si Angola's Business Promise: Evaluating the Progress of Privatization and Other Economic Reforms By feedproxy.google.com Published On :: Thu, 16 Jan 2020 16:40:01 +0000 Research Event 21 January 2020 - 2:30pm to 3:30pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Hon. Manuel José Nunes Júnior, Minister of State for Economic Coordination, Republic of AngolaChair: Dr Alex Vines OBE, Managing Director, Ethics, Risk & Resilience; Director, Africa Programme, Chatham House Minister Nunes Júnior will discuss the progress of the Angolan government’s economic stabilization plans and business reform agenda including the privatization of some state-owned enterprises. These reforms could expand Angola’s exports beyond oil and stimulate new industries and more inclusive economic growth.THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED. Department/project Africa Programme, Southern Africa, Inclusive Economic Growth, Governance and Technology Sahar Eljack Programme Administrator, Africa Programme + 44 (0) 20 7314 3660 Email Full Article
si The Central African Republic: Security, Development and Responding to the Humanitarian Situation By feedproxy.google.com Published On :: Fri, 24 Jan 2020 11:00:02 +0000 Invitation Only Research Event 3 February 2020 - 2:00pm to 3:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Denise Brown, United Nations Deputy Special Representative of the Secretary-General, Resident and Humanitarian Coordinator in the Central African RepublicChair: Ben Shepherd, Consulting Fellow, Africa Programme, Chatham House With two-thirds of the country’s population estimated to be in need of humanitarian aid and one-quarter either internally displaced or living as refugees in neighbouring countries, the Central African Republic (CAR) continues to face serious and complex humanitarian challenges. The country’s forthcoming presidential elections scheduled for December 2020 risk inflaming CAR’s volatile security situation particularly with the return of former leader, François Bozizé, ousted by the Séléka rebel coalition leader, Michel Djotodia, who has also returned from exile.At this event, Denise Brown will discuss CAR’s current security, humanitarian and development situations and the role of actors such as the United Nations Multidimensional Integrated Stabilization Mission in the Central African Republic (MINUSCA). She will also discuss prospects for much-needed governance reform and reconciliation.Attendance at this event is by invitation only. Event attributes Chatham House Rule Department/project Africa Programme, Elections and political systems, Central and East Africa Hanna Desta Programme Assistant, Africa Programme Email Full Article
si POSTPONED: UN Peacekeeping in Africa: Insights from Successes and Failures of the Past By feedproxy.google.com Published On :: Thu, 20 Feb 2020 14:30:01 +0000 Research Event 10 March 2020 - 3:00pm to 4:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Alan Doss, President, Kofi Annan Foundation With Africa hosting half of the UN peacekeeping missions currently in operation and more than 80 per cent of the UN’s peacekeepers, it is clear that crisis management and conflict resolution on the continent remain key priorities. However, traditional international supporters, notably Canada and the United States, have reduced their financial support for peacekeeping in recent years. Together with frequent reports on peacekeeping abuse, declining support is proving disruptive for the maintenance and predictability of UN missions.At this event, which will launch the book A Peacekeeper in Africa: Learning from UN Interventions in Other People’s Wars, Alan Doss will reflect on past UN peacekeeping missions in Africa and will consider how lessons learned might help to improve future UN peace operations.PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE. Department/project Africa Programme, African Peace and Security, Foreign Relations and Africa’s Agency in the International System Sahar Eljack Programme Administrator, Africa Programme + 44 (0) 20 7314 3660 Email Full Article
si Webinar: Implications of the COVID-19 Pandemic for Food Security and Resilience in Africa By feedproxy.google.com Published On :: Wed, 15 Apr 2020 10:15:01 +0000 Research Event 23 April 2020 - 1:00pm to 2:00pm Event participants Dr Arif Husain, Chief Economist and Director of Research, Assessment and Monitoring, United Nations World Food ProgrammeRespondent: Dr Leena Koni Hoffmann, Associate Fellow, Africa Programme, Chatham HouseChair: Professor Tim Benton, Research Director, Emerging Risks; Director, Energy, Environment and Resources Programme, Chatham House Dr Arif Husain gives his assessment of the potential impact that the COVID-19 pandemic will have on food security in Africa and what can be done to prevent a food security emergency. Linked to the immediate public health consequences of the COVID-19 pandemic are those of economic and food security, particularly significant for low- and middle-income countries. Currently more than 821 million people globally go hungry, with 100 million of those suffering acute hunger, and this will worsen if the evolving economic emergency becomes a food security emergency. Sub-Saharan African countries rely on trade for food security and for revenue; they imported more than 40 million tons of cereal from around the world in 2018, according to the World Food Programme (WFP). The region faces stark new challenges due to the pandemic.This event launches the WFP paper COVID-19: Potential impact on the world’s poorest people. Department/project Africa Programme Hanna Desta Programme Assistant, Africa Programme Email Full Article
