ara Stimulus package likely next week; Guaranteed higher working capital limit for MSME on cards By www.thehindubusinessline.com Published On :: Sat, 09 May 2020 22:34:47 +0530 Centre plans to raise the total borrowings to ₹12 lakh crore this fiscal Full Article Economy
ara Hyderabad International Airport facilitates first Vande Bharat evacuation flight from Kuwait By www.thehindubusinessline.com Published On :: Sun, 10 May 2020 11:02:52 +0530 Hyderabad International Airport facilitated the first arrival evacuation flight from Kuwait on Saturday.This is the first flight to Hyderabad and is p Full Article National
ara 'Thank you for creating mommy': Sara Ali Khan makes mother Amrita Singh & grandmother Rukhsana Sultana feel special By www.dnaindia.com Published On :: Sun, 10 May 2020 02:08:00 GMT Sara Ali Khan shared a beautiful picture of Amrita Singh and Rukhsana Sultana holding her newborn self Full Article Entertainment Bollywood
ara 'Vande Bharat': First evacuation flight from London lands in Mumbai; 1,373 Indians return home from worldwide By www.dnaindia.com Published On :: Sun, 10 May 2020 04:07:00 GMT In total, around 1,373 Indians returned to their native places from foreign countries on May 10 as eight 'Vande Bharat' flights from Dubai, Kuwait, Muscat, Sharjah, Kuala Lumpur, and Dhaka landed in India. Full Article India
ara 'Allow private vehicles to ferry them': Sanjay Raut's advice to Maharashtra govt on migrant situation By www.dnaindia.com Published On :: Sun, 10 May 2020 05:34:00 GMT Sanjay Raut took to his official Twitter handle on Sunday to let know his suggestion via a post regarding the situation. Full Article India
ara Two members of White House virus task force in quarantine By indianexpress.com Published On :: Sun, 10 May 2020 04:42:18 +0000 Full Article World
ara Crossing final hurdle in World Cups down to experience and preparation: Anjum Chopra By indianexpress.com Published On :: Sat, 09 May 2020 14:35:48 +0000 Full Article Cricket Sports
ara Mother’s Day 2020: Vicky Kaushal, Kiara Advani, Mahesh Babu and others share adorable photos By indianexpress.com Published On :: Sun, 10 May 2020 05:54:10 +0000 Full Article
ara Device for source position stabilization and beam parameter monitoring at inverse Compton X-ray sources By scripts.iucr.org Published On :: 2019-08-07 Compact X-ray sources based on inverse Compton scattering provide brilliant and partially coherent X-rays in a laboratory environment. The cross section for inverse Compton scattering is very small, requiring high-power laser systems as well as small laser and electron beam sizes at the interaction point to generate sufficient flux. Therefore, these systems are very sensitive to distortions which change the overlap between the two beams. In order to monitor X-ray source position, size and flux in parallel to experiments, the beam-position monitor proposed here comprises a small knife edge whose image is acquired with an X-ray camera specifically designed to intercept only a very small fraction of the X-ray beam. Based on the source position drift recorded with the monitor, a closed-loop feedback stabilizes the X-ray source position by adjusting the laser beam trajectory. A decrease of long-term source position drifts by more than one order of magnitude is demonstrated with this device. Consequently, such a closed-loop feedback system which enables stabilization of source position drifts and flux of inverse Compton sources in parallel to experiments has a significant impact on the performance of these sources. Full Article text
ara Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering By scripts.iucr.org Published On :: 2019-08-09 Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode. Full Article text
ara Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL By scripts.iucr.org Published On :: 2019-10-23 The transmission of the optical components of the Bernina branch of the Aramis beamline at SwissFEL has been measured with an X-ray gas monitor from DESY and compared with a PSI gas detector upstream of the optical components. The transmission efficiencies of the Mo, Si and SiC mirror coatings of the Aramis beamline and the various other in-beam components were evaluated and compared with theoretical calculations, showing an agreement of 6% or better in all cases. The experiment has also shown the efficacy of the high-harmonic rejection mirrors at the Bernina branch of the Aramis beamline at SwissFEL, and characterized the transmission efficiency of the on-line spectrometer in the Aramis beamline. The theoretical transmission of the mirror coatings match the experimental data to within 7%. The accuracy of these measurements was checked against a radiative bolometer from a Japanese collaboration and found to agree to a level of 4% or better. Further comparisons with a diamond detector from a US-based inter-institute collaboration demonstrated a good agreement for the attenuator settings of the beamline. Full Article text
ara Characterization of the soft X-ray spectrometer PEAXIS at BESSY II By scripts.iucr.org Published On :: 2020-01-01 The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200–1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s−1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed. Full Article text
ara A semi-analytical approach for the characterization of ordered 3D nanostructures using grazing-incidence X-ray fluorescence By scripts.iucr.org Published On :: 2020-02-11 Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating. Full Article text
