hy Synthesis, crystal structure and Hirshfeld surface analysis of 4-[3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]-2-methoxyphenol monohydrate By scripts.iucr.org Published On :: 2019-10-03 In the title pyrazoline derivative, C16H16N2O3·H2O, the pyrazoline ring has an envelope conformation with the substituted sp2 C atom on the flap. The pyrazoline ring makes angles of 86.73 (12) and 13.44 (12)° with the trisubstituted and disubstituted benzene rings, respectively. In the crystal structure, the molecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains interact through N—H⋯O hydrogen bonds and π–π stacking of the trisubstituted phenyl rings. The major contribution to the surface contacts are H⋯H contacts (44.3%) as concluded from a Hirshfeld surface analysis. Full Article text
hy Tetra-n-butylammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement By scripts.iucr.org Published On :: 2019-10-08 The title hydrated molecular salt (systematic name: tetra-n-butylammonium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded antiparallel ribbons consisting of the hydrophilic orotate monoanions and water molecules, separated by the bulky hydrophobic cations. The hydrophobic and hydrophilic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail. Full Article text
hy Crystal structure of benzyl N'-[(1E,4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-ylidene]hydrazine-1-carbodithioate By scripts.iucr.org Published On :: 2019-10-03 In the title hydrazinecarbodithioate derivative, C27H26N2O2S2, the asymmetric unit is comprised of four molecules (Z = 8 and Z' = 4). The 4-methoxyphenyl rings are slightly twisted away from their attached olefinic double bonds [torsion angles = 5.9 (4)–19.6 (4)°]. The azomethine double bond has an s-trans configuration relative to one of the C=C bonds and an s-cis configuration relative to the other [C=C—C= N = 147.4 (6)–175.7 (2) and 15.3 (3)–37.4 (7)°, respectively]. The torsion angles between the azomethine C=N double bond and hydrazine-1-carbodithioate moiety indicate only small deviations from planarity, with torsion angles ranging from 0.9 (3) to 6.9 (3)° and from 174.9 (3) to 179.7 (2)°, respectively. The benzyl ring and the methylenesulfanyl moiety are almost perpendicular to each other, as indicated by their torsion angles [range 93.7 (3)–114.6 (2)°]. In the crystal, molecules are linked by C—H⋯O, N—H⋯S and C—H⋯π(ring) hydrogen-bonding interactions into a three-dimensional network. Structural details of related benzyl hydrazine-1-carbodithioate are surveyed and compared with those of the title compound. Full Article text
hy Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile By scripts.iucr.org Published On :: 2019-10-22 The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
hy Crystal structures and Hirshfeld surface analyses of 4-benzyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one and methyl 2-[5-(2,6-dichlorobenzyl)-6-oxo-3-phenyl-1,4,5,6-tetrahydropyridazin-1-yl]acetate By scripts.iucr.org Published On :: 2019-10-22 The asymmetric units of the title compounds both contain one nonplanar molecule. In 4-benzyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one, C17H14N2O, (I), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 46.69 (9)°; the phenyl ring of the benzyl group is nearly perpendicular to the plane of the pyridazine ring, the dihedral angle being 78.31 (10)°. In methyl 2-[5-(2,6-dichlorobenzyl)-6-oxo-3-phenyl-1,4,5,6-tetrahydropyridazin-1-yl]acetate, C20H16Cl2N2O3, (II), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 21.76 (18)°, whereas the phenyl ring of the dichlorobenzyl group is inclined to the pyridazine ring by 79.61 (19)°. In the crystal structure of (I), pairs of N—H⋯O hydrogen bonds link the molecules into inversion dimers with an R22(8) ring motif. In the crystal structure of (II), C—H⋯O hydrogen bonds generate dimers with R12(7), R22(16) and R22(18) ring motifs. The Hirshfeld surface analyses of compound (I) suggests that the most significant contributions to the crystal packing are by H⋯H (48.2%), C⋯H/H⋯C (29.9%) and O⋯H/H⋯O (8.9%) contacts. For compound (II), H⋯H (34.4%), C⋯H/H⋯C (21.3%) and O⋯H/H⋯O (16.5%) interactions are the most important contributions. Full Article text
hy Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate By scripts.iucr.org Published On :: 2019-10-22 The title compound, C22H16N4O2, contains two pyridine rings and one methoxycarbonylphenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of molecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxylate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz⋯π(ring) (Bnz = benzene) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
