hy Crystal structure and Hirshfeld surface analysis of 3,4-dihydro-2H-anthra[1,2-b][1,4]dioxepine-8,13-dione By scripts.iucr.org Published On :: 2020-03-27 The title compound, C17H12O4, was synthesized from the dye alizarin. The dihedral angle between the mean plane of the anthraquinone ring system (r.m.s. deviation = 0.039 Å) and the dioxepine ring is 16.29 (8)°. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane. The sheets are connected through π–π and C=O⋯π interactions to generate a three-dimensional supramolecular network. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid-state: the most important contributions are from H⋯H (43.0%), H⋯O/O⋯H (27%), H⋯C/C⋯H (13.8%) and C⋯C (12.4%) contacts. Full Article text
hy Crystal structure, Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione By scripts.iucr.org Published On :: 2020-03-27 In the fused ring system of the title compound, C32H37NO4, the central dihydropyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the dihydropyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclohexenone rings adopt envelope conformations with the tetrasubstituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the dihydropyridine ring. In the crystal, molecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertake to determine the chemical reactivity of the title compound. Full Article text
hy Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of ethyl 2-[(2Z)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]acetate By scripts.iucr.org Published On :: 2020-04-07 The title compound, C19H16ClNO3S, consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers of molecules parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria. Full Article text
hy Crystal structures of (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide By scripts.iucr.org Published On :: 2020-04-03 The title complexes, (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the orthorhombic space group Pccn, both with Z = 4. Full Article text
hy Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate-κ2N2,O]bis(thiocyanato)nickel(II) By scripts.iucr.org Published On :: 2020-04-07 The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half molecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octahedral coordination geometry with two mutually trans benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligands in the equatorial plane with the axial positions occupied by N-bound thiocyanato ligands. The overall conformation of the molecule is also affected by two, inversion-related, intramolecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses. Full Article text
hy Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol By scripts.iucr.org Published On :: 2020-04-03 The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
hy Dehydration synthesis and crystal structure of terbium oxychloride, TbOCl By scripts.iucr.org Published On :: 2020-04-03 Terbium oxychloride, TbOCl, was synthesized via the simple heat-treatment of TbCl3·6H2O and its structure was determined by refinement against X-ray powder diffraction data. TbOCl crystallizes with the matlockite (PbFCl) structure in the tetragonal space group P4/nmm and is composed of alternating (001) layers of (TbO)n and n Cl−. The unit-cell parameters, unit-cell volume, and density were compared to the literature data of other isostructural rare-earth oxychlorides in the same space group and showed good agreement when compared to the calculated trendlines. Full Article text
hy Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2020-04-09 The asymmetric unit of the title compound, C22H31NO3, comprises of one molecule. The molecule is not planar, with the carboxylate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual molecules are linked by aromaticC—H⋯Ocarbonyl hydrogen bonds into chains running parallel to [001]. Slipped π–π stacking interactions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and molecular electrostatic potential surfaces were used to quantify the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) interactions. Full Article text
hy Crystal structure of N'-[4-(dimethylamino)benzylidene]furan-2-carbohydrazide monohydrate By scripts.iucr.org Published On :: 2020-04-09 The condensation of 2-furoic hydrazide and 4-dimethyl aminobenzaldehyde in ethanol yielded a yellow solid formulated as the title compound, C14H15N3O2·H2O. The crystal packing is stabilized by intermolecular O(water)—H⋯O,N(carbohydrazide) and N—H⋯O(water) hydrogen bonds, which form a two-dimensional network along the bc plane. Additional C—H⋯O interactions link the molecules into a three-dimensional network. The dihedral angle between the mean planes of the benzene and the furan ring is 34.47 (6)°. The carbohydrazide moiety, i.e., the C=N—N—C=O fragment and the benzene ring are almost coplanar, with an angle of 6.75 (9)° between their mean planes. Full Article text
hy Synthesis and crystal structures of tetrameric [2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]sodium and tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]ytterbium(III) By scripts.iucr.org Published On :: 2020-04-21 Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetrameric poly[bis[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4',4'-dimethyl-2'-oxazolinyl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexamethyldisilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetrameric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetramer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetrameric unit. The structure of 3 consists of a distorted octahedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitrogen is trans to an oxazoline nitrogen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å]. Full Article text
