gan Maintaining "Good" Care: An Articulation Work Perspective on Organizational Ethics in the Healthcare Sector By www.newswise.com Published On :: Fri, 08 Nov 2024 09:15:34 EST Full Article
gan First Case of Highly Pathogenic AI This Fall Confirmed in Gangwon Province By world.kbs.co.kr Published On :: Wed, 30 Oct 2024 17:18:54 +0900 [Domestic] : The nation has confirmed its first case of highly pathogenic avian influenza so far this fall season at a poultry farm in Gangwon Province. Quarantine authorities said Wednesday that the birds at the farm in Donghae had the highly pathogenic H5N1 strain of the virus. The farm, which raises some 700 ...[more...] Full Article Domestic
gan S. Korean Military Dismisses Accusation that Drone Flew to Pyongang from Baengnyeong Island By world.kbs.co.kr Published On :: Mon, 28 Oct 2024 13:53:00 +0900 [Inter-Korea] : The South Korean military has dismissed North Korea’s claims that a drone invaded its airspace earlier this month after taking off from the South’s Baengnyeong Island near the western de facto maritime border. At a press briefing Monday, spokesperson Lee Sung-joon from Seoul’s Joint Chiefs of ...[more...] Full Article Inter-Korea
gan Incheon’s Ganghwa County Declares ‘Danger Zone,’ Bans Anti-Pyongyang Leafleting By world.kbs.co.kr Published On :: Thu, 31 Oct 2024 14:54:21 +0900 [Inter-Korea] : Incheon’s Ganghwa County, near the inter-Korean border, has designated itself a “danger zone” effective Friday and issued an administrative order banning the dissemination of anti-Pyongyang propaganda leaflets north of the border. According to county officials on Thursday, the decision stems from ...[more...] Full Article Inter-Korea
gan Heavy Rains Reported in Eastern Gangwon, Central Chungcheong, Southern Regions By world.kbs.co.kr Published On :: Sat, 21 Sep 2024 15:37:32 +0900 [Science] : Heavy rains are being reported in the eastern parts of Gangwon, as well as the central Chungcheong provinces and southern regions on Saturday, as heavy rain alerts remain in place for most of the nation. According to the weather agency, a deluge of 30 to 50 millimeters per hour is being observed in the ...[more...] Full Article Science
gan KBS and 11 Other Organizations to Take Part in K-Content Strategic Fund By world.kbs.co.kr Published On :: Wed, 02 Oct 2024 15:37:04 +0900 [Culture] : To strengthen the global competitiveness of K-contents, eleven organizations will pool their resources to create a strategic fund worth approximately 600 billion won, or over 454 million U.S. dollars. The Ministry of Culture, Sports and Tourism and the Ministry of Science and ICT announced Wednesday that ...[more...] Full Article Culture
gan What Is Imitation Crab Meat? Is the Crab Substitute Vegan? By recipes.howstuffworks.com Published On :: Fri, 16 Feb 2024 12:45:51 -0500 If you've had a grocery store California roll or mixed seafood salad, you've probably eaten imitation crab meat. But what is imitation crab, exactly? Full Article
gan A contribution to the crystal chemistry and topology of organic thiosulfates: bis(1-methylpiperazinium)·S2O3·H2O versus 1-methylpiperazinediium·S2O3·3H2O By journals.iucr.org Published On :: Crystal structure and topology of two new thiosulfates formed with mono- and diprotonated species of 1-methylpiperazine is reported. Full Article text
gan X-ray crystal structure of a designed rigidified imaging scaffold in the ligand-free conformation By journals.iucr.org Published On :: 2024-05-20 Imaging scaffolds composed of designed protein cages fused to designed ankyrin repeat proteins (DARPins) have enabled the structure determination of small proteins by cryogenic electron microscopy (cryo-EM). One particularly well characterized scaffold type is a symmetric tetrahedral assembly composed of 24 subunits, 12 A and 12 B, which has three cargo-binding DARPins positioned on each vertex. Here, the X-ray crystal structure of a representative tetrahedral scaffold in the apo state is reported at 3.8 Å resolution. The X-ray crystal structure complements recent cryo-EM findings on a closely related scaffold, while also suggesting potential utility for crystallographic investigations. As observed in this crystal structure, one of the three DARPins, which serve as modular adaptors for binding diverse `cargo' proteins, present on each of the vertices is oriented towards a large solvent channel. The crystal lattice is unusually porous, suggesting that it may be possible to soak crystals of the scaffold with small (≤30 kDa) protein cargo ligands and subsequently determine cage–cargo structures via X-ray crystallography. The results suggest the possibility that cryo-EM scaffolds may be repurposed for structure determination by X-ray crystallography, thus extending the utility of electron-microscopy scaffold designs for alternative structural biology applications. Full Article text