si Coronavirus Risks Worsening a Food Crisis in the Sahel and West Africa By feedproxy.google.com Published On :: Fri, 01 May 2020 14:20:52 +0000 1 May 2020 Dr Leena Koni Hoffmann Associate Fellow, Africa Programme @leenahoffmann LinkedIn Paul Melly Consulting Fellow, Africa Programme @paulmelly2 In responding to the spread of the coronavirus, the governments of the Sahel and West Africa will need to draw on their collective experience of strategic coordination in emergency planning, and work together to prioritize the flow of food across borders. 2020-05-01-Africa-Market-Virus An informal market in the Anyama district of Abidjan, Côte d’Ivoire, is sanitized against the coronavirus. Photo by SIA KAMBOU/AFP via Getty Images. The COVID-19 pandemic has struck the Sahel and West Africa at a time when the region is already under severe pressure from violent insecurity and the effects of climate change on its land, food and water resources.By the end of April, there had been 9,513 confirmed coronavirus cases across the 17 countries of the region, and some 231 deaths, with the highest overall numbers recorded in Nigeria, Ghana, Guinea, Côte d’Ivoire, Senegal, Niger and Burkina Faso. Low testing rates mean than these numbers give only a partial picture.The Food Crisis Prevention Network (RPCA) forecast in early April that almost 17 million people in the Sahel and West Africa (7.1 million in Nigeria alone) will need food and nutritional assistance during the coming lean season in June–August, more than double the number in an average year. The combined impact of violent insecurity and COVID-19 could put more than 50 million other people across the region at risk of food and nutrition crisis.Rippling across the regionThe effects of the collapse in global commodity prices, currency depreciations, rising costs of consumer goods and disruptions to supply chains are rippling across the region. And for major oil-exporting countries such as Nigeria, Ghana, Chad and Cameroon, the wipe-out of foreign currency earnings will hammer government revenues just as the cost of food and other critical imports goes up. It is likely that the number of people who suffer the direct health impact of the coronavirus will be far outstripped by the number for whom there will be harsh social and economic costs.In recent years, valuable protocols and capacities have been put in place by governments in West and Central Africa in response to Ebola and other infectious disease outbreaks.But inadequate healthcare funding and infrastructure across this region compound the challenge of responding to the spread of the COVID-19 infection – which is testing the resources of even the world’s best-funded public health systems.Over many years, however, the region has steadily built up structures to tackle humanitarian and development challenges, particularly as regards food security. It has an established system for assessing the risk of food crisis annually and coordinating emergency support to vulnerable communities. Each country monitors climate and weather patterns, transhumance, market systems and agricultural statistics, and terrorist disruption of agricultural productivity, from local community to national and regional level.The system is coordinated and quality-controlled, using common technical data standards, by the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), a regional intergovernmental body established in 1973 in response to a devastating drought. Collective risk assessments allow emergency support to be mobilized through the RPCA.For almost three months already, countries in Sahelian West Africa have been working with the World Health Organization to prepare national COVID-19 response strategies and strengthen health controls at their borders. Almost all governments have also opted for domestic curfews, and variations of lockdown and market restrictions.Senegal has been a leader in rapidly developing Africa’s diagnostic capacity, and plans are under way to speed up production of test kits. Niger was swift to develop a national response strategy, to which donors have pledged €194.5 million. While the IMF has agreed emergency financial assistance to help countries address the urgent balance-of-payments, health and social programme needs linked to the COVID-19 pandemic, signing off $3.4 billion for Nigeria, $442 million for Senegal and $130 million for Mauritania.Steps are also now being taken towards the formulation of a more joined-up regional approach. Notably, Nigeria’s President Muhammadu Buhari has been chosen by an extraordinary session of the Economic