hy Synthesis and structure of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate By scripts.iucr.org Published On :: 2020-04-17 The title compound, C18H16N2O3S, was synthesized by reaction of 2-mercapto-3-phenylquinazolin-4(3H)-one with ethyl chloroacetate. The quinazoline ring forms a dihedral angle of 86.83 (5)° with the phenyl ring. The terminal methyl group is disordered by a rotation of about 60° in a 0.531 (13): 0.469 (13) ratio. In the crystal, C—H⋯O hydrogen-bonding interactions result in the formation of columns running in the [010] direction. Two parallel columns further interact by C—H⋯O hydrogen bonds. The most important contributions to the surface contacts are from H⋯H (48.4%), C⋯H/H⋯C (21.5%) and O⋯H/H⋯O (18.7%) interactions, as concluded from a Hirshfeld analysis. Full Article text
hy Functionalized 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phenyl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples By scripts.iucr.org Published On :: 2020-04-21 Five examples each of 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-ones and the corresponding 1-(4-azidophenyl)-3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C32H24N2O3, (Ie), the molecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific intermolecular interactions in the structure of 1-(4-azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the dichlorophenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the molecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the molecular conformations within both series of compounds. Full Article text
hy 2-[(2,4,6-Trimethylbenzene)sulfonyl]phthalazin-1(2H)-one: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-04-21 The X-ray crystal structure of the title phthalazin-1-one derivative, C17H16N2O3S {systematic name: 2-[(2,4,6-trimethylbenzene)sulfonyl]-1,2-dihydrophthalazin-1-one}, features a tetrahedral sulfoxide-S atom, connected to phthalazin-1-one and mesityl residues. The dihedral angle [83.26 (4)°] between the organic substituents is consistent with the molecule having the shape of the letter V. In the crystal, phthalazinone-C6-C—H⋯O(sulfoxide) and π(phthalazinone-N2C4)–π(phthalazinone-C6) stacking [inter-centroid distance = 3.5474 (9) Å] contacts lead to a linear supramolecular tape along the a-axis direction; tapes assemble without directional interactions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of the C—H⋯O and π-stacking interactions but, also H⋯H and C—H⋯C contacts. The calculation of the interaction energies indicate the importance of dispersion terms with the greatest energies calculated for the C—H⋯O and π-stacking interactions. Full Article text
hy Structure of a push–pull olefin prepared by ynamine hydroboration with a borandiol ester By scripts.iucr.org Published On :: 2020-04-21 N-[(Z)-2-(2H-1,3,2-Benzodioxaborol-2-yl)-2-phenylethenyl]-N-(propan-2-yl)aniline, C23H22BNO2, contains a C=C bond that is conjugated with a donor and an acceptor group. An analysis that included similar push–pull olefins revealed that bond lengths in their B—C=C—N core units correlate with the perceived acceptor and donor strength of the groups. The two phenyl groups in the molecule are rotated with respect to the plane that contains the BCCN atoms, and are close enough for significant π-stacking. Definite characterization of the title compound demonstrates, for the first time in a reliable way, that hydroboration of ynamines with borandiol esters is feasible. Compared to olefin hydroboration with borane, the ynamine substrate is activated enough to undergo reaction with the less active hydroboration reagent catecholborane. Full Article text
hy Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)methyl]amino}benzoic acid dimethylformamide monosolvate By scripts.iucr.org Published On :: 2020-04-24 The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a dimethylformamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic molecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Caryl—CH2—NH—Caryl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supramolecular network, resulting from hydrogen-bonding interactions between the carboxylic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carboxylic group and additional C—H⋯π interactions. Hirshfeld surface analysis was performed to quantify the intermolecular interactions. Full Article text
hy Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals By scripts.iucr.org Published On :: 2020-04-24 The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules. Full Article text
hy Synthesis and crystal structure of a pentacopper(II) 12-metallacrown-4: cis-diaquatetrakis(dimethylformamide-κO)manganese(II) tetrakis(μ3-N,2-dioxidobenzene-1-carboximidate)pentacopper(II) By scripts.iucr.org Published On :: 2020-04-30 The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicylhydroximate, and DMF is N,N-dimethylformamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main molecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each pentacopper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octahedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water molecules of the MnII ion. The water molecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs. Full Article text