gan Preliminary X-ray diffraction and ligand-binding analyses of the N-terminal domain of hypothetical protein Rv1421 from Mycobacterium tuberculosis H37Rv By journals.iucr.org Published On :: 2024-06-27 Mycobacterium tuberculosis can reside and persist in deep tissues; latent tuberculosis can evade immune detection and has a unique mechanism to convert it into active disease through reactivation. M. tuberculosis Rv1421 (MtRv1421) is a hypothetical protein that has been proposed to be involved in nucleotide binding-related metabolism in cell-growth and cell-division processes. However, due to a lack of structural information, the detailed function of MtRv1421 remains unclear. In this study, a truncated N-terminal domain (NTD) of MtRv1421, which contains a Walker A/B-like motif, was purified and crystallized using PEG 400 as a precipitant. The crystal of MtRv1421-NTD diffracted to a resolution of 1.7 Å and was considered to belong to either the C-centered monoclinic space group C2 or the I-centered orthorhombic space group I222, with unit-cell parameters a = 124.01, b = 58.55, c = 84.87 Å, β = 133.12° or a = 58.53, b = 84.86, c = 90.52 Å, respectively. The asymmetric units of the C2 or I222 crystals contained two or one monomers, respectively. In terms of the binding ability of MtRv1421-NTD to various ligands, uridine diphosphate (UDP) and UDP-N-acetylglucosamine significantly increased the melting temperature of MtRv1421-NTD, which indicates structural stabilization through the binding of these ligands. Altogether, the results reveal that a UDP moiety may be required for the interaction of MtRv1421-NTD as a nucleotide-binding protein with its ligand. Full Article text
gan Specific radiation damage to halogenated inhibitors and ligands in protein–ligand crystal structures By journals.iucr.org Published On :: This article reports an investigation into the effects of specific radiation damage to halogenated ligands in crystal structures of protein-inhibitor complexes. Full Article text
gan High accuracy, high resolution measurements of fluorescence in manganese using extended-range high-energy-resolution fluorescence detection By journals.iucr.org Published On :: We explain analysis of RIXS, HERFD and XR-HERFD data to discover new physical processes in manganese and manganese-containing materials, by applying our new technique XR-HERFD, developed from high resolution RIXS and HERFD. Full Article text
gan Stability of inorganic ionic structures: the uniformity approach By journals.iucr.org Published On :: 2024-10-14 The crystal structure uniformity is numerically estimated as the standard deviation of the crystal space quantizer 〈G3〉. This criterion has been applied to explore the uniformity of ionic sublattices in 21465 crystal structures of inorganic ionic compounds. In most cases, at least one kind of sublattice (whole ionic lattice, cationic or anionic sublattice) was found to be highly uniform with a small 〈G3〉 value. Non-uniform structures appeared to be either erroneous or essentially non-ionic. As a result, a set of uniformity criteria is proposed for the estimation of the stability of ionic crystal structures. Full Article text
gan The role of carboxylate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy By journals.iucr.org Published On :: 2024-02-16 Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxylate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxylate oxygen lone pair orbitals, through which electron density around carboxylate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature. Full Article text
