form

The Shearlet Transform and Lizorkin Spaces. (arXiv:2003.06642v2 [math.FA] UPDATED)

We prove a continuity result for the shearlet transform when restricted to the space of smooth and rapidly decreasing functions with all vanishing moments. We define the dual shearlet transform, called here the shearlet synthesis operator, and we prove its continuity on the space of smooth and rapidly decreasing functions over $mathbb{R}^2 imesmathbb{R} imesmathbb{R}^ imes$. Then, we use these continuity results to extend the shearlet transform to the space of Lizorkin distributions, and we prove its consistency with the classical definition for test functions.




form

Equivariant Batalin-Vilkovisky formalism. (arXiv:1907.07995v3 [hep-th] UPDATED)

We study an equivariant extension of the Batalin-Vilkovisky formalism for quantizing gauge theories. Namely, we introduce a general framework to encompass failures of the quantum master equation, and we apply it to the natural equivariant extension of AKSZ solutions of the classical master equation (CME). As examples of the construction, we recover the equivariant extension of supersymmetric Yang-Mills in 2d and of Donaldson-Witten theory.




form

On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED)

We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight.




form

A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC])

We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle.




form

Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th])

Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.




form

The Fourier Transform Approach to Inversion of lambda-Cosine and Funk Transforms on the Unit Sphere. (arXiv:2005.03607v1 [math.FA])

We use the classical Fourier analysis to introduce analytic families of weighted differential operators on the unit sphere. These operators are polynomial functions of the usual Beltrami-Laplace operator. New inversion formulas are obtained for totally geodesic Funk transforms on the sphere and the correpsonding lambda-cosine transforms.




form

Connectedness of square-free Groebner Deformations. (arXiv:2005.03569v1 [math.AC])

Let $Isubseteq S=K[x_1,ldots,x_n]$ be a homogeneous ideal equipped with a monomial order $<$. We show that if $operatorname{in}_<(I)$ is a square-free monomial ideal, then $S/I$ and $S/operatorname{in}_<(I)$ have the same connectedness dimension. We also show that graphs related to connectedness of these quotient rings have the same number of components. We also provide consequences regarding Lyubeznik numbers. We obtain these results by furthering the study of connectedness modulo a parameter in a local ring.




form

Continuity properties of the shearlet transform and the shearlet synthesis operator on the Lizorkin type spaces. (arXiv:2005.03505v1 [math.FA])

We develop a distributional framework for the shearlet transform $mathcal{S}_{psi}colonmathcal{S}_0(mathbb{R}^2) omathcal{S}(mathbb{S})$ and the shearlet synthesis operator $mathcal{S}^t_{psi}colonmathcal{S}(mathbb{S}) omathcal{S}_0(mathbb{R}^2)$, where $mathcal{S}_0(mathbb{R}^2)$ is the Lizorkin test function space and $mathcal{S}(mathbb{S})$ is the space of highly localized test functions on the standard shearlet group $mathbb{S}$. These spaces and their duals $mathcal{S}_0^prime (mathbb R^2),, mathcal{S}^prime (mathbb{S})$ are called Lizorkin type spaces of test functions and distributions. We analyze the continuity properties of these transforms when the admissible vector $psi$ belongs to $mathcal{S}_0(mathbb{R}^2)$. Then, we define the shearlet transform and the shearlet synthesis operator of Lizorkin type distributions as transpose mappings of the shearlet synthesis operator and the shearlet transform, respectively. They yield continuous mappings from $mathcal{S}_0^prime (mathbb R^2)$ to $mathcal{S}^prime (mathbb{S})$ and from $mathcal{S}^prime (mathbb S)$ to $mathcal{S}_0^prime (mathbb{R}^2)$. Furthermore, we show the consistency of our definition with the shearlet transform defined by direct evaluation of a distribution on the shearlets. The same can be done for the shearlet synthesis operator. Finally, we give a reconstruction formula for Lizorkin type distributions, from which follows that the action of such generalized functions can be written as an absolutely convergent integral over the standard shearlet group.




form

Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG])

We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression.




form

The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc])

Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term.




form

Minimum pair degree condition for tight Hamiltonian cycles in $4$-uniform hypergraphs. (arXiv:2005.03391v1 [math.CO])

We show that every 4-uniform hypergraph with $n$ vertices and minimum pair degree at least $(5/9+o(1))n^2/2$ contains a tight Hamiltonian cycle. This degree condition is asymptotically optimal.