hy 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography By scripts.iucr.org Published On :: 2020-04-23 The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information. Full Article text
hy Radiation damage in small-molecule crystallography: fact not fiction By scripts.iucr.org Published On :: 2019-06-14 Traditionally small-molecule crystallographers have not usually observed or recognized significant radiation damage to their samples during diffraction experiments. However, the increased flux densities provided by third-generation synchrotrons have resulted in increasing numbers of observations of this phenomenon. The diversity of types of small-molecule systems means it is not yet possible to propose a general mechanism for their radiation-induced sample decay, however characterization of the effects will permit attempts to understand and mitigate it. Here, systematic experiments are reported on the effects that sample temperature and beam attenuation have on radiation damage progression, allowing qualitative and quantitative assessment of their impact on crystals of a small-molecule test sample. To allow inter-comparison of different measurements, radiation-damage metrics (diffraction-intensity decline, resolution fall-off, scaling B-factor increase) are plotted against the absorbed dose. For ease-of-dose calculations, the software developed for protein crystallography, RADDOSE-3D, has been modified for use in small-molecule crystallography. It is intended that these initial experiments will assist in establishing protocols for small-molecule crystallographers to optimize the diffraction signal from their samples prior to the onset of the deleterious effects of radiation damage. Full Article text
hy Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements By scripts.iucr.org Published On :: 2019-07-15 In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions. Full Article text
hy On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies By scripts.iucr.org Published On :: 2019-06-19 Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, `naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds. Full Article text
hy Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps By scripts.iucr.org Published On :: 2019-06-27 Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator, an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool. Full Article text
hy Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder By scripts.iucr.org Published On :: 2019-06-20 Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation. Full Article text
hy Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography By scripts.iucr.org Published On :: 2019-06-23 Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed. Full Article text
hy 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector By scripts.iucr.org Published On :: 2019-08-17 Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s. Full Article text
hy Why is interoperability between the two fields of chemical crystallography and protein crystallography so difficult? By scripts.iucr.org Published On :: 2019-08-13 The interoperability of chemical and biological crystallographic data is a key challenge to research and its application to pharmaceutical design. Research attempting to combine data from the two disciplines, small-molecule or chemical crystallography (CX) and macromolecular crystallography (MX), will face unique challenges including variations in terminology, software development, file format and databases which differ significantly from CX to MX. This perspective overview spans the two disciplines and originated from the investigation of protein binding to model radiopharmaceuticals. The opportunities of interlinked research while utilizing the two databases of the CSD (Cambridge Structural Database) and the PDB (Protein Data Bank) will be highlighted. The advantages of software that can handle multiple file formats and the circuitous route to convert organometallic small-molecule structural data for use in protein refinement software will be discussed. In addition some pointers to avoid being shipwrecked will be shared, such as the care which must be taken when interpreting data precision involving small molecules versus proteins. Full Article text
hy Diversifying molecular and topological space via a supramolecular solid-state synthesis: a purely organic mok net sustained by hydrogen bonds By scripts.iucr.org Published On :: 2019-09-07 A three-dimensional hydrogen-bonded network based on a rare mok topology has been constructed using an organic molecule synthesized in the solid state. The molecule is obtained using a supramolecular protecting-group strategy that is applied to a solid-state [2+2] photodimerization. The photodimerization affords a novel head-to-head cyclobutane product. The cyclobutane possesses tetrahedrally disposed cis-hydrogen-bond donor (phenolic) and cis-hydrogen-bond acceptor (pyridyl) groups. The product self-assembles in the solid state to form a mok network that exhibits twofold interpenetration. The cyclobutane adopts different conformations to provide combinations of hydrogen-bond donor and acceptor sites to conform to the structural requirements of the mok net. Full Article text