gan Synthesis and structure of trans-bis(4-amino-3-nitrobenzoato-κO)bis(4-amino-3-nitrobenzoic acid-κO)diaquamanganese(II) dihydrate By journals.iucr.org Published On :: 2024-01-19 The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitrobenzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex molecules located on inversion centers. Four 4 A3NBA ligand molecules are monodentately coordinated by the Mn2+ ion through the carboxylic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water molecules, giving rise to a distorted octahedron, and two water molecules are in the outer coordination sphere. There are two intramolecular hydrogen bonds in the complex molecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxylate groups. In the crystal, an intricate system of intermolecular hydrogen bonds links the complex molecules into a three-dimensional-network. Full Article text
gan trans-Dibromidotetrakis(5-methyl-1H-pyrazole-κN2)manganese(II) By journals.iucr.org Published On :: 2024-03-19 The title compound, trans-dibromidotetrakis(5-methyl-1H-pyrazole-κN2)manganese(II), [MnBr2(C4H6N2)4] or [Mn(3-MePzH)4Br2] (1) crystallizes in the triclinic Poverline{1} space group with the cell parameters a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3, T = 120 K. The asymmetric unit contains only half the molecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an AABB type manner with two methyl groups pointing up and the other two down. The supramolecular architecture is characterized by several intermolecular C—H⋯N, N—H⋯Br, and C—H⋯π interactions. Earlier, a polymorphic structure of [Mn(3-MePzH)4Br2] (2) with a similar geometry and also an AABB arrangement for the pyrazole ligands was described [Reedijk et al. (1971). Inorg. Chem. 10, 2594–2599; a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3, T = 295 K]. A varying supramolecular pattern was reported, with the structure of 1 featuring a herringbone type pattern while that of structure 2 shows a pillared network type of arrangement along the a axis. A nickel complex [Ni(3-MePzH)4Br2] isomorphic to 1 and the analogous chloro derivatives of FeII, CoII and CuII are also known. Full Article text
gan (2,5-Dimethylimidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetrayltetra(2,1-phenylene)]tetrakis(pyridine-3-carboxamide)}manganese(II) chlorobenzene disolvate By journals.iucr.org Published On :: 2024-06-04 In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-dimethylimidazole ligand in the apical site. Two chlorobenzene solvent molecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-dimethylimidazole) bond length is 2.171 (8) Å. The structure displays intermolecular and intramolecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin. Full Article text
gan Borotropic shifting of the hydrotris[3-(2-furyl)pyrazol-1-yl]borate ligand in high-coordinate lanthanide complexes By journals.iucr.org Published On :: 2024-04-16 The coordination of hydrotris[3-(2-furyl)pyrazol-1-yl]borate (Tp2-Fu, C21H16BN6O3) to lanthanide(III) ions is achieved for the first time with the complex [Ln(Tp2-Fu)2](BPh4)·xCH2Cl2 (1-Ln has Ln = Ce and x = 2; 1-Dy has Ln = Dy and x = 1). This was accomplished via both hydrous (Ln = Ce) and anhydrous methods (Ln = Dy). When isolating the dysprosium analogue, the filtrate produced a second crop of crystals which were revealed to be the 1,2-borotropic-shifted product [Dy(κ4-Tp2-Fu)(κ5-Tp2-Fu*)](BPh4) (2) {Tp2-Fu* = hydrobis[3-(2-furyl)pyrazol-1-yl][5-(2-furyl)pyrazol-1-yl]borate}. We conclude that the presence of a strong Lewis acid and a sterically crowded coordination environment are contributing factors for the 1,2-borotropic shifting of scorpionate ligands in conjunction with the size of the conical angle with the scorpionate ligand. Full Article text
gan TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules By journals.iucr.org Published On :: 2024-06-27 3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering. Full Article text
gan Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis By journals.iucr.org Published On :: 2024-07-25 A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four compounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-diphenyl-15-oxa-7-stannatetracyclo[11.3.1.05,16.09,14]heptadeca-1,3,5(16),9(14),10,12-hexaene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K confirmed the formation of a mononuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O interaction. The Sn and O atoms are surrounded by hydrophobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent interactions. The pairwise interaction energies showed that the cohesion between the heterocycles are mainly due to dispersion forces. Full Article text