form

Riemann-Hilbert approach and N-soliton formula for the N-component Fokas-Lenells equations. (arXiv:2005.03319v1 [nlin.SI])

In this work, the generalized $N$-component Fokas-Lenells(FL) equations, which have been studied by Guo and Ling (2012 J. Math. Phys. 53 (7) 073506) for $N=2$, are first investigated via Riemann-Hilbert(RH) approach. The main purpose of this is to study the soliton solutions of the coupled Fokas-Lenells(FL) equations for any positive integer $N$, which have more complex linear relationship than the analogues reported before. We first analyze the spectral analysis of the Lax pair associated with a $(N+1) imes (N+1)$ matrix spectral problem for the $N$-component FL equations. Then, a kind of RH problem is successfully formulated. By introducing the special conditions of irregularity and reflectionless case, the $N$-soliton solution formula of the equations are derived through solving the corresponding RH problem. Furthermore, take $N=2,3$ and $4$ for examples, the localized structures and dynamic propagation behavior of their soliton solutions and their interactions are discussed by some graphical analysis.




form

Fourier transformation and stability of differential equation on $L^1(Bbb{R})$. (arXiv:2005.03296v1 [math.FA])

In the present paper by the Fourier transform we show that every linear differential equations of $n$-th order has a solution in $L^1(Bbb{R})$ which is infinitely differentiable in $Bbb{R} setminus {0}$. Moreover the Hyers-Ulam stability of such equations on $L^1(Bbb{R})$ is investigated.




form

Approximate Performance Measures for a Two-Stage Reneging Queue. (arXiv:2005.03239v1 [math.PR])

We study a two-stage reneging queue with Poisson arrivals, exponential services, and two levels of exponential reneging behaviors, extending the popular Erlang A model that assumes a constant reneging rate. We derive approximate analytical formulas representing performance measures for the two-stage queue following the Markov chain decomposition approach. Our formulas not only give accurate results spanning the heavy-traffic to the light-traffic regimes, but also provide insight into capacity decisions.




form

Non-relativity of K"ahler manifold and complex space forms. (arXiv:2005.03208v1 [math.CV])

We study the non-relativity for two real analytic K"ahler manifolds and complex space forms of three types. The first one is a K"ahler manifold whose polarization of local K"ahler potential is a Nash function in a local coordinate. The second one is the Hartogs domain equpped with two canonical metrics whose polarizations of the K"ahler potentials are the diastatic functions.




form

On planar graphs of uniform polynomial growth. (arXiv:2005.03139v1 [math.PR])

Consider an infinite planar graph with uniform polynomial growth of degree d > 2. Many examples of such graphs exhibit similar geometric and spectral properties, and it has been conjectured that this is necessary. We present a family of counterexamples. In particular, we show that for every rational d > 2, there is a planar graph with uniform polynomial growth of degree d on which the random walk is transient, disproving a conjecture of Benjamini (2011).

By a well-known theorem of Benjamini and Schramm, such a graph cannot be a unimodular random graph. We also give examples of unimodular random planar graphs of uniform polynomial growth with unexpected properties. For instance, graphs of (almost sure) uniform polynomial growth of every rational degree d > 2 for which the speed exponent of the walk is larger than 1/d, and in which the complements of all balls are connected. This resolves negatively two questions of Benjamini and Papasoglou (2011).




form

Deformation classes in generalized K"ahler geometry. (arXiv:2005.03062v1 [math.DG])

We introduce natural deformation classes of generalized K"ahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of K"ahler class and K"ahler cone to generalized K"ahler geometry. Lastly we show that the generalized K"ahler-Ricci flow preserves this generalized K"ahler cone, and the underlying real Poisson tensor.




form

Quantization of Lax integrable systems and Conformal Field Theory. (arXiv:2005.03053v1 [math-ph])

We present the correspondence between Lax integrable systems with spectral parameter on a Riemann surface, and Conformal Field Theories, in quite general set-up suggested earlier by the author. This correspondence turns out to give a prequantization of the integrable systems in question.




form

GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU. (arXiv:1908.01407v3 [cs.DC] CROSS LISTED)

High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs, because of three challenges: (1) difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based in sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first open-source linear algebra-based graph framework on GPU targeting high-performance computing. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.




form

The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED)

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.




form

Prediction of Event Related Potential Speller Performance Using Resting-State EEG. (arXiv:2005.01325v3 [cs.HC] UPDATED)

Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user.




form

Quantum arithmetic operations based on quantum Fourier transform on signed integers. (arXiv:2005.00443v2 [cs.IT] UPDATED)

The quantum Fourier transform brings efficiency in many respects, especially usage of resource, for most operations on quantum computers. In this study, the existing QFT-based and non-QFT-based quantum arithmetic operations are examined. The capabilities of QFT-based addition and multiplication are improved with some modifications. The proposed operations are compared with the nearest quantum arithmetic operations. Furthermore, novel QFT-based subtraction and division operations are presented. The proposed arithmetic operations can perform non-modular operations on all signed numbers without any limitation by using less resources. In addition, novel quantum circuits of two's complement, absolute value and comparison operations are also presented by using the proposed QFT based addition and subtraction operations.




form

SPECTER: Document-level Representation Learning using Citation-informed Transformers. (arXiv:2004.07180v3 [cs.CL] UPDATED)

Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token- and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, the embeddings power strong performance on end tasks. We propose SPECTER, a new method to generate document-level embedding of scientific documents based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that SPECTER outperforms a variety of competitive baselines on the benchmark.




form

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




form

Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms. (arXiv:2004.00526v2 [eess.AS] UPDATED)

Recent advances in deep learning have facilitated the design of speaker verification systems that directly input raw waveforms. For example, RawNet extracts speaker embeddings from raw waveforms, which simplifies the process pipeline and demonstrates competitive performance. In this study, we improve RawNet by scaling feature maps using various methods. The proposed mechanism utilizes a scale vector that adopts a sigmoid non-linear function. It refers to a vector with dimensionality equal to the number of filters in a given feature map. Using a scale vector, we propose to scale the feature map multiplicatively, additively, or both. In addition, we investigate replacing the first convolution layer with the sinc-convolution layer of SincNet. Experiments performed on the VoxCeleb1 evaluation dataset demonstrate the effectiveness of the proposed methods, and the best performing system reduces the equal error rate by half compared to the original RawNet. Expanded evaluation results obtained using the VoxCeleb1-E and VoxCeleb-H protocols marginally outperform existing state-of-the-art systems.




form

Mathematical Formulae in Wikimedia Projects 2020. (arXiv:2003.09417v2 [cs.DL] UPDATED)

This poster summarizes our contributions to Wikimedia's processing pipeline for mathematical formulae. We describe how we have supported the transition from rendering formulae as course-grained PNG images in 2001 to providing modern semantically enriched language-independent MathML formulae in 2020. Additionally, we describe our plans to improve the accessibility and discoverability of mathematical knowledge in Wikimedia projects further.




form

SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval. (arXiv:1912.05891v2 [cs.IR] UPDATED)

In learning-to-rank for information retrieval, a ranking model is automatically learned from the data and then utilized to rank the sets of retrieved documents. Therefore, an ideal ranking model would be a mapping from a document set to a permutation on the set, and should satisfy two critical requirements: (1)~it should have the ability to model cross-document interactions so as to capture local context information in a query; (2)~it should be permutation-invariant, which means that any permutation of the inputted documents would not change the output ranking. Previous studies on learning-to-rank either design uni-variate scoring functions that score each document separately, and thus failed to model the cross-document interactions; or construct multivariate scoring functions that score documents sequentially, which inevitably sacrifice the permutation invariance requirement. In this paper, we propose a neural learning-to-rank model called SetRank which directly learns a permutation-invariant ranking model defined on document sets of any size. SetRank employs a stack of (induced) multi-head self attention blocks as its key component for learning the embeddings for all of the retrieved documents jointly. The self-attention mechanism not only helps SetRank to capture the local context information from cross-document interactions, but also to learn permutation-equivariant representations for the inputted documents, which therefore achieving a permutation-invariant ranking model. Experimental results on three large scale benchmarks showed that the SetRank significantly outperformed the baselines include the traditional learning-to-rank models and state-of-the-art Neural IR models.




form

Multi-group Multicast Beamforming: Optimal Structure and Efficient Algorithms. (arXiv:1911.08925v2 [eess.SP] UPDATED)