hy High-throughput structures of protein–ligand complexes at room temperature using serial femtosecond crystallography By scripts.iucr.org Published On :: 2019-10-10 High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX. Full Article text
hy A fixed-target platform for serial femtosecond crystallography in a hydrated environment By scripts.iucr.org Published On :: 2020-01-01 For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering. Full Article text
hy 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow By scripts.iucr.org Published On :: 2020-01-16 Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX. Full Article text
hy The early history of cryo-cooling for macromolecular crystallography By scripts.iucr.org Published On :: 2020-01-25 This paper recounts the first successful cryo-cooling of protein crystals that demonstrated the reduction in X-ray damage to macromolecular crystals. The project was suggested by David C. Phillips in 1965 at the Royal Institution of Great Britain and continued in 1967 at the Weizmann Institute of Science, where the first cryo-cooling experiments were performed on lysozyme crystals, and was completed in 1969 at Purdue University on lactate dehydrogenase crystals. A 1970 publication in Acta Crystallographica described the cryo-procedures, the use of cryo-protectants to prevent ice formation, the importance of fast, isotropic cryo-cooling and the collection of analytical data showing more than a tenfold decrease in radiation damage in cryo-cooled lactate dehydrogenase crystals. This was the first demonstration of any method that reduced radiation damage in protein crystals, which provided crystallographers with suitable means to employ synchrotron X-ray sources for protein-crystal analysis. Today, fifty years later, more than 90% of the crystal structures deposited in the Protein Data Bank have been cryo-cooled. Full Article text
hy Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals By scripts.iucr.org Published On :: 2020-02-26 Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme. Full Article text
hy Structure and mechanism of copper–carbonic anhydrase II: a nitrite reductase By scripts.iucr.org Published On :: 2020-02-21 Nitric oxide (NO) promotes vasodilation through the activation of guanylate cyclase, resulting in the relaxation of the smooth muscle vasculature and a subsequent decrease in blood pressure. Therefore, its regulation is of interest for the treatment and prevention of heart disease. An example is pulmonary hypertension which is treated by targeting this NO/vasodilation pathway. In bacteria, plants and fungi, nitrite (NO2−) is utilized as a source of NO through enzymes known as nitrite reductases. These enzymes reduce NO2− to NO through a catalytic metal ion, often copper. Recently, several studies have shown nitrite reductase activity of mammalian carbonic anhydrase II (CAII), yet the molecular basis for this activity is unknown. Here we report the crystal structure of copper-bound human CAII (Cu–CAII) in complex with NO2− at 1.2 Å resolution. The structure exhibits Type 1 (T-1) and 2 (T-2) copper centers, analogous to bacterial nitrite reductases, both required for catalysis. The copper-substituted CAII active site is penta-coordinated with a `side-on' bound NO2−, resembling a T-2 center. At the N terminus, several residues that are normally disordered form a porphyrin ring-like configuration surrounding a second copper, acting as a T-1 center. A structural comparison with both apo- (without metal) and zinc-bound CAII (Zn–CAII) provides a mechanistic picture of how, in the presence of copper, CAII, with minimal conformational changes, can function as a nitrite reductase. Full Article text
hy Hypothesis for a mechanism of beam-induced motion in cryo-electron microscopy By scripts.iucr.org Published On :: 2020-03-26 Estimates of heat-transfer rates during plunge-cooling and the patterns of ice observed in cryo-EM samples indicate that the grid bars cool much more slowly than do the support foil and sample near the middle of the grid openings. The resulting transient temperature differences generate transient tensile stresses in the support foil. Most of this foil stress develops while the sample is liquid and cooling toward its glass transition Tg, and so does not generate tensile sample stress. As the grid bars continue cooling towards the cryogen temperature and contracting, the tensile stress in the foil is released, placing the sample in compressive stress. Radiation-induced creep in the presence of this compressive stress should generate a doming of the sample in the foil openings, as is observed experimentally. Crude estimates of the magnitude of the doming that may be generated by this mechanism are consistent with observation. Several approaches to reducing beam-induced motion are discussed. Full Article text