gan Coordination variety of phenyltetrazolato and dimethylamido ligands in dimeric Ti, Zr, and Ta complexes By journals.iucr.org Published On :: 2024-08-23 Three structurally diverse 5-phenyltetrazolato (Tz) Ti, Zr, and Ta complexes, namely, (C2H8N)[Ti2(C7H5N4)5(C2H6N)4]·1.45C6H6 or (Me2NH2)[Ti2(NMe2)4(2,3-μ-Tz)3(2-η1-Tz)2]·1.45C6H6, (1·1.45C6H6), [Zr2(C7H5N4)6(C2H6N)2(C2H7N)2]·1.12C6H6·0.382CH2Cl2 or [Zr2(Me2NH)2(NMe2)2(2,3-μ-Tz)3(2-η1-Tz)2(1,2-η2-Tz)]·1.12C6H6·0.38CH2Cl2 (2·1.12C6H6·0.38CH2Cl2), and (C2H8N)2[Ta2(C7H5N4)8(C2H6N)2O]·0.25C7H8 or (Me2NH2)2[Ta2(NMe2)2(2,3-μ-Tz)2(2-η1-Tz)6O]·0.25C7H8 (3·0.25C7H8), where TzH is 5-phenyl-1H-tetrazole, have been synthesized and structurally characterized. All three complexes are dinuclear; the Ti center in 1 is six-coordinate, whereas the Zr and Ta atoms in 2 and 3 are seven-coordinate. The coordination environments of the Ti centers in 1 are similar, and so are the ligations of the Ta centers in 3. In contrast, the two Zr centers in 2 bear a different number of ligands, one of which is a bidentate η2-5-phenyltetrazolato ligand that has not been observed previously for d-block elements. The dimethylamido ligand, present in the starting materials, remained unchanged, or was converted to dimethylamine and dimethylammonium during the synthesis. Dimethylamine coordinates as a neutral ligand, whereas dimethylammonium is retained as a hydrogen-bonded entity bridging Tz ligands. Full Article text
gan On the importance of crystal structures for organic thin film transistors By journals.iucr.org Published On :: 2024-09-04 Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field. Full Article text
gan Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors By journals.iucr.org Published On :: 2024-10-31 Full Article text
gan Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy By journals.iucr.org Published On :: 2024-08-29 Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent β-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms. Full Article text
gan Time-series analysis of rhenium(I) organometallic covalent binding to a model protein for drug development By journals.iucr.org Published On :: 2024-04-19 Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification. Full Article text
gan From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system By journals.iucr.org Published On :: 2024-06-10 Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery. Full Article text
gan High-accuracy measurement, advanced theory and analysis of the evolution of satellite transitions in manganese Kα using XR-HERFD By journals.iucr.org Published On :: 2024-06-21 Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner. Full Article text
gan Solvent organization in the ultrahigh-resolution crystal structure of crambin at room temperature By journals.iucr.org Published On :: 2024-08-27 Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power. Full Article text
gan Tuning structural modulation and magnetic properties in metal–organic coordination polymers [CH3NH3]CoxNi1−x(HCOO)3 By journals.iucr.org Published On :: 2024-09-24 Three solid solutions of [CH3NH3]CoxNi1−x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896–17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105–115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios. Full Article text