hy Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-10-22 The crystal and molecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry intermediate between square-planar and tetrahedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazolyl)–π(nitrobenzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supramolecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitrobenzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phenyl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the intermolecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%). Full Article text
hy Crystal structures of two solvated 2-aryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones By scripts.iucr.org Published On :: 2019-10-22 The synthesis and crystal structures of 2-(4-fluorophenyl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one toluene hemisolvate (1), C19H13FN2OS·0.5C7H8, and 2-(4-nitrophenyl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one isopropanol 0.25-solvate 0.0625-hydrate (2), C19H13N3O3S·0.25C3H7O·0.0625H2O, are reported. Both are racemic mixtures (centrosymmetric crystal structures) of the individual compounds and incorporate solvent molecules in their structures. Compound 2 has four thiazine molecules in the asymmetric unit. All the thiazine rings in this study show an envelope pucker, with the C atom bearing the substituted phenyl ring displaced from the other atoms. The phenyl and aryl rings in each of the molecules are roughly orthogonal to each other, with dihedral angles of about 75°. The extended structures of 1 and 2 are consolidated by C—H⋯O and C—H⋯N(π), as well as T-type (C—H⋯π) interactions. Parallel aromatic ring interactions (π–π stacking) are observed only in 2. Full Article text
hy Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters By scripts.iucr.org Published On :: 2019-10-22 Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic compounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis(anilinium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenylenediammonium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide hexasolvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N'-(1,4-phenylene)bis(propan-2-iminium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-dimethylformamide (DMF) solvent molecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF molecule forming a D(2) interaction. The p-phenylenediammonium cation in (II) forms three D(2) interactions between the three N—H bonds and three independent N,N-dimethylformamide molecules. The dication in (III) is a protonated Schiff base solvated by acetone molecules. Compound (IV) contains a methyl viologen dication with N,N-dimethylformamide molecules forming close contacts with both aromatic and methyl H atoms. Full Article text
hy Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
hy Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl benzoate By scripts.iucr.org Published On :: 2019-10-22 The title compound, C15H11NO5, is relatively planar, with the planes of the two aromatic rings being inclined to each other by 3.09 (5)°. In the crystal, molecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which enclose an R22(16) ring motif. The dimers are linked by a further pair of C—H⋯O hydrogen-bonds forming ribbons enclosing R44(26) ring motifs. The ribbons are linked by offset π–π interactions [centroid–centroid distances = 3.6754 (6)–3.7519 (6) Å] to form layers parallel to the ac plane. Through Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The shape-index surface shows that two sides of the molecule are involved with the same contacts in neighbouring molecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking. Full Article text
hy Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-dicarboxylic acid and DEF is N,N-diethylformamide) By scripts.iucr.org Published On :: 2019-10-29 A zinc metal–organic framework, namely poly[bis(N,N-diethylformamide)(μ4-naphthalene-2,6-dicarboxylato)(μ2-naphthalene-2,6-dicarboxylato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-dicarboxylic acid and zinc(II) acetate as the metal source in N,N-diethylformamide containing small amounts of formic acid. Full Article text
hy Crystal structure and Hirshfeld surface analysis of (E)-6-(4-hydroxy-3-methoxystyryl)-4,5-dihydropyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-10-31 In the title compound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, intermolecular O—H⋯O hydrogen bonds generate C(5) chains and N—H⋯O hydrogen bonds produce R22(8) motifs. These types of interactions lead to the formation of layers parallel to (12overline{1}). The three-dimensional network is achieved by C—H⋯O interactions, including R24(8) motifs. Intermolecular interactions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C—H⋯π interactions and aromatic π–π stacking interactions are not observed. Full Article text