ara A five-axis parallel kinematic mirror unit for soft X-ray beamlines at MAX IV By scripts.iucr.org Published On :: 2020-01-29 With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17–35 µrad angularly depending on the mirror chamber dimensions. Full Article text
ara A lathe system for micrometre-sized cylindrical sample preparation at room and cryogenic temperatures By scripts.iucr.org Published On :: 2020-01-29 A simple two-spindle based lathe system for the preparation of cylindrical samples intended for X-ray tomography is presented. The setup can operate at room temperature as well as under cryogenic conditions, allowing the preparation of samples down to 20 and 50 µm in diameter, respectively, within minutes. Case studies are presented involving the preparation of a brittle biomineral brachiopod shell and cryogenically fixed soft brain tissue, and their examination by means of ptychographic X-ray computed tomography reveals the preparation method to be mainly free from causing artefacts. Since this lathe system easily yields near-cylindrical samples ideal for tomography, a usage for a wide variety of otherwise challenging specimens is anticipated, in addition to potential use as a time- and cost-saving tool prior to focused ion-beam milling. Fast sample preparation becomes especially important in relation to shorter measurement times expected in next-generation synchrotron sources. Full Article text
ara ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data By scripts.iucr.org Published On :: 2020-02-07 The high temporal resolution in data acquisition, possible in the quick-scanning EXAFS (QEXAFS) mode of operation, provides new challenges in efficient data processing methods. Here a new approach is developed that combines an easy to use interactive graphical interface with highly optimized and fully parallelized Python-based routines for extracting, normalizing and interpolating oversampled time-resolved XAS spectra from a raw binary stream of data acquired during operando QEXAFS studies. The programs developed are freely available via a Github repository. Full Article text
ara Nanocrystalline materials: recent advances in crystallographic characterization techniques By journals.iucr.org Published On :: This feature article reviews the control and understanding of nanoparticle shape from their crystallography and growth. Particular emphasis is placed on systems relevant for plasmonics and catalysis. Full Article text
ara Rochelle salt – a structural reinvestigation with improved tools. I. The high-T paraelectric phase at 308 K By journals.iucr.org Published On :: A novel sample cell with control of temperature and relative humidity permitted collection of data of excellent quality, enabling unrestrained refinement of all atomic parameters. One of the K atoms in the structure is disordered; very strong anisotropy in three of the four water O atoms indicates partial static disorder, which does not involve the bonded H atoms. Full Article text
ara Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism By scripts.iucr.org Published On :: 2020-04-28 The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins. Full Article text
ara Solution structure and assembly of β-amylase 2 from Arabidopsis thaliana By journals.iucr.org Published On :: Solution structure of β-amylase 2 from Arabidopsis thaliana shows the role of the conserved N-terminus in enzyme tetramer formation. Full Article text
ara Bis(4-hydroxy-N,N-di-n-propyltryptammonium) fumarate tetrahydrate By scripts.iucr.org Published On :: 2019-11-12 The title compound (systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl]bis(propan-2-yl)azanium} but-2-enedioate tetrahydrate), 2C16H25N2O+·C4H2O42−·4H2O, has a singly protonated DPT cation, one half of a fumarate dianion (completed by a crystallographic centre of symmetry) and two water molecules of crystallization in the asymmetric unit. A series of N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network in the solid state. Full Article text
ara Bis(4-acetoxy-N,N-dimethyltryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug By scripts.iucr.org Published On :: 2019-05-31 The title compound (systematic name: bis{2-[4-(acetyloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111]. Full Article text
ara Synthesis, characterization, and crystal structure of aquabis(4,4'-dimethoxy-2,2'-bipyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octahydrate By scripts.iucr.org Published On :: 2019-06-11 Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bipyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis(4,4'-dimethoxy-2,2'-bipyridine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octahydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight molecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex molecules exhibit an ansa-like structure with two planar, nearly parallel bipyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water molecules give rise to a layered supramolecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs. Full Article text
ara Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-diaqua[2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole]dithiocyanatonickel(II) By scripts.iucr.org Published On :: 2019-06-21 The reaction of 2,5-bis(pyridin-4-yl)-1,3,4-oxadiazole (4-pox) and thiocyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octahedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water molecules. In the crystal, the molecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