Community of West African States to coordinate the regional response to COVID-19. As Africa’s biggest economy and home to its largest population, Nigeria is a critical hub for transnational flows of goods and people. Its controversial August 2019 land border closure, in a bid to address smuggling, has already painfully disrupted regional agri-food trade and value chains. The active engagement of the Buhari administration will thus be crucial to the success of a multifaceted regional response.One of the first tough questions the region’s governments must collectively address is how long to maintain the border shutdowns that were imposed as an initial measure to curb the spread of the virus. Closed borders are detrimental to food security, and disruptive to supply chains and the livelihoods of micro, small and medium-sized entrepreneurs that rely on cross-border trade. The impact of prolonged closures will be all the more profound in a region where welfare systems are largely non-existent or, at best, highly precarious.Nigeria, in particular, with more than 95 million people already living in extreme poverty, might do well to explore measures to avoid putting food further beyond the reach of people who are seeing their purchasing power evaporate.In taking further actions to control the spread of the coronavirus, the region’s governments will need to show faith in the system that they have painstakingly developed to monitor and respond to the annual risk of food crisis across the Sahel. This system, and the critical data it offers, will be vital to informing interventions to strengthen the four components of food security – availability, access, stability and utilization – in the context of COVID-19, and for charting a post-pandemic path of recovery.Above all, careful steps will need to be put in place to ensure that preventing the spread of the coronavirus does not come at the cost of even greater food insecurity for the people of the Sahel and West Africa. The region’s governments must prioritize the flow of food across borders and renew their commitment to strategic coordination and alignment. Full Article
si COVID-19 in South Africa: Leadership, Resilience and Inequality By feedproxy.google.com Published On :: Thu, 07 May 2020 14:50:58 +0000 7 May 2020 Christopher Vandome Research Fellow, Africa Programme LinkedIn In a world looking for leadership, South Africa’s president Cyril Ramaphosa has been remarkable. One year after he carried the time-worn ANC through a national election, South Africans are crying out for more. 2020-05-07-Ramaphosa-COVID-South-Africa Cyril Ramaphosa at NASREC Expo Centre in Johannesburg where facilities are in place to treat coronavirus patients. Photo by JEROME DELAY/POOL/AFP via Getty Images. In the COVID-19 crisis so far, Cyril Ramaphosa has been widely praised for displaying the decisive leadership so many hoped for when they cast their ballot for him in May 2019. Buttressed by others such as health minister Dr Zweli Mkhize, and on a simple objective to prevent transmission, South Africa has been a lesson to the world. Act fast. Act hard.Former president Thabo Mbeki’s disastrous response to the HIV crisis cast a long shadow over his legacy, and Ramaphosa has taken note. South Africa has had one of the tightest lockdowns in the world. No exercise. No cigarettes. No alcohol.The lockdown was imposed when the country had only around 1,000 recorded cases and just two deaths. As a result, transmission from returning travellers has not yet led to an exponential infection rate within the community. The government’s swift reaction has bought much needed time with the peak now seemingly delayed to September or October.Continental and national leadershipRamaphosa has also emerged as a key focal point for Africa-wide responses. As current chair of the African Union (AU) he leads the continental engagement with the World Health Organization (WHO), and the various international finance institutions, while South African officials are working with the AU and the United Nations Economic Commission for Africa (UNECA) on a push for African debt restructuring.He has also been active in trouble shooting to unlock external assistance to the continent, including from China and Russia. Appointing special envoys is typical of his boardroom-honed leadership style.International and regional partnerships are vital for resilience and the arrival of 217 Cuban doctors to South Africa is strongly reminiscent of the liberationist solidarity of the Cold War era. And regional economies remain dependent on South Africa to protect their own vulnerable citizens. Following the 2008 financial crisis, it was South Africa’s regional trading relationships that remained robust, while trade with its main global partners in China and the US dropped.Despite the plaudits, Ramaphosa remains vulnerable to challenge at home, notably around his failure to stimulate South Africa’s moribund economy. On the eve of lockdown, Moody’s joined its peers Standard and Poor’s and Fitch in giving South Africa a below investment grade credit rating. The move was a long time coming. Long mooted