hy Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-ethoxy-2-oxoethyl)(phenyl)carbamoyl]-2-oxo-1,2-dihydroquinolin-1-yl}acetate By scripts.iucr.org Published On :: 2019-10-29 The title compound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetrahydro-2-oxoquinolin-1-yl)acetate and 4-[(2-ethoxy-2-oxoethyl)(phenyl)carbomoyl] units, where the oxoquinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPhyl⋯OCarbx (Oxqn = oxoquinolin, Ethx = ethoxy, Phyl = phenyl and Carbx = carboxylate) weak hydrogen bonds link the molecules into a three-dimensional network sturucture. A π–π interaction between the constituent rings of the oxoquinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) interactions. Weak intermolecular hydrogen-bond interactions and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO molecular orbital behaviour was elucidated to determine the energy gap. Full Article text
hy Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate By scripts.iucr.org Published On :: 2019-10-29 2-(4-Nitrophenyl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and molecular structures were confirmed by single-crystal X-ray diffraction analysis. The molecules are linked by inversion into centrosymmetric dimers via weak intermolecular C—H⋯O interactions, forming R22(10) ring motifs, and further strengthened by weak π–π interactions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different intermolecular interactions within the supramolecular structure. The shape-index surface shows that two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking. Full Article text
hy Synthesis and crystal structure of (E)-2-({2-[azaniumylidene(methylsulfanyl)methyl]hydrazinylidene}methyl)benzene-1,4-diol hydrogen sulfate By scripts.iucr.org Published On :: 2019-10-29 The title molecular salt, C9H12N3O2S+·HSO4−, was obtained through the protonation of the azomethine N atom in a sulfuric acid medium. The crystal comprises two entities, a thiosemicarbazide cation and a hydrogen sulfate anion. The cation is essentially planar and is further stabilized by a strong intramolecular O—H⋯N hydrogen bond. In the crystal, a three-dimensional network is established through O—H⋯O and N—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed. The hydrogen sulfate anion exhibits disorder over two sets of sites and was modelled with refined occupancies of 0.501 (6) and 0.499 (6). Full Article text
hy Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate By scripts.iucr.org Published On :: 2019-10-29 In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H⋯O and intermolecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) interactions. Full Article text
hy Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl 2-chlorobenzoate By scripts.iucr.org Published On :: 2019-10-31 The title compound, C15H10ClNO5, is relatively planar with the two aromatic rings being inclined to each other by 3.56 (11)°. The central —C(=O)—C–O—C(=O)— bridge is slightly twisted, with a C—C—O—C torsion angle of 164.95 (16)°. In the crystal, molecules are linked by C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the (101) plane. The layers are linked by a further C—H⋯O hydrogen bond, forming a three-dimensional supramolecular structure. There are a number of offset π–π interactions present between the layers [intercentroid distances vary from 3.8264 (15) to 3.9775 (14) Å]. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The shape-index surface shows that two sides of the molecule are involved in the same contacts with neighbouring molecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking. Full Article text
hy Crystal structure of 4,6-dimethyl-2-[(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)sulfanyl]pyrimidine By scripts.iucr.org Published On :: 2019-11-05 Full Article text
hy An iridium complex with an unsupported Ir—Zn bond: diiodido(η5-pentamethylcyclopentadienyl)bis(trimethylphosphane)iridiumzinc(Ir—Zn) benzene hemisolvate By scripts.iucr.org Published On :: 2019-11-05 The title compound, [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6 or [Cp*(PMe3)2Ir]-[ZnI2] (Cp* = cyclo-C5Me5) was obtained and characterized as its benzene solvate [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6. The bimetallic complex in this structure contains the Lewis-acidic fragment ZnI2 bonded to the Lewis-basic fragment Cp*(PMe3)2Ir, with an Ir—Zn bond distance of 2.452 (1) Å. The compound was obtained by reacting [Cp*(PMe3)IrI2] with 2-Ad2Zn (2-Ad = 2-adamantyl), resulting in the reduction of the IrIII complex and formation of the IrI–ZnII adduct. The crystal studied was a twin by non-merohedry with a refined BASF parameter of 0.223 (1). Full Article text