This paper considers the multi-group multicast beamforming optimization problem, for which the optimal solution has been unknown due to the non-convex and NP-hard nature of the problem. By utilizing the successive convex approximation numerical method and Lagrangian duality, we obtain the optimal multicast beamforming solution structure for both the quality-of-service (QoS) problem and the max-min fair (MMF) problem. The optimal structure brings valuable insights into multicast beamforming: We show that the notion of uplink-downlink duality can be generalized to the multicast beamforming problem. The optimal multicast beamformer is a weighted MMSE filter based on a group-channel direction: a generalized version of the optimal downlink multi-user unicast beamformer. We also show that there is an inherent low-dimensional structure in the optimal multicast beamforming solution independent of the number of transmit antennas, leading to efficient numerical algorithm design, especially for systems with large antenna arrays. We propose efficient algorithms to compute the multicast beamformer based on the optimal beamforming structure. Through asymptotic analysis, we characterize the asymptotic behavior of the multicast beamformers as the number of antennas grows, and in turn, provide simple closed-form approximate multicast beamformers for both the QoS and MMF problems. This approximation offers practical multicast beamforming solutions with a near-optimal performance at very low computational complexity for large-scale antenna systems.




form

Deterministic Sparse Fourier Transform with an ell_infty Guarantee. (arXiv:1903.00995v3 [cs.DS] UPDATED)

In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which asks to read only a few entries of $x in mathbb{C}^n$ and design a recovery algorithm such that the output of the algorithm approximates $hat x$, the Discrete Fourier Transform (DFT) of $x$. The randomized case has been well-understood, while the main work in the deterministic case is that of Merhi et al.@ (J Fourier Anal Appl 2018), which obtains $O(k^2 log^{-1}k cdot log^{5.5}n)$ samples and a similar runtime with the $ell_2/ell_1$ guarantee. We focus on the stronger $ell_{infty}/ell_1$ guarantee and the closely related problem of incoherent matrices. We list our contributions as follows.

1. We find a deterministic collection of $O(k^2 log n)$ samples for the $ell_infty/ell_1$ recovery in time $O(nk log^2 n)$, and a deterministic collection of $O(k^2 log^2 n)$ samples for the $ell_infty/ell_1$ sparse recovery in time $O(k^2 log^3n)$.

2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices of the DFT matrix, via a derandomization of Bernstein's inequality and bounds on exponential sums considered in analytic number theory. Our first construction matches a previous randomized construction of Nelson, Nguyen and Woodruff (RANDOM'12), where there was no constraint on the form of the incoherent matrix.

Our algorithms are nearly sample-optimal, since a lower bound of $Omega(k^2 + k log n)$ is known, even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of $Omega(k^2 log n/ log k)$ is known for incoherent matrices.




form

Performance of the smallest-variance-first rule in appointment sequencing. (arXiv:1812.01467v4 [math.PR] UPDATED)

A classical problem in appointment scheduling, with applications in health care, concerns the determination of the patients' arrival times that minimize a cost function that is a weighted sum of mean waiting times and mean idle times. One aspect of this problem is the sequencing problem, which focuses on ordering the patients. We assess the performance of the smallest-variance-first (SVF) rule, which sequences patients in order of increasing variance of their service durations. While it was known that SVF is not always optimal, it has been widely observed that it performs well in practice and simulation. We provide a theoretical justification for this observation by proving, in various settings, quantitative worst-case bounds on the ratio between the cost incurred by the SVF rule and the minimum attainable cost. We also show that, in great generality, SVF is asymptotically optimal, i.e., the ratio approaches 1 as the number of patients grows large. While evaluating policies by considering an approximation ratio is a standard approach in many algorithmic settings, our results appear to be the first of this type in the appointment scheduling literature.




form

Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. (arXiv:1706.07632v3 [math.NA] UPDATED)

This work deals with the efficient numerical solution of the time-fractional heat equation discretized on non-uniform temporal meshes. Non-uniform grids are essential to capture the singularities of "typical" solutions of time-fractional problems. We propose an efficient space-time multigrid method based on the waveform relaxation technique, which accounts for the nonlocal character of the fractional differential operator. To maintain an optimal complexity, which can be obtained for the case of uniform grids, we approximate the coefficient matrix corresponding to the temporal discretization by its hierarchical matrix (${cal H}$-matrix) representation. In particular, the proposed method has a computational cost of ${cal O}(k N M log(M))$, where $M$ is the number of time steps, $N$ is the number of spatial grid points, and $k$ is a parameter which controls the accuracy of the ${cal H}$-matrix approximation. The efficiency and the good convergence of the algorithm, which can be theoretically justified by a semi-algebraic mode analysis, are demonstrated through numerical experiments in both one- and two-dimensional spaces.