ara The fumarate salts of the N-isopropyl-N-methyl derivatives of DMT and psilocin By scripts.iucr.org Published On :: 2019-08-16 The solid-state structures of the salts of two substituted tryptamines, namely N-isopropyl-N-methyltryptaminium (MiPT) fumarate {systematic name: [2-(1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate}, C14H21N2+·C4H3O4−, and 4-hydroxy-N-isopropyl-N-methyltryptaminium (4-HO-MiPT) fumarate monohydrate {systematic name: [2-(4-hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate}, C14H21N2O+·C4H3O4−·H2O, are reported. Both salts possess a protonated tryptammonium cation and a 3-carboxyacrylate (hydrogen fumarate) anion in the asymmetric unit; the 4-HO-MiPT structure also contains a water molecule of crystallization. Both cations feature disorder of the side chain over two orientations, in a 0.630 (3):0.370 (3) ratio for MiPT and a 0.775 (5):0.225 (5) ratio for 4-HO-MiPT. In both extended structures, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks. Full Article text
ara Synthesis, characterization, crystal structure and supramolecularity of ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate By scripts.iucr.org Published On :: 2019-08-23 The synthesis, crystal structure and structural motif of two thiophene-based cyanoacrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The molecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The intermolecular interactions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289]. Full Article text
ara Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis[4-(dimethylamino)pyridinium] di-μ-chlorido-bis[dichloridomercurate(II)] By scripts.iucr.org Published On :: 2019-10-03 The title molecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(dimethylamino)pyridinium cations (A and B) and two half hexachloridodimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The dimethylamino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(dimethylamino)pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above intermolecular interactions, but also serve to further differentiate the weaker intermolecular interactions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl interactions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy. Full Article text
ara The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
ara The `super acid' BF3H2O stabilized by 1,4-dioxane: new preparative aspects and the crystal structure of BF3H2O·C4H8O2 By scripts.iucr.org Published On :: 2019-10-31 Highly Brønsted-acidic boron trifluoride monohydrate, a widely used `super acid-catalyst', is a colourless fuming liquid that releases BF3 at room temperature. Compared to the liquid components, i.e. boron trifluoride monohydrate and 1,4-dioxane, their 1:1 adduct, BF3H2O·C4H8O2, is a solid with pronounced thermal stability (m.p. 401–403 K). The crystal structure of the long-time-stable easy-to-handle and weighable compound is reported along with new preparative aspects and the results of 1H, 11B, 13C and 19F spectroscopic investigations, particularly documenting its high Brønsted acidity in acetonitrile solution. The remarkable stability of solid BF3H2O·C4H8O2 is attributed to the chain structure established by O—H⋯O hydrogen bonds of exceptional strength {O2⋯H1—O1 [O⋯O = 2.534 (3) Å] and O1—H1⋯O3i [2.539 (3) Å] in the concatenating unit >O2⋯H1—O1—H2⋯O3i<}, taking into account the molecular (non-ionic) character of the structural moieties. Indirectly, this structural feature documents the outstanding acidification of the H2O molecule bound to BF3 and reflects the super acid nature of BF3H2O. In detail, the C22(7) zigzag chain system of hydrogen bonding in the title structure is characterized by the double hydrogen-bond donor and double (κO,κO') hydrogen-bond acceptor functionality of the aqua ligand and dioxane molecule, respectively, the almost equal strength of both hydrogen bonds, the approximatety linear arrangement of the dioxane O atoms and the two neighbouring water O atoms. Furthermore, the approximately planar arrangement of B, F and O atoms in sheets perpendicular to the c axis of the orthorhombic unit cell is a characteristic structural feature. Full Article text
ara Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10, By scripts.iucr.org Published On :: 2019-11-26 The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octahedral coordination environment. The complex molecule crystallizes with two tetrahydrofuran solvent molecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent molecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data. Full Article text
ara Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
ara Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(pentafluoro-λ6-sulfanyl)benzonitrile By scripts.iucr.org Published On :: 2020-01-17 The title compound, C7H3F5INS, a pentafluorosulfanyl (SF5) containing arene, was synthesized from 4-(pentafluorosulfanyl)benzonitrile and lithium tetramethylpiperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 intermediates that have not been demonstrated using previous methods. The molecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The pentafluorosulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the pentafluorosulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the molecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I interactions as well as out-of-plane F⋯C interactions are observed. According to the Hirshfeld analysis, the principal intermolecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%). Full Article text
ara Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