hy Synthesis and crystal structure of (E)-1,2-bis[2-(methylsulfanyl)phenyl]diazene By scripts.iucr.org Published On :: 2019-10-31 The title compound, C14H14N2S2, was obtained by transmetallation of 2,2'-bis(trimethylstannyl)azobenzene with methyl lithium, and subsequent quenching with dimethyl disulfide. The asymmetric unit comprises two half-molecules, the other halves being completed by inversion symmetry at the midpoint of the azo group. The two molecules show only slight differences with respect to N=N, S—N and aromatic C=C bonds or angles. Hirshfeld surface analysis reveals that except for one weak H⋯S interaction, intermolecular interactions are dominated by van der Waals forces only. Full Article text
hy Crystal structures of two coordination isomers of copper(II) 4-sulfobenzoic acid hexahydrate and two mixed silver/potassium 4-sulfobenzoic acid salts By scripts.iucr.org Published On :: 2019-10-31 A reaction of copper(II) carbonate and potassium 4-sulfobenzoic acid in water acidified with hydrochloric acid yielded two crystalline products. Tetraaquabis(4-carboxybenzenesulfonato)copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water molecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octahedron. The carboxylate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water molecules, the carboxylic acid group and the sulfonate group. Hexaaquacopper(II) 4-carboxybenzenesulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octahedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxylate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfobenzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carboxybenzenesulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxylate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carboxybenzenesulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water molecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxylate groups do not interact with the cations directly, but do participate in hydrogen bonds with the coordinated water molecules. (IV) is isostructural with pure potassium 4-sulfobenzoic acid dihydrate. Full Article text
hy Crystal structure and Hirshfeld surface analysis of poly[tris(μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)]: a two-dimensional coordination network By scripts.iucr.org Published On :: 2019-11-08 The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-dicarboxylate and DMF = dimethylformamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides interactions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF molecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C interactions between DMF molecules, as shown by Hirshfeld surface analysis. Full Article text
hy (μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] By scripts.iucr.org Published On :: 2019-11-08 The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy. Full Article text
hy Crystal structures and Hirshfeld surface analyses of (E)-N'-benzylidene-2-oxo-2H-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide: lattice ene By scripts.iucr.org Published On :: 2019-11-29 In the paper by Gomes et al. [Acta Cryst. (2019), E75, 1403–1410], there was an error and omission in the author and affiliation list. Full Article text
hy Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrob By scripts.iucr.org Published On :: 2019-11-08 The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base molecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the intermolecular interactions. Full Article text
hy Synthesis, crystal structure and Hirshfeld surface analysis of diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate By scripts.iucr.org Published On :: 2019-11-15 In the title compound, C17H21NO4S, the 1,4-dihydropyridine ring has an envelope conformation with the Csp3 atom at the flap. The thiophene ring is nearly perpendicular to the best plane through the 1,4-dihydropyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H⋯O interactions between the 1,4-dihydropyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π interactions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H⋯H contacts (55.1%). Full Article text
hy Crystal structure, Hirshfeld surface analysis and DFT studies of 6-[(E)-2-(thiophen-2-yl)ethenyl]-4,5-dihydropyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-11-15 In the title compound, C10H10N2OS, the five atoms of the thiophene ring are essentially coplanar (r.m.s. deviation = 0.0037 Å) and the pyridazine ring is non-planar. In the crystal, pairs of N—H⋯O hydrogen bonds link the molecules into dimers with an R22(8) ring motif. The dimers are linked by C—H⋯O interactions, forming layers parallel to the bc plane. The theoretical geometric parameters are in good agreement with XRD results. The intermolecular interactions were investigated using a Hirshfeld surface analysis and two-dimensional fingerprint plots. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H⋯H (39.7%), C⋯H/H⋯C (17.3%) and O⋯H/H⋯O (16.8%) contacts. Full Article text
