary and motive electric power to the vehicle by way of the shoe (16). The structure comprises at least one conductor rail mounted on insulating supports (11) attached to the vehicle by suspension points (34), each including an elastic suspension unit (30) and a pneumatic, hydraulic or other type active suspension unit (33). In the case of articulated vehicles, the pick-up structure is divided into power supply segments (14) separated by a conducting link (19) at each articulated unit of the vehicle.




ic

Article transport facility

An article transport facility in which driving electric power can be supplied from an electricity supply line to an article transport vehicle so that it can travel through a crossing portion properly regardless of whether it is traveling along a first path or a second path. The switching device of the article transport facility is configured to switch a position change rail to a first position and a second position. The electricity supply line is supported by a first travel rail such that electric power can be supplied to the article transport vehicle traveling along the first travel rail and along the position change rail in the first position and is supported by the second travel rail such that electric power can be supplied to the article transport vehicle traveling along the second travel rail and along the position change rail in the second position.




ic

Inductively receiving electric energy for a vehicle

The invention relates to an arrangement for providing a vehicle, in particular a track bound vehicle, with electric energy, wherein the arrangement comprises a receiving device (200) adapted to receive an alternating electromagnetic field and to produce an alternating electric current by electromagnetic induction. The receiving device (200) comprises a plurality of windings and/or coils (9, 10, 11) of electrically conducting material, wherein each winding or coil (9, 10, 11) is adapted to produce a separate phase of the alternating electric current.




ic

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Low friction sheave bracket

An electrically powered mining vehicle including a frame rollingly supported on a surface for movement over the surface. An electric motor is coupled to the frame for proving power to the vehicle. A cable is electrically coupled to the electric motor for supplying electricity thereto and a cable management system is coupled to the frame and arranged to receive and payout the cable as the vehicle moves over the surface. A sheave bracket is coupled to the frame and arranged to direct the cable into the cable management system and includes a lower plate arranged substantially horizontally, a plurality of vertical rollers that are coupled to the lower plate and are arranged to guide the cable into the cable management system, and a horizontal roller that is coupled to the lower plate and arranged to elevate the cable above the lower plate.




ic

Methods and systems for charging vehicles

This disclosure provides systems and methods for charging a vehicle. A vehicle and charging station can be designed such that an electric or hybrid vehicle can operate in a fashion similar to a conventional vehicle by being opportunity charged throughout a known route.




ic

Ultra slim power supply device and power acquisition device for electric vehicle

An ultra slim power supply device for supplying power to an electric vehicle in a contactless manner includes at least one power supply track buried in a road. Each power supply track includes a plate-shaped magnetic core extending along the road, a plate or strip shaped magnetic field generator arranged above the magnetic core through which an alternating current is supplied to generate a magnetic field, a plate or strip shaped insulating body positioned between the magnetic core and the magnetic field generator to isolate them from each other, and a housing for enclosing the magnetic core, the magnetic field generator and the insulating body.




ic

System adapted for one or more electrically propellable vehicles (cleansing means)

A cleaning means related to a vehicle-related system for driving an electrically propellable vehicle along a roadway. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. The cleaning means is rotatably fastened in an upper area thereof about a horizontally oriented axis of rotation and adapted to clean the track from loose obstacles and/or yield to solid obstacles. The cleaning means and the axis of rotation are movably disposed in vertical direction by means of a resilient member. The cleaning comprises a forwardly directed edge portion oriented in the direction of travel, the edge portion comprising a point which may be brought into contact with the track and the conductor.




ic

System adapted for one or more electrically propellable vehicles (battery charging arrangement)

A vehicle-related system adapted for electrically driving a vehicle along a road-way. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. A circuit, determining instantaneous power content of the set of batteries, is adapted to connect the vehicle-external power source via a switch belonging to the electric station, in order to charge the set of batteries and/or to supply power to the vehicle motor via a control circuit, when the power content of the set of batteries is at a predetermined level of power, lying below a maximum power content, and a supply of power or voltage from the vehicle-external power source is available.




ic

360-degree freedom electric cord device and system

A 360-degree freedom electric cord device system contains and manages automatic extension and retraction of an electric cord/cable supplying power to a push/pull-type electric machine, either self-propelled or not, for intended displacement or steering on a surface by a user. The 360-degree freedom electric cord device system, partly mounted on the electric machine, allows the power cord to clear obstacles on the surface and includes a self-retracting spool to automatically extend and rewind the power cord and continuously keeps physical tension therein, in a straight line and a natural position, during the displacement in any direction of the electric machine. With a ratchet mechanism, the device can also suitably be used independently of the machine as an electric retractable extension cord reel.




ic

Umbilical cart and system

Disclosed is a conduit cart for supporting conduits above at least one rail. The conduit cart has a base; and at least two right-side protrusions, namely, a right-side sub-rail protrusion extending horizontally from the base; and a right-side super-rail protrusion extending horizontally from the base. The right-side sub-rail protrusion and right-side super-rail protrusion are adapted to straddle a flange of a first rail and the first rail is one among the at least one rail. Further, the base has at least two left-side protrusions, namely, a left-side sub-rail protrusion extending in a direction opposite to the right-side sub-rail protrusion from the base; and a left-side super-rail protrusion extending to the right-side super-rail protrusion from the base. The left-side sub-rail protrusion and left-side super-rail protrusion can straddle a substantially horizontal flange of a second rail, and the second rail is among the at least one rail.




ic

System adapted for one or more electrically propellable vehicles (a snow plough arrangement)

A snow plough arrangement comprising a least one snow plough unit and related to a system for driving an electrically propellable vehicle along a roadway. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. The snow plough unit is rotatably fastened to the contact means in an upper area thereof about a horizontally oriented axis of rotation and adapted to clear loose obstacles from the track and yield to solid obstacles. The snow plough unit and the axis of rotation are movably disposed in a vertical direction by means of a resilient member. The snow plough unit comprises a forwardly directed edge portion oriented in the direction of travel, the edge portion comprising a point, which may be brought into contact with the bottom of the track and/or the conductor.