ara Bis(4-hydroxy-N-isopropyl-N-methyltryptammonium) fumarate: a new crystalline form of miprocin By scripts.iucr.org Published On :: 2020-03-10 The title compound, bis(4-hydroxy-N-isopropyl-N-methyltryptammonium) (4-HO-MiPT) fumarate (systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium} but-2-enedioate), 2C14H21N2O+·C4H2O42−, has a singly protonated tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by N—H⋯O and O—H⋯O hydrogen bonds. These chains are a combination of R42(20) rings, and C22(15) and C44(30) parallel chains along (110). They are further consolidated by N—H⋯π interactions. There are two two-component types of disorder impacting the tryptammonium fragment with a 0.753 (7):0.247 (7) occupancy ratio and one of the fumarate oxygen atoms with a 0.73 (8):0.27 (8) ratio. Full Article text
ara Norpsilocin: freebase and fumarate salt By scripts.iucr.org Published On :: 2020-03-27 The solid-state structures of the naturally occurring psychoactive tryptamine norpsilocin {4-hydroxy-N-methyltryptamine (4-HO-NMT); systematic name: 3-[2-(methylamino)ethyl]-1H-indol-4-ol}, C11H14N2O, and its fumarate salt (4-hydroxy-N-methyltryptammonium fumarate; systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl]methylazanium} but-2-enedioate), C11H15N2O+·0.5C4H2O42−, are reported. The freebase of 4-HO-NMT has a single molecule in the asymmetric unit joined together by N—H⋯O and O—H⋯O hydrogen bonds in a two-dimensional network parallel to the (100) plane. The ethylamine arm of the tryptamine is modeled as a two-component disorder with a 0.895 (3) to 0.105 (3) occupancy ratio. The fumarate salt of 4-HO-NMT crystallizes with a tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The ions are joined together by N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional framework, as well as π–π stacking between the six-membered rings of inversion-related indoles (symmetry operation: 2 − x, 1 − y, 2 – z). Full Article text
ara Calculation of total scattering from a crystalline structural model based on experimental optics parameters By scripts.iucr.org Published On :: 2020-05-05 Total scattering measurements enable understanding of the structural disorder in crystalline materials by Fourier transformation of the total structure factor, S(Q), where Q is the magnitude of the scattering vector. In this work, the direct calculation of total scattering from a crystalline structural model is proposed. To calculate the total scattering intensity, a suitable Q-broadening function for the diffraction profile is needed because the intensity and the width depend on the optical parameters of the diffraction apparatus, such as the X-ray energy resolution and divergence, and the intrinsic parameters. X-ray total scattering measurements for CeO2 powder were performed at beamline BL04B2 of the SPring-8 synchrotron radiation facility in Japan for comparison with the calculated S(Q) under various optical conditions. The evaluated Q-broadening function was comparable to the full width at half-maximum of the Bragg peaks in the experimental total scattering pattern. The proposed calculation method correctly accounts for parameters with Q dependence such as the atomic form factor and resolution function, enables estimation of the total scattering factor, and facilitates determination of the reduced pair distribution function for both crystalline and amorphous materials. Full Article text
ara A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples By scripts.iucr.org Published On :: 2019-07-10 The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology. Full Article text
ara Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach By scripts.iucr.org Published On :: 2019-08-23 The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors. Full Article text
ara A cryo-EM grid preparation device for time-resolved structural studies By scripts.iucr.org Published On :: 2019-09-05 Structural biology generally provides static snapshots of protein conformations that can provide information on the functional mechanisms of biological systems. Time-resolved structural biology provides a means to visualize, at near-atomic resolution, the dynamic conformational changes that macromolecules undergo as they function. X-ray free-electron-laser technology has provided a powerful tool to study enzyme mechanisms at atomic resolution, typically in the femtosecond to picosecond timeframe. Complementary to this, recent advances in the resolution obtainable by electron microscopy and the broad range of samples that can be studied make it ideally suited to time-resolved approaches in the microsecond to millisecond timeframe to study large loop and domain motions in biomolecules. Here we describe a cryo-EM grid preparation device that permits rapid mixing, voltage-assisted spraying and vitrification of samples. It is shown that the device produces grids of sufficient ice quality to enable data collection from single grids that results in a sub-4 Å reconstruction. Rapid mixing can be achieved by blot-and-spray or mix-and-spray approaches with a delay of ∼10 ms, providing greater temporal resolution than previously reported mix-and-spray approaches. Full Article text
ara A comparative study of single-particle cryo-EM with liquid-nitrogen and liquid-helium cooling By scripts.iucr.org Published On :: 2019-10-22 Radiation damage is the most fundamental limitation for achieving high resolution in electron cryo-microscopy (cryo-EM) of biological samples. The effects of radiation damage are reduced by liquid-helium cooling, although the use of liquid helium is more challenging than that of liquid nitrogen. To date, the benefits of liquid-nitrogen and liquid-helium cooling for single-particle cryo-EM have not been compared quantitatively. With recent technical and computational advances in cryo-EM image recording and processing, such a comparison now seems timely. This study aims to evaluate the relative merits of liquid-helium cooling in present-day single-particle analysis, taking advantage of direct electron detectors. Two data sets for recombinant mouse heavy-chain apoferritin cooled with liquid-nitrogen or liquid-helium to 85 or 17 K were collected, processed and compared. No improvement in terms of resolution or Coulomb potential map quality was found for liquid-helium cooling. Interestingly, beam-induced motion was found to be significantly higher with liquid-helium cooling, especially within the most valuable first few frames of an exposure, thus counteracting any potential benefit of better cryoprotection that liquid-helium cooling may offer for single-particle cryo-EM. Full Article text