hy Crystal structure, Hirshfeld surface analysis and DFT studies of 2-[5-(4-methylbenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetic acid By scripts.iucr.org Published On :: 2019-11-26 The title pyridazinone derivative, C20H18N2O3, is not planar. The phenyl ring and the pyridazine ring are inclined to each other by 10.55 (12)°, whereas the 4-methylbenzyl ring is nearly orthogonal to the pyridazine ring, with a dihedral angle of 72.97 (10)°. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, generating ribbons propagating along the c-axis direction. The intermolecular interactions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. They revealed that the most significant contributions to the crystal packing are from H⋯H (48.4%), H⋯O/O⋯H (21.8%) and H⋯C/C⋯H (20.4%) contacts. Molecular orbital calculations providing electron-density plots of HOMO and LUMO molecular orbitals and molecular electrostatic potentials (MEP) were also computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set. Full Article text
hy Crystal and molecular structure of jatrophane diterpenoid (2R,3R,4S,5R,7S,8S,9S,13S,14S,15R)-2,3,8,9-tetraacetoxy-5,14-bis(benzoyloxy)-15-hydroxy-7-(isobutanoyloxy)jatropha-6(17),11(E)-diene By scripts.iucr.org Published On :: 2019-11-19 The structure of the jatrophane diterpenoid (ES2), C46H56O15, has orthorhombic (P212121) symmetry. The absolute configuration in the crystal has been determined as 2R,3R,4S,5R,7S,8S,9S,13S,14S,15R [the Flack parameter is −0.06 (11)]. The molecular structure features intramolecular O—H⋯O and C—H⋯O hydrogen bonding. In the crystal, C—H⋯O hydrogen bonds link the molecules into supramolecular columns parallel to the a axis. One of the acetoxy substituents is disordered over two orientations in a 0.826 (8):0.174 (8) ratio. Full Article text
hy Crystal structure of dicarbonyl[μ2-methylenebis(diphenylphosphane)-κ2P:P'][μ2-2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3-diyl](triphenylphosphane-κP)ironplatinum(Fe—Pt)–dichloromet By scripts.iucr.org Published On :: 2019-11-22 The title compound, [FePt(C12H12O)(C18H15P)(C25H22P2)(CO)2]·2C7H8·CH2Cl2 or [(OC)2Fe(μ-dppm)(μ-C(=O)C(2,4,5-C6H2Me3)=CH)Pt(PPh3)], represents an example of a diphosphane-bridged heterobimetallic dimetallacyclopentenone complex resulting from a bimetallic activation of 1-ethynyl-2,4,5-trimethylbenzene and a metal-coordinated carbonyl ligand. The bridging μ2-C(=O)C(2,4,5-C6H2Me3)=CH unit (stemming from a carbon–carbon coupling reaction between CO and the terminal alkyne) forms a five-membered dimetallacyclopentenone ring, in which the C=C bond is π-coordinated to the Fe centre. The latter is connected to the Pt centre through a short metal–metal bond of 2.5770 (5) Å. In the crystal, the complex is solvated by one dichloromethane and two toluene molecules. Full Article text
hy Crystal structures of (E)-3-(4-hydroxybenzylidene)chroman-4-one and (E)-3-(3-hydroxybenzylidene)-2-phenylchroman-4-one By scripts.iucr.org Published On :: 2019-11-22 The synthesis and crystal structures of (E)-3-(4-hydroxybenzylidene)chroman-4-one, C16H12O3, I, and (E)-3-(3-hydroxybenzylidene)-2-phenylchroman-4-one, C22H16O3, II, are reported. These compounds are of interest with respect to biological activity. Both structures display intermolecular C—H⋯O and O—H⋯O hydrogen bonding, forming layers in the crystal lattice. The crystal structure of compound I is consolidated by π–π interactions. The lipophilicity (logP) was determined as it is one of the parameters qualifying compounds as potential drugs. The logP value for compound I is associated with a larger contribution of C⋯H interaction in the Hirshfeld surface. Full Article text
hy (E)-3-{[(2-Bromo-3-methylphenyl)imino]methyl}benzene-1,2-diol: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-11-26 The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-dihydroxybenzaldehyde and 2-bromo-3-methylaniline. It crystallizes in the centrosymmetric triclinic space group Poverline{1}. The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methylphenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O—H⋯O hydrogen-bond interactions consolidate the crystal packing. Full Article text
hy Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-dimethylimidazo[1,2-a]pyridin-3-yl)-2-(1,3-dithiolan-2-ylidene)ethanone monohydrate By scripts.iucr.org Published On :: 2019-11-29 In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-dithiolane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-dithiolane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intramolecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid molecules are associated in R22(14) dimeric units by weak C—H⋯O interactions. O—H⋯O hydrogen bonds link the water molecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of intermolecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water molecules are the main driving force in the crystal packing formation. Full Article text