gan Elastic and inelastic strain in submicron-thick ZnO epilayers grown on r-sapphire substrates by metal–organic vapour phase deposition By journals.iucr.org Published On :: 2024-02-13 A significant part of the present and future of optoelectronic devices lies on thin multilayer heterostructures. Their optical properties depend strongly on strain, being essential to the knowledge of the stress level to optimize the growth process. Here the structural and microstructural characteristics of sub-micron a-ZnO epilayers (12 to 770 nm) grown on r-sapphire by metal–organic chemical vapour deposition are studied. Morphological and structural studies have been made using scanning electron microscopy and high-resolution X-ray diffraction. Plastic unit-cell distortion and corresponding strain have been determined as a function of film thickness. A critical thickness has been observed as separating the non-elastic/elastic states with an experimental value of 150–200 nm. This behaviour has been confirmed from ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy measurements. An equation that gives the balance of strains is proposed as an interesting method to experimentally determine this critical thickness. It is concluded that in the thinnest films an elongation of the Zn—O bond takes place and that the plastic strained ZnO films relax through nucleation of misfit dislocations, which is a consequence of three-dimensional surface morphology. Full Article text
gan Solvatomorphism in a series of copper(II) complexes with the 5-phenylimidazole/perchlorate system as ligands By journals.iucr.org Published On :: 2024-07-30 In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenylimidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenylimidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(dimethylformamide) (7), 2(acetone) (8), 2(tetrahydrofurane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(diethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole–H⋯Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the diethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2–6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7–11), linking the complexes and contributing to the stability of the crystalline compounds. Full Article text
gan Synthesis and characterization of an organic–inorganic hybrid crystal: 2[Co(en)3](V4O13)·4H2O By journals.iucr.org Published On :: 2024-09-03 Organic–inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt–vanadium-containing compound, 2[Co(en)3]3+(V4O13)6−·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10−6 K−1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site. Full Article text
gan Search for missing symmetry in the Inorganic Crystal Structure Database (ICSD) By journals.iucr.org Published On :: 2024-09-17 An exhaustive search for missing symmetry was performed for 223 076 entries in the ICSD (2023-2 release). Approximately 0.65% of them can be described with higher symmetry than reported. Out of the identified noncentrosymmetric entries, ∼74% can be described by centrosymmetric space groups; this has implications for compatible physical properties. It is proposed that the information on the correct space group is included in the ICSD. Full Article text
gan Crystal structure of a water oxidation catalyst solvate with composition (NH4)2[FeIV(L-6H)]·3CH3COOH (L = clathrochelate ligand) By journals.iucr.org Published On :: 2024-01-01 The synthetic availability of molecular water oxidation catalysts containing high-valent ions of 3d metals in the active site is a prerequisite to enabling photo- and electrochemical water splitting on a large scale. Herein, the synthesis and crystal structure of diammonium {μ-1,3,4,7,8,10,12,13,16,17,19,22-dodecaazatetracyclo[8.8.4.13,17.18,12]tetracosane-5,6,14,15,20,21-hexaonato}ferrate(IV) acetic acid trisolvate, (NH4)2[FeIV(C12H12N12O6)]·3CH3COOH or (NH4)2[FeIV(L–6H)]·3CH3COOH is reported. The FeIV ion is encapsulated by the macropolycyclic ligand, which can be described as a dodeca-aza-quadricyclic cage with two capping triazacyclohexane fragments making three five- and six six-membered alternating chelate rings with the central FeIV ion. The local coordination environment of FeIV is formed by six deprotonated hydrazide nitrogen atoms, which stabilize the unusual oxidation state. The FeIV ion lies on a twofold rotation axis (multiplicity 4, Wyckoff letter e) of the space group C2/c. Its coordination geometry is intermediate between a trigonal prism (distortion angle φ = 0°) and an antiprism (φ = 60°) with φ = 31.1°. The Fe—N bond lengths lie in the range 1.9376 (13)–1.9617 (13) Å, as expected for tetravalent iron. Structure analysis revealed that three acetic acid molecules additionally co-crystallize per one iron(IV) complex, and one of them is positionally disordered over four positions. In the crystal structure, the ammonium cations, complex dianions and acetic acid molecules are interconnected by an intricate system of hydrogen bonds, mainly via the oxamide oxygen atoms acting as acceptors. Full Article text