economic reforms were slow to materialise, and South Africa had fallen into recession.Ramaphosa depends on a small core of close advisors and allies, initially united in apparent opposition to the kleptocratic rule of President Jacob Zuma and the deep patronage networks he created within both the party and the state. But this allegiance is being tested by economic reality. Support within the party was already drifting prior to the crisis.Disagreements are not just technocratic – there are big ideological questions in play around the role of the state in the economy, the level of intervention, and its affordability, with key government figures sceptical of rapid market reforms. Energy minister and former union stalwart Gwede Mantashe is wary of job losses, and minister of public enterprises Pravin Gordhan protective of state-owned enterprises (SOEs). Before coronavirus hit, Ramaphosa seemed content to allow these policy disputes to play themselves out with little decisive intervention.Slow progress on reform, against worsening economic performance, left Ramaphosa and his allies exposed. In January the president missed the UK’s African Investment Summit in order to assert control over a party meeting at which it was expected his detractors would seek to remove Gordhan.COVID-19 has sharpened thinkingAs the independently assertive - and eminently quotable - pro-market reformist finance minister Tito Mboweni stated, ‘you can’t eat ideology’. Accelerated reform and restructuring is required if the government turns to the International Monetary Fund (IMF) for assistance.For the first time, Gordhan has been forced to deny a bailout to beleaguered state airline South African Airways (SAA), and the government’s lockdown bailout of R300 billion has been applauded by business. Much like the fiscal stimulus and recovery plan of 2018, it relies on smart spending, targeting sectors with high multiplier effects. It also includes significant reserve bank loans.But it has been criticised for not doing enough to help the most vulnerable. There is considerable fear of what could happen when the virus takes hold in South Africa’s townships and informal settlements where social distancing is almost impossible, basic toilet facilities are shared, and HIV and TB rates high.There are mounting concerns of the humanitarian cost of a prolonged lockdown, and the government has been faster than others in implementing a tiered lockdown system, trying to get people back to work and keep the economy afloat.South Africa has been criticized by the UN for the use of lethal force by security forces in enforcing lockdown and, in a society plagued by corruption, there are fears legislation to stop the spread of false information could be used to restrict legitimate reporting on the virus response or other issues.COVID-19 shines a spotlight on societies’ fault-lines worldwide. South Africa is often touted as having one of the highest levels of inequality in the world but, in a globalized economy, these divisions are international as much as they are local.Resilience comes from within, but also depends on regional and global trading and financial systems. South Africans and international partners have long recognised Ramaphosa’s leadership qualities as an impressive voice for the global south.But he must also be an advocate for South Africa’s poor. This crisis could accelerate implementation of his landmark pro-poor National Health Insurance and Universal Health Care programmes. Or the hit of COVID-19 on top of South Africa’s existing economic woes could see them derailed entirely. Ramaphosa must push through economic reforms at the same time as managing COVID-19 and rebuilding trust in his government. Full Article
si Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities. Full Article
si Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function. Full Article
si Correction: Graph Algorithms for Condensing and Consolidating Gene Set Analysis Results. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Full Article
si Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 In bottom-up, label-free discovery proteomics, biological samples are acquired in a data-dependent (DDA) or data-independent (DIA) manner, with peptide signals recorded in an intact (MS1) and fragmented (MS2) form. While DDA has only the MS1 space for quantification, DIA contains both MS1 and MS2 at high quantitative quality. DIA profiles of complex biological matrices such as tissues or cells can contain quantitative interferences, and the interferences at the MS1 and the MS2 signals are often independent. When comparing biological conditions, the interferences can compromise the detection of differential peptide or protein abundance and lead to false positive or false negative conclusions. We hypothesized that the combined use of MS1 and MS2 quantitative signals could improve our ability to detect differentially abundant proteins. Therefore, we developed a statistical procedure incorporating both MS1 and MS2 quantitative information of DIA. We benchmarked the performance of the MS1-MS2-combined method to the individual use of MS1 or