hy Crystal structure, computational study and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hydroxy-3-phenylpropanoate By scripts.iucr.org Published On :: 2019-11-26 In the title molecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intramolecular C—H⋯O and C—H⋯π(ring) interactions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental molecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important interaction involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively. Full Article text
hy Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one By scripts.iucr.org Published On :: 2019-11-29 In the title molecule, C11H10N2O, the dihydrobenzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) interactions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = dihydro) hydrogen bonds form corrugated layers parallel to (10overline{1}), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] interactions between dihydrobenzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
hy Crystal structure, Hirshfeld analysis and a molecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxadiazol-3-yl]methyl}-2H-1,2,6-thiadiazine-4-carboxyla By scripts.iucr.org Published On :: 2020-01-01 The title compound, C15H22N4O5S, was prepared via alkylation of 3-(chloromethyl)-5-(pentan-3-yl)-1,2,4-oxadiazole in anhydrous dioxane in the presence of triethylamine. The thiadiazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxadiazole ring is inclined to the mean plane of the thiadiazine ring by 77.45 (11)°. In the crystal, molecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the intermolecular contacts present in the crystal. Molecular docking studies were use to evaluate the title compound as a potential system that interacts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model. Full Article text
hy N,N'-Bis(pyridin-3-ylmethyl)ethanediamide monohydrate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The molecular structure of the title bis-pyridyl substituted diamide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intramolecular amide-N—H⋯O(carbonyl) hydrogen bonds are formed, each closing an S(5) loop. Supramolecular tapes are formed in the crystal via amide-N—H⋯O(carbonyl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O—H⋯N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene-C—H⋯O(water) and methylene-C—H⋯π(pyridyl) interactions, give rise to a layer parallel to (10overline{1}); the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C—H⋯O(carbonyl) and pyridyl-C—H⋯C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal. Full Article text
hy Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)manganese(II)]-μ4-pentathiodiantimonato] tetrahydrate] showing a 1D MnSbS network By scripts.iucr.org Published On :: 2020-01-01 The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water molecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by intermolecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed. Full Article text
hy Crystal structures of chlorido[dihydroxybis(1-iminoethoxy)]arsanido-κ3N,As,N']platinum(II) and of a polymorph of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3N,As,N']platinum(II) By scripts.iucr.org Published On :: 2020-01-10 Each central platinum(II) atom in the crystal structures of chlorido[dihydroxybis(1-iminoethoxy)arsanido-κ3N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitrogen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intramolecular and four classical intermolecular hydrogen-bonding interactions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intramolecular and four classical intermolecular hydrogen-bonding interactions) is observed in the crystal structure of (2). Various π-interactions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring molecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-interactions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed. Full Article text
hy Crystal structure, Hirshfeld surface analysis and computational study of bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) and of the copper(II) analogue By scripts.iucr.org Published On :: 2020-01-01 The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supramolecular layers in the ac plane are sustained by chlorobenzene-C—H⋯O(coordinated), chlorobenzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chlorobenzene)–π(chlorobenzene) interactions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by dichlorobenzene-C—H⋯π(fused-benzene ring) and π–π interactions between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supramolecular layers are also found in the crystal of (II), being stabilized by π–π interactions formed between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional interactions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The interaction energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing interaction in the crystal of (II). Full Article text