gan Crystal structure and characterization of a new one-dimensional copper(II) coordination polymer containing a 4-aminobenzoic acid ligand By journals.iucr.org Published On :: 2024-02-20 A CuII coordination polymer, catena-poly[[[aquacopper(II)]-bis(μ-4-aminobenzoato)-κ2N:O;κ2O:N] monohydrate], {[Cu(pABA)2(H2O)]·H2O}n (pABA = p-aminobenzoate, C7H4NO2−), was synthesized and characterized. It exhibits a one-dimensional chain structure extended into a three-dimensional supramolecular assembly through hydrogen bonds and π–π interactions. While the twinned crystal shows a metrically orthorhombic lattice and an apparent space group Pbcm, the true symmetry is monoclinic (space group P2/c), with disordered Cu atoms and mixed roles of water molecules (aqua ligand/crystallization water). The luminescence spectrum of the complex shows an emission at 345 nm, cf. 349 nm for pABAH. Full Article text
gan Crystal structure of a three-coordinate lithium complex with monodentate phenyloxazoline and hexamethyldisilylamide ligands By journals.iucr.org Published On :: 2024-05-17 The reaction of lithium hexamethyldisilylamide, [Li{N(Si(CH3)3)2}] (LiHMDS), with 4,4-dimethyl-2-phenyl-2-oxazoline (Phox, C11H13NO) in hexane produced colourless crystals of bis(4,4-dimethyl-2-phenyl-2-oxazoline-κN)(hexamethyldisilylamido-κN)lithium, [Li(C6H18NSi2)(C11H13NO)2] or [Li{N(Si(CH3)3)2}(Phox)2] in high yield (89%). Despite the 1:1 proportion of the starting materials in the reaction mixture, the product formed with a 1:2 amide:oxazoline ratio. In the unit cell of the C2/c space group, the neutral molecules lie on twofold rotation axes coinciding with the Li—N(amide) bonds. The lithium(I) centre adopts a trigonal–planar coordination geometry with three nitrogen donor atoms, one from the HMDS anion and two from the oxazolines. All ligands are monodentate. In the phenyloxazoline units, the dihedral angle defined by the five-membered heterocyclic rings is 35.81 (5)°, while the phenyl substituents are approximately face-to-face, separated by 3.908 (5) Å. In the amide, the methyl groups assume a nearly eclipsed arrangement to minimize steric repulsion with the analogous substituents on the oxazoline rings. The non-covalent interactions in the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2] were assessed by Hirshfeld surface analysis and fingerprint plots. This new compound is attractive for catalysis due to its unique structural features. Full Article text
gan Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives By journals.iucr.org Published On :: 2024-05-21 Three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives, namely, [4-methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II), [Pt(C13H15O4)(C9H6NO)], (I), [4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II), [Pt(C15H19O4)(C10H6NO2)], (II), and chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline)platinum(II), [Pt(C15H19O4)Cl(C9H7N)], (III), were synthesized and structurally characterized by IR and 1H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cycloplatinated arylolefin coordinates with PtII via the carbon atom of the phenyl ring and the C=Colefinic group. The deprotonated 8-hydroxyquinoline (C9H6NO) and quinoline-2-carboxylic acid (C10H6NO2) coordinate with the PtII atom via the N and O atoms in complexes (I) and (II) while the quinoline (C9H7N) coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)–(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by C—H⋯π, C—H⋯O [for (II) and (III)], C—H⋯Cl [for (III) and π–π [for (I)] interactions. Full Article text
gan Two chromium(II) acetate complexes with N-heterocyclic carbene (NHC) coligands By journals.iucr.org Published On :: 2024-06-28 Tetrakis(μ-acetato-κ2O:O')bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-κC2]chromium(II)} tetrahydrofuran disolvate, [Cr2(C2H3O2)4(C27H36N4)2]·2C4H8O or [Cr2(OAc)4(IDipp)2]·2C4H8O (1), and tetrakis(μ-acetato-κ2O:O')bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-κC2]chromium(II)}, {Cr2(C2H3O2)4(C21H24N2)2] or [Cr2(OAc)4(IMes)2] (2), were synthesized from anhydrous chromium(II) acetate [Cr2(OAc)4] and the corresponding NHC (NHC = N-heterocyclic carbene) in toluene as solvent. Both complexes crystallize in the triclinic system, space group Poverline{1}. The molecular structures consist of Cr2(OAc)4 paddle-wheels that carry two terminal NHC ligands. This leads to a square-pyramidal coordination of the chromium atoms. Full Article text