hy Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction By scripts.iucr.org Published On :: 2020-04-02 A large amount of hydrogen circulates inside the Earth, which affects the long-term evolution of the planet. The majority of this hydrogen is stored in deep Earth within the crystal structures of dense minerals that are thermodynamically stable at high pressures and temperatures. To understand the reason for their stability under such extreme conditions, the chemical bonding geometry and cation exchange mechanism for including hydrogen were analyzed in a representative structure of such minerals (i.e. phase E of dense hydrous magnesium silicate) by using time-of-flight single-crystal neutron Laue diffraction. Phase E has a layered structure belonging to the space group R3m and a very large hydrogen capacity (up to 18% H2O weight fraction). It is stable at pressures of 13–18 GPa and temperatures of up to at least 1573 K. Deuterated high-quality crystals with the chemical formula Mg2.28Si1.32D2.15O6 were synthesized under the relevant high-pressure and high-temperature conditions. The nuclear density distribution obtained by neutron diffraction indicated that the O—D dipoles were directed towards neighboring O2− ions to form strong interlayer hydrogen bonds. This bonding plays a crucial role in stabilizing hydrogen within the mineral structure under such high-pressure and high-temperature conditions. It is considered that cation exchange occurs among Mg2+, D+ and Si4+ within this structure, making the hydrogen capacity flexible. Full Article text
hy Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography By scripts.iucr.org Published On :: 2020-04-10 Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline. Full Article text
hy A structural study of TatD from Staphylococcus aureus elucidates a putative DNA-binding mode of a Mg2+-dependent nuclease By scripts.iucr.org Published On :: 2020-04-17 TatD has been thoroughly investigated as a DNA-repair enzyme and an apoptotic nuclease, and still-unknown TatD-related DNases are considered to play crucial cellular roles. However, studies of TatD from Gram-positive bacteria have been hindered by an absence of atomic detail and the resulting inability to determine function from structure. In this study, an X-ray crystal structure of SAV0491, which is the TatD enzyme from the Gram-positive bacterium Staphylococcus aureus (SaTatD), is reported at a high resolution of 1.85 Å with a detailed atomic description. Although SaTatD has the common TIM-barrel fold shared by most TatD-related homologs, and PDB entry 2gzx shares 100% sequence identity with SAV0491, the crystal structure of SaTatD revealed a unique binding mode of two phosphates interacting with two Ni2+ ions. Through a functional study, it was verified that SaTatD has Mg2+-dependent nuclease activity as a DNase and an RNase. In addition, structural comparison with TatD homologs and the identification of key residues contributing to the binding mode of Ni2+ ions and phosphates allowed mutational studies to be performed that revealed the catalytic mechanism of SaTatD. Among the key residues composing the active site, the acidic residues Glu92 and Glu202 had a critical impact on catalysis by SaTatD. Furthermore, based on the binding mode of the two phosphates and structural insights, a putative DNA-binding mode of SaTatD was proposed using in silico docking. Overall, these findings may serve as a good basis for understanding the relationship between the structure and function of TatD proteins from Gram-positive bacteria and may provide critical insights into the DNA-binding mode of SaTatD. Full Article text
hy New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy By scripts.iucr.org Published On :: 2020-04-21 This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/siloxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres. Full Article text
hy Biochemical and structural explorations of α-hydroxyacid oxidases reveal a four-electron oxidative decarboxylation reaction By scripts.iucr.org Published On :: 2019-07-30 p-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism. A single mutant, Y128F, that extends the two-electron oxidation reaction to a four-electron oxidative decarboxylation reaction was unexpectedly observed. Biochemical and structural approaches, including biochemistry, kinetics, stable isotope labeling and X-ray crystallography, were exploited to reach these conclusions and provide additional insights. Full Article text
hy Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX By scripts.iucr.org Published On :: 2019-08-22 Human carbonic anhydrase IX (CA IX) expression is upregulated in hypoxic solid tumours, promoting cell survival and metastasis. This observation has made CA IX a target for the development of CA isoform-selective inhibitors. To enable structural studies of CA IX–inhibitor complexes using X-ray and neutron crystallography, a CA IX surface variant (CA IXSV; the catalytic domain with six surface amino-acid substitutions) has been developed that can be routinely crystallized. Here, the preparation of protiated (H/H), H/D-exchanged (H/D) and deuterated (D/D) CA IXSV for crystallographic studies and their structural comparison are described. Four CA IXSV X-ray crystal structures are compared: two H/H crystal forms, an H/D crystal form and a D/D crystal form. The overall active-site organization in each version is essentially the same, with only minor positional changes in active-site solvent, which may be owing to deuteration and/or resolution differences. Analysis of the crystal unit-cell packing reveals different crystallographic and noncrystallographic dimers of CA IXSV compared with previous reports. To our knowledge, this is the first report comparing three different deuterium-labelled crystal structures of the same protein, marking an important step in validating the active-site structure of CA IXSV for neutron protein crystallography. Full Article text