hy An unusually short intermolecular N—H⋯N hydrogen bond in crystals of the hemi-hydrochloride salt of 1-exo-acetamidopyrrolizidine By scripts.iucr.org Published On :: 2020-01-01 The title compound [systematic name: (1R*, 8S)-2-acetamidooctahydropyrrolizin-4-ium chloride–N-[(1R, 8S)-hexahydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamidopyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP molecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small. Full Article text
hy Two isostructural 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-ones: disorder and supramolecular assembly By scripts.iucr.org Published On :: 2020-01-01 Two new chalcones containing both pyrazole and thiophene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thiophene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the molecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds. Full Article text
hy Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethylenediamine and non-coordinated benzoate By scripts.iucr.org Published On :: 2020-01-01 In the title compound, diaquabis(ethylenediamine-κ2N,N')copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O⋯H/H⋯O (42.9%), followed by H⋯H (35.7%), C⋯H/H⋯C (14.2%), C⋯C (2.9%), C⋯O/O⋯C (2.2%), N⋯H/H⋯N (0.9%) and N⋯O/O⋯N (0.3%). Full Article text
hy Syntheses and crystal structures of 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid and 2,2,5-trimethyl-1,3-dioxane-5-carboxylic anhydride By scripts.iucr.org Published On :: 2020-01-01 In 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid, C8H14O4, the carboxyl group occupies an equatorial position on the 1,3-dioxane ring. In the crystal, O—H⋯O hydrogen bonds form chains of molecules, which are linked into a three-dimensional network by C—H⋯O hydrogen bonds. The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carboxylic anhydride, C16H26O7, consists of two independent molecules, which are linked by C—H⋯O hydrogen bonds. In the crystal, these units are connected into corrugated layers two molecules thick and parallel to the ab plane by additional C—H⋯O hydrogen bonds. Full Article text
hy Bis{4-[(2-hydroxy-5-methoxy-3-nitrobenzylidene)amino]phenyl} ether By scripts.iucr.org Published On :: 2020-01-01 The molecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the molecule exhibits an imine E configuration. An intramolecular O—H⋯N hydrogen bond is present. In the crystal, the molecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin. Full Article text
hy Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohydrate By scripts.iucr.org Published On :: 2020-01-01 In the title molecule, C24H21N5O·H2O, the dihydrobenzodiazole moiety is not quite planar, while the whole molecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating molecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = dihydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the dihydrobenzodiazole units in adjacent layers intercalating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] interactions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
hy Synthesis and crystal structures of a bis(3-hydroxy-cyclohex-2-en-1-one) and two hexahydroquinoline derivatives By scripts.iucr.org Published On :: 2020-01-03 The title compound I, 2,2'-[(2-nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intramolecular hydrogen bonds. The most prominent intermolecular interactions in compound I are C—H⋯O hydrogen bonds, which link molecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1overline{1}1). Both title compounds II, ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the dihydropyridine group and an orthogonal aryl group attached to the dihydropyridine. Intermolecular N—H⋯O bonding is present in the crystal packing of both compound II and III. Full Article text
hy Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobicyclo[2.2.1]heptan-3-ylidene]hydrazinecarbothioamide By scripts.iucr.org Published On :: 2020-01-01 The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thiosemicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thiosemicarbazone], which maintains the chirality of the methylated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two molecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thiosemicarbazone isomer and the second the (1S)- isomer. In the crystal, the molecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S interactions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S interactions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) interactions. Full Article text
hy Crystal structure, DFT and Hirshfeld surface analysis of (E)-N'-[(1-chloro-3,4-dihydronaphthalen-2-yl)methylidene]benzohydrazide monohydrate By scripts.iucr.org Published On :: 2020-01-03 In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the dihydronaphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water molecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts. Full Article text