form

Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection. (arXiv:2005.03531v1 [cs.HC])

This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience.




form

CounQER: A System for Discovering and Linking Count Information in Knowledge Bases. (arXiv:2005.03529v1 [cs.IR])

Predicate constraints of general-purpose knowledge bases (KBs) like Wikidata, DBpedia and Freebase are often limited to subproperty, domain and range constraints. In this demo we showcase CounQER, a system that illustrates the alignment of counting predicates, like staffSize, and enumerating predicates, like workInstitution^{-1} . In the demonstration session, attendees can inspect these alignments, and will learn about the importance of these alignments for KB question answering and curation. CounQER is available at https://counqer.mpi-inf.mpg.de/spo.




form

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




form

High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH])

In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches.




form

Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture. (arXiv:2005.03454v1 [cs.LG])

Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stabilized lottery ticket hypothesis states that networks can be pruned after none or few training iterations, using a mask computed based on the unpruned converged model. On the transformer architecture and the WMT 2014 English-to-German and English-to-French tasks, we show that stabilized lottery ticket pruning performs similar to magnitude pruning for sparsity levels of up to 85%, and propose a new combination of pruning techniques that outperforms all other techniques for even higher levels of sparsity. Furthermore, we confirm that the parameter's initial sign and not its specific value is the primary factor for successful training, and show that magnitude pruning cannot be used to find winning lottery tickets.




form

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




form

Datom: A Deformable modular robot for building self-reconfigurable programmable matter. (arXiv:2005.03402v1 [cs.RO])

Moving a module in a modular robot is a very complex and error-prone process. Unlike in swarm, in the modular robots we are targeting, the moving module must keep the connection to, at least, one other module. In order to miniaturize each module to few millimeters, we have proposed a design which is using electrostatic actuator. However, this movement is composed of several attachment, detachment creating the movement and each small step can fail causing a module to break the connection. The idea developed in this paper consists in creating a new kind of deformable module allowing a movement which keeps the connection between the moving and the fixed modules. We detail the geometry and the practical constraints during the conception of this new module. We then validate the possibility of movement for a module in an existing configuration. This implies the cooperation of some of the modules placed along the path and we show in simulation that it exists a motion process to reach every free positions of the surface for a given configuration.




form

Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS])

Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition.




form

YANG2UML: Bijective Transformation and Simplification of YANG to UML. (arXiv:2005.03292v1 [cs.SE])

Software Defined Networking is currently revolutionizing computer networking by decoupling the network control (control plane) from the forwarding functions (data plane) enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. Next to the well-known OpenFlow protocol, the XML-based NETCONF protocol is also an important means for exchanging configuration information from a management platform and is nowadays even part of OpenFlow. In combination with NETCONF, YANG is the corresponding protocol that defines the associated data structures supporting virtually all network configuration protocols. YANG itself is a semantically rich language, which -- in order to facilitate familiarization with the relevant subject -- is often visualized to involve other experts or developers and to support them by their daily work (writing applications which make use of YANG). In order to support this process, this paper presents an novel approach to optimize and simplify YANG data models to assist further discussions with the management and implementations (especially of interfaces) to reduce complexity. Therefore, we have defined a bidirectional mapping of YANG to UML and developed a tool that renders the created UML diagrams. This combines the benefits to use the formal language YANG with automatically maintained UML diagrams to involve other experts or developers, closing the gap between technically improved data models and their human readability.




form

Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes. (arXiv:2005.03237v1 [math.NA])

High-order entropy-stable discontinuous Galerkin (DG) methods for nonlinear conservation laws reproduce a discrete entropy inequality by combining entropy conservative finite volume fluxes with summation-by-parts (SBP) discretization matrices. In the DG context, on tensor product (quadrilateral and hexahedral) elements, SBP matrices are typically constructed by collocating at Lobatto quadrature points. Recent work has extended the construction of entropy-stable DG schemes to collocation at more accurate Gauss quadrature points.