MS2 in DIA using four previously published controlled mixtures, as well as in two previously unpublished controlled mixtures. In the majority of the comparisons, the combined method outperformed the individual use of MS1 or MS2. This was particularly true for comparisons with low fold changes, few replicates, and situations where MS1 and MS2 were of similar quality. When applied to a previously unpublished investigation of lung cancer, the MS1-MS2-combined method increased the coverage of known activated pathways. Since recent technological developments continue to increase the quality of MS1 signals (e.g. using the BoxCar scan mode for Orbitrap instruments), the combination of the MS1 and MS2 information has a high potential for future statistical analysis of DIA data. Full Article
si Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state. Full Article
si Site-specific N-glycan Analysis of Antibody-binding Fc {gamma} Receptors from Primary Human Monocytes [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 FcRIIIa (CD16a) and FcRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ~20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145). Full Article
si Blistering1 Modulates Penicillium expansum Virulence Via Vesicle-mediated Protein Secretion [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The blue mold fungus, Penicillium expansum, is a postharvest apple pathogen that contributes to food waste by rotting fruit and by producing harmful mycotoxins (e.g. patulin). To identify genes controlling pathogen virulence, a random T-DNA insertional library was created from wild-type P. expansum strain R19. One transformant, T625, had reduced virulence in apples, blistered mycelial hyphae, and a T-DNA insertion that abolished transcription of the single copy locus in which it was inserted. The gene, Blistering1, encodes a protein with a DnaJ domain, but otherwise has little homology outside the Aspergillaceae, a family of fungi known for producing antibiotics, mycotoxins, and cheese. Because protein secretion is critical for these processes and for host infection, mass spectrometry was used to monitor proteins secreted into liquid media during fungal growth. T625 failed to secrete a set of enzymes that degrade plant cell walls, along with ones that synthesize the three final biosynthetic steps of patulin. Consequently, the culture broth of T625 had significantly reduced capacity to degrade apple tissue and contained 30 times less patulin. Quantitative mass spectrometry of 3,282 mycelial proteins revealed that T625 had altered cellular networks controlling protein processing in the endoplasmic reticulum, protein export, vesicle-mediated transport, and endocytosis. T625 also had reduced proteins controlling mRNA surveillance and RNA processing. Transmission electron microscopy of hyphal cross sections confirmed that T625 formed abnormally enlarged endosomes or vacuoles. These data reveal that Blistering1 affects internal and external protein processing involving vesicle-mediated transport in a family of fungi with medical, commercial, and agricultural importance. Full Article
si Molecular Basis of the Mechanisms Controlling MASTL [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The human MASTL (Microtubule-associated serine/threonine kinase-like) gene encodes an essential protein in the cell cycle. MASTL is a key factor preventing early dephosphorylation of M-phase targets of Cdk1/CycB. Little is known about the mechanism of MASTL activation and regulation. MASTL contains a non-conserved insertion of 550 residues within its activation loop, splitting the kinase domain, and making it unique. Here, we show that this non-conserved middle region (NCMR) of the protein is crucial for target specificity and activity. We performed a phosphoproteomic assay with different MASTL constructs identifying key phosphorylation sites for its activation and determining whether they arise from autophosphorylation or exogenous kinases, thus generating an activation model. Hydrogen/deuterium exchange data complements this analysis revealing that the C-lobe in full-length MASTL forms a stable structure, whereas the N-lobe is dynamic and the NCMR and C-tail contain few localized regions with higher-order structure. Our results indicate that truncated versions of MASTL conserving a cryptic C-Lobe in the NCMR, display catalytic activity and different targets, thus establishing a possible link with truncated mutations observed in cancer-related databases. Full Article
si Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Aberrantly high mTORC1 signaling is a known driver of many cancers and human disorders, yet pharmacological inhibition of mTORC1 rarely confers durable clinical responses. To explore alternative therapeutic strategies, herein we conducted a proteomics survey to identify cell surface proteins upregulated by mTORC1. A comparison of the surfaceome from Tsc1–/– versus Tsc1+/+ mouse embryonic fibroblasts revealed 59 proteins predicted to be significantly overexpressed in Tsc1–/– cells. Further validation of the data in multiple mouse and human cell lines showed that mTORC1 signaling most dramatically induced the expression of the proteases neprilysin (NEP/CD10) and aminopeptidase N (APN/CD13). Functional studies showed that constitutive mTORC1 signaling sensitized cells to genetic ablation of NEP and APN, as well as the biochemical inhibition of APN. In summary, these data show that mTORC1 signaling plays a significant role in the constitution of the surfaceome, which in turn may present novel therapeutic strategies. Full Article