gan [SnF(bipy)(H2O)]2[SnF6], a mixed-valent inorganic tin(II)–tin(IV) compound By journals.iucr.org Published On :: 2024-08-06 In the title compound, bis[aqua(2,2'-bipyridine)fluoridotin(II)] hexafluoridotin(IV), [SnF(C10H8N2)(H2O)]2[SnF6], an ionic mixed-valent tin(II)–tin(IV) compound, the bivalent tin atom is the center atom of the cation and the tetravalent tin atom is the center atom of the anion. With respect to the first coordination sphere, the cation is monomeric, with the tin(II) atom having a fourfold seesaw coordination with a fluorine atom in an equatorial position, a water molecule in an axial position and the two nitrogen atoms of the chelating 2,2'-bipyridine ligand in the remaining axial and equatorial positions. The bond lengths and angles of this hypervalent first coordination sphere are described by 2c–2e and 3c–4e bonds, respectively, all of which are based on the orthogonal 5p orbitals of the tin atom. In the second coordination sphere, which is based on an additional, very long tin–fluorine bond that leads to dimerization of the cation, the tin atom is trapezoidal–pyramidally coordinated. The tetravalent tin atom of the centrosymmetric anion has an octahedral coordination. The differences in its tin–fluorine bond lengths are attributed to hydrogen bonding, as the two of the four fluorine atoms are each involved in two hydrogen bonds, linking anions and cations together to form strands. Full Article text
gan Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aquabis(μ3-carbamoylcyanonitrosomethanido)barium] monohydrate] and its thermal decomposition By journals.iucr.org Published On :: 2024-08-30 In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K. Full Article text
gan Crystal structures of the (η2:η2-cycloocta-1,5-diene)(η6-toluene)iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinomethyl)anthraquinone ligands By journals.iucr.org Published On :: 2024-09-30 When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cycloocta-1,5-diene) and 2 equivalents of 2-(di-tert-butylphosphinito)anthraquinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cycloocta-1,5-diene)(η6-toluene)iridium(I) tri-μ-chlorido-bis({3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group Poverline{1}. The cation and anion are linked via weak C—H⋯O interactions. The stronger intermolecular attractions are likely the offset parallel π–π interactions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthraquinone moieties, the latter of which are capped by toluene solvate molecules, making for π-stacks of four molecules each. The related ligand, 2-(di-tert-butylphosphinomethyl)-anthraquinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloroform, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis(carbonyl{3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group Poverline{1}. Offset parallel π–π interactions between anthraquinone groups of adjacent molecules link the molecules in one dimension. Full Article text
gan (U)SAXS characterization of porous microstructure of chert: insights into organic matter preservation By journals.iucr.org Published On :: 2023-11-15 This study characterizes the microstructure and mineralogy of 132 (ODP sample), 1000 and 1880 million-year-old chert samples. By using ultra-small-angle X-ray scattering (USAXS), wide-angle X-ray scattering and other techniques, the preservation of organic matter (OM) in these samples is studied. The scarce microstructural data reported on chert contrast with many studies addressing porosity evolution in other sedimentary rocks. The aim of this work is to solve the distribution of OM and silica in chert by characterizing samples before and after combustion to pinpoint the OM distribution inside the porous silica matrix. The samples are predominantly composed of alpha quartz and show increasing crystallite sizes up to 33 ± 5 nm (1σ standard deviation or SD). In older samples, low water abundances (∼0.03%) suggest