In this work, we extend entropy-stable Gauss collocation schemes to non-conforming meshes. Entropy-stable DG schemes require computing entropy conservative numerical fluxes between volume and surface quadrature nodes. On conforming tensor product meshes where volume and surface nodes are aligned, flux evaluations are required only between "lines" of nodes. However, on non-conforming meshes, volume and surface nodes are no longer aligned, resulting in a larger number of flux evaluations. We reduce this expense by introducing an entropy-stable mortar-based treatment of non-conforming interfaces via a face-local correction term, and provide necessary conditions for high-order accuracy. Numerical experiments in both two and three dimensions confirm the stability and accuracy of this approach.




form

On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY])

This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies.




form

A Separation Theorem for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds. (arXiv:2005.03143v1 [eess.SY])

We study the problem of jointly designing a sparse sensor and actuator schedule for linear dynamical systems while guaranteeing a control/estimation performance that approximates the fully sensed/actuated setting. We further prove a separation principle, showing that the problem can be decomposed into finding sensor and actuator schedules separately. However, it is shown that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor schedule that on average selects only a constant number of sensors and actuators at each time step, irrespective of the dimension of the system. The key idea is to sparsify the controllability and observability Gramians while providing approximation guarantees for Hankel singular values. This idea is inspired by recent results in theoretical computer science literature on sparsification.




form

Learning, transferring, and recommending performance knowledge with Monte Carlo tree search and neural networks. (arXiv:2005.03063v1 [cs.LG])

Making changes to a program to optimize its performance is an unscalable task that relies entirely upon human intuition and experience. In addition, companies operating at large scale are at a stage where no single individual understands the code controlling its systems, and for this reason, making changes to improve performance can become intractably difficult. In this paper, a learning system is introduced that provides AI assistance for finding recommended changes to a program. Specifically, it is shown how the evaluative feedback, delayed-reward performance programming domain can be effectively formulated via the Monte Carlo tree search (MCTS) framework. It is then shown that established methods from computational games for using learning to expedite tree-search computation can be adapted to speed up computing recommended program alterations. Estimates of expected utility from MCTS trees built for previous problems are used to learn a sampling policy that remains effective across new problems, thus demonstrating transferability of optimization knowledge. This formulation is applied to the Apache Spark distributed computing environment, and a preliminary result is observed that the time required to build a search tree for finding recommendations is reduced by up to a factor of 10x.




form

Computing-in-Memory for Performance and Energy Efficient Homomorphic Encryption. (arXiv:2005.03002v1 [cs.CR])

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory Processing (NMP) and Computing-in-memory (CiM) - paradigms where computation is done within the memory boundaries - represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications such as HE. This paper introduces CiM-HE, a Computing-in-memory (CiM) architecture that can support operations for the B/FV scheme, a somewhat homomorphic encryption scheme for general computation. CiM-HE hardware consists of customized peripherals such as sense amplifiers, adders, bit-shifters, and sequencing circuits. The peripherals are based on CMOS technology, and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against (i) two optimized CPU HE implementations, and (ii) an FPGA-based HE accelerator implementation. When compared to a CPU solution, CiM-HE obtains speedups between 4.6x and 9.1x, and energy savings between 266.4x and 532.8x for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference are up to 1.1x, 7.7x, 7.1x, and 7.5x faster (and 301.1x, 404.6x, 532.3x, and 532.8x more energy efficient). Compared to CPU-based HE in a previous work, CiM-HE obtain 14.3x speed-up and >2600x energy savings. Finally, our design offers 2.2x speed-up with 88.1x energy savings compared to a state-of-the-art FPGA-based accelerator.




form

Xamarin Native vs. Xamarin.Forms: How to Choose

As Android and iOS continue to dominate the mobile market, businesses need to develop applications that meet the diverse requirements of each operating system. Launching native mobile applications for Apple App Store and Google Play Store is going to be a long and expensive process. Not every business has adequate time and funds for developing native mobile applications. That is why cross-platform app frameworks have been rising to popularity.

Choosing cross-platform mobile app development services enables organizations to add their presence to both Android and iOS markets. Xamarin, recently acquired by Microsoft, is one of the best frameworks for cross-platform mobile app development. Rich features, agility, and cost-effectiveness make it an ideal choice for building cross-platform apps.




form

Getting Started With Angular Reactive Form Validation

Handling user input with forms is the cornerstone of many common applications.

Applications use forms to enable users to log in, to update a profile, to enter sensitive information, and to perform many other data-entry tasks





form

The Innovia Foundation's former president has finally won his three-year battle to stop the organization from donating to a racist website

There's one thing the Innovia Foundation can never say: That it hadn't been told.…



  • News/Local News

form

In lieu of in-person performances, musicians are using social media and live streams to connect with fans

Ask any working musician why they play live, why they lug their equipment to and from bars and restaurants and wine-tasting rooms week after week, and they'll point to the same nebulous thing: It's the connection with an audience.…