si Deep Characterization of the Human Antibody Response to Natural Infection Using Longitudinal Immune Repertoire Sequencing [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Human antibody response studies are largely restricted to periods of high immune activity (e.g. vaccination). To comprehensively understand the healthy B cell immune repertoire and how this changes over time and through natural infection, we conducted immune repertoire RNA sequencing on flow cytometry-sorted B cell subsets to profile a single individual's antibodies over 11 months through two periods of natural viral infection. We found that 1) a baseline of healthy variable (V) gene usage in antibodies exists and is stable over time, but antibodies in memory cells consistently have a different usage profile relative to earlier B cell stages; 2) a single complementarity-determining region 3 (CDR3) is potentially generated from more than one VJ gene combination; and 3) IgG and IgA antibody transcripts are found at low levels in early human B cell development, suggesting that class switching may occur earlier than previously realized. These findings provide insight into immune repertoire stability, response to natural infections, and human B cell development. Full Article
si Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:29-08:00 Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERβ) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERβ under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERβ in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERβ of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERβ association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERβ association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERβ in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners. Full Article
si MaXLinker: Proteome-wide Cross-link Identifications with High Specificity and Sensitivity [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance. Full Article
si N-glycosylation Site Analysis Reveals Sex-related Differences in Protein N-glycosylation in the Rice Brown Planthopper (Nilaparvata lugens) [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Glycosylation is a common modification of proteins and critical for a wide range of biological processes. Differences in protein glycosylation between sexes have already been observed in humans, nematodes and trematodes, and have recently also been reported in the rice pest insect Nilaparvata lugens. Although protein N-glycosylation in insects is nowadays of high interest because of its potential for exploitation in pest control strategies, the functionality of differential N-glycosylation between sexes is yet unknown. In this study, therefore, the occurrence and role of sex-related protein N-glycosylation in insects were examined. A comprehensive investigation of the N-glycosylation sites from the adult stages of N. lugens was conducted, allowing a qualitative and quantitative comparison between sexes at the glycopeptide level. N-glycopeptide enrichment via lectin capturing using the high mannose/paucimannose-binding lectin Concanavalin A, or the Rhizoctonia solani agglutinin which interacts with complex N-glycans, resulted in the identification of over 1300 N-glycosylation sites derived from over 600 glycoproteins. Comparison of these N-glycopeptides revealed striking differences in protein N-glycosylation between sexes. Male- and female-specific N-glycosylation sites were identified, and some of these sex-specific N-glycosylation sites were shown to be derived from proteins with a putative role in insect reproduction. In addition, differential glycan composition between males and females was observed for proteins shared across sexes. Both lectin blotting experiments as well as transcript expression analyses with complete insects and insect tissues confirmed the observed differences in N-glycosylation of proteins between sexes. In conclusion, this study provides further evidence for protein N-glycosylation to be sex-related in insects. Furthermore, original data on N-glycosylation sites of N. lugens adults are presented, providing novel insights into planthopper's biology and information for future biological pest control strategies. Full Article
si Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro. Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro. Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin. Full Article
si Integration of IgA and IgG Autoantigens Improves Performance of Biomarker Panels for Early Diagnosis of Lung Cancer [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Lung cancer (LC) remains the leading cause of