progressive dehydration. (U)SAXS data reveal a porous matrix that evolves over geological time, including, from younger to older samples, (1) a decreasing pore volume down to 1%, (2) greater pore sizes hosting OM, (3) decreasing specific surface area values from younger (9.3 ± 0.1 m2 g−1) to older samples (0.63 ± 0.07 m2 g−1, 1σ SD) and (4) a lower background intensity correlated to decreasing hydrogen abundances. The pore-volume distributions (PVDs) show that pores ranging from 4 to 100 nm accumulate the greater volume fraction of OM. Raman data show aromatic organic clusters up to 20 nm in older samples. Raman and PVD data suggest that OM is located mostly in mesopores. Observed structural changes, silica–OM interactions and the hydrophobicity of the OM could explain the OM preservation in chert. Full Article text
gan Low-dose electron microscopy imaging for beam-sensitive metal–organic frameworks By journals.iucr.org Published On :: 2024-09-05 Metal–organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field. Full Article text
gan FilmWeek: ‘Demon Slayer the Movie: Mugen Train,’ Street Gang: How We Got to Sesame Street,’ ‘Together Together’ And More By www.scpr.org Published On :: Fri, 23 Apr 2021 10:25:00 -0700 Archival still from the documentary "Street Gang: How We Got to Sesame Street"; Credit: HBO FilmWeek MarqueeLarry Mantle and KPCC film critics Claudia Puig and Charles Solomon review this weekend’s new movie releases.This content is from Southern California Public Radio. View the original story at SCPR.org. Full Article
gan Ten International Organizations trying to Hack into Your Computer By www.itsecurity.com Published On :: Wed, 02 Dec 2009 18:16:02 +0000 Hackers have been around since the early development of computers. Although they have gone by different names at different times, they've been fundamentally known as malicious all-knowing individu... Full Article
gan Magenta Mobility raises USD 22 mn from bp, Morgan Stanley India Infra By cio.economictimes.indiatimes.com Published On :: Wed, 05 Apr 2023 14:24:28 +0530 The fresh capital infusion takes the total fund raised by the company to Rs 275 crore, with as much as Rs 95 crore mopped up in various rounds earlier including from Indian-American philanthropist and serial entrepreneur Kiran Patel. Full Article
gan Gene-Drive Modified Organisms Are Not Ready to Be Released Into Environment- New Report By Published On :: Wed, 08 Jun 2016 05:00:00 GMT The emerging science of gene drives has the potential to address environmental and public health challenges, but gene-drive modified organisms are not ready to be released into the environment and require more research in laboratories and highly controlled field trials, says a new report from the National Academies of Sciences, Engineering, and Medicine. Full Article
gan Substantial Gap Exists Between Demand for Organ Transplants in U.S. and Number of Transplants Performed - New Report Offers Ethical, Regulatory, and Policy Framework for Research to Increase Quantity & Quality of Organs For Transplantation, Save Lives By Published On :: Tue, 10 Oct 2017 05:00:00 GMT The number of patients in the U.S. awaiting organ transplantation outpaces the amount of transplants performed in the U.S., and many donated organs are not transplanted each year due to several factors, such as poor organ function, says a new report from the National Academies of Sciences, Engineering, and Medicine. Full Article
gan More than 130 Organizations Join the National Academy of Medicine in Committing to Clinician Well-Being By Published On :: Thu, 11 Jan 2018 06:00:00 GMT The National Academy of Medicine (NAM) today announced that more than 130 organizations across the U.S. -- including associations, hospital and medical systems, universities, and professional societies -- have joined NAM in declaring their commitment to reducing burnout and promoting well-being among clinicians. Full Article
gan Organizing Committee Named for the Second International Summit on Human Genome Editing By Published On :: Tue, 29 May 2018 05:00:00 GMT An international, multidisciplinary organizing committee has been appointed to plan the Second International Summit on Human Genome Editing, which will take place Nov. 27-29 in Hong Kong. Full Article