ara Investigation of growth characteristics and semimetal–semiconductor transition of polycrystalline bismuth thin films By scripts.iucr.org Published On :: 2020-01-01 The preferred orientation growth characteristics and surface roughness of polycrystalline bismuth (Bi) thin films fabricated on glass substrates using the molecular beam epitaxy method were investigated at temperatures ranging from 18 to 150°C. The crystallization and morphology were analyzed in detail and the polycrystalline metal film structure-zone model (SZM) was modified to fit the polycrystalline Bi thin film. The boundary temperature between Zone T and Zone II in the SZM shifted to higher temperatures with the increase in film thickness or the decrease of growth rate. Furthermore, the effect of the thickness and surface roughness on the transport properties was investigated, especially for Bi thin films in Zone II. A two-transport channels model was adopted to reveal the influence of the film thickness on the competition between the metallic surface states and the semiconducting bulk states, which is consistent with the results of Bi single-crystal films. Therefore, the polycrystalline Bi thin films are expected to replace the single-crystal films in the application of spintronic devices. Full Article text
ara The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase By scripts.iucr.org Published On :: 2020-01-25 Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built. Full Article text
ara Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays By scripts.iucr.org Published On :: 2020-02-19 Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters. Full Article text
ara New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy By scripts.iucr.org Published On :: 2020-04-21 This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/siloxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres. Full Article text
ara Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae By scripts.iucr.org Published On :: 2019-05-31 Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process. Full Article text
ara Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device By scripts.iucr.org Published On :: 2019-11-22 Although microscopes and image-analysis software for electron cryomicroscopy (cryo-EM) have improved dramatically in recent years, specimen-preparation methods have lagged behind. Most strategies still rely on blotting microscope grids with paper to produce a thin film of solution suitable for vitrification. This approach loses more than 99.9% of the applied sample and requires several seconds, leading to problematic air–water interface interactions for macromolecules in the resulting thin film of solution and complicating time-resolved studies. Recently developed self-wicking EM grids allow the use of small volumes of sample, with nanowires on the grid bars removing excess solution to produce a thin film within tens of milliseconds from sample application to freezing. Here, a simple cryo-EM specimen-preparation device that uses components from an ultrasonic humidifier to transfer protein solution onto a self-wicking EM grid is presented. The device is controlled by a Raspberry Pi single-board computer and all components are either widely available or can be manufactured by online services, allowing the device to be constructed in laboratories that specialize in cryo-EM rather than instrument design. The simple open-source design permits the straightforward customization of the instrument for specialized experiments. Full Article text
ara Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies By scripts.iucr.org Published On :: 2020-04-14 The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting. Full Article text
ara High-efficiency ultra-precision comparator for d-spacing mapping measurement of silicon By scripts.iucr.org Published On :: 2020-03-13 This article describes a high-efficiency experimental configuration for a self-referenced lattice comparator with a `brush beam' of synchrotron radiation from a bending magnet and two linear position-sensitive photon-counting-type X-ray detectors. The efficiency is more than ten times greater compared with the `pencil-beam' configuration and a pair of zero-dimensional detectors. A solution for correcting the systematic deviation of d-spacing measurements caused by the horizontal non-uniformity of the brush beam is provided. Also, the use of photon-counting-type one-dimensional detectors not only improves the spatial resolution of the measurements remarkably but can also adjust the sample's attitude angles easily. Full Article text
ara Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography By journals.iucr.org Published On :: A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics. Full Article text
ara Successful sample preparation for serial crystallography experiments By scripts.iucr.org Published On :: 2019-11-14 Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers. Full Article text