hy Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices By scripts.iucr.org Published On :: 2019-08-22 Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp–Glu–Ser), Nematoda (Asp–Asp–His) and Echinodermata (Asp–Glu–Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers. Full Article text
hy X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein By scripts.iucr.org Published On :: 2019-08-28 The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe–4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer. Full Article text
hy The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level By scripts.iucr.org Published On :: 2019-09-24 The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportionation reaction via an N5-alkanol-FMNred C'α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism. Full Article text
hy Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments By scripts.iucr.org Published On :: 2019-10-01 Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory. Full Article text
hy Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis By scripts.iucr.org Published On :: 2019-10-01 Full Article text
hy Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin By scripts.iucr.org Published On :: 2019-11-19 Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures. Full Article text
hy Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines By scripts.iucr.org Published On :: 2020-01-31 Reducing the sample-exchange time is a crucial issue in maximizing the throughput of macromolecular crystallography (MX) beamlines because the diffraction data collection itself is completed within a minute in the era of pixel-array detectors. To this end, an upgraded sample changer, SPACE-II, has been developed on the basis of the previous model, SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), at the BL41XU beamline at SPring-8. SPACE-II achieves one sample-exchange step within 16 s, of which its action accounts for only 11 s, because of three features: (i) the implementation of twin arms that enable samples to be exchanged in one cycle of mount-arm action, (ii) the implementation of long-stroke mount arms that allow samples to be exchanged without withdrawal of the detector and (iii) the use of a fast-moving translation and rotation stage for the mount arms. By pre-holding the next sample prior to the sample-exchange sequence, the time was further decreased to 11 s in the case of automatic data collection, of which the action of SPACE-II accounted for 8 s. Moreover, the sample capacity was expanded from four to eight Uni-Pucks. The performance of SPACE-II has been demonstrated in over two years of operation at BL41XU; the average number of samples mounted on the diffractometer in one day was increased from 132 to 185, with an error rate of 0.089%, which counted incidents in which users could not continue with an experiment without recovery work by entering the experimental hutch. On the basis of these results, SPACE-II has been installed at three other MX beamlines at SPring-8 as of July 2019. The fast and highly reliable SPACE-II is now one of the most important pieces of infrastructure for the MX beamlines at SPring-8, providing users with the opportunity to fully make use of limited beamtime with brilliant X-rays. Full Article text
hy SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses By scripts.iucr.org Published On :: 2020-02-25 Fragment-based molecular-replacement methods can solve a macromolecular structure quasi-ab initio. ARCIMBOLDO, using a common secondary-structure or tertiary-structure template or a library of folds, locates these with Phaser and reveals the rest of the structure by density modification and autotracing in SHELXE. The latter stage is challenging when dealing with diffraction data at lower resolution, low solvent content, high β-sheet composition or situations in which the initial fragments represent a low fraction of the total scattering or where their accuracy is low. SEQUENCE SLIDER aims to overcome these complications by extending the initial polyalanine fragment with side chains in a multisolution framework. Its use is illustrated on test cases and previously unknown structures. The selection and order of fragments to be extended follows the decrease in log-likelihood gain (LLG) calculated with Phaser upon the omission of each single fragment. When the starting substructure is derived from a remote homolog, sequence assignment to fragments is restricted by the original alignment. Otherwise, the secondary-structure prediction is matched to that found in fragments and traces. Sequence hypotheses are trialled in a brute-force approach through side-chain building and refinement. Scoring the refined models through their LLG in Phaser may allow discrimination of the correct sequence or filter the best partial structures for further density modification and autotracing. The default limits for the number of models to pursue are hardware dependent. In its most economic implementation, suitable for a single laptop, the main-chain trace is extended as polyserine rather than trialling models with different sequence assignments, which requires a grid or multicore machine. SEQUENCE SLIDER has been instrumental in solving two novel structures: that of MltC from 2.7 Å resolution data and that of a pneumococcal lipoprotein with 638 residues and 35% solvent content. Full Article text
hy Open-access and free articles in Acta Crystallographica Section D: Biological Crystallography By journals.iucr.org Published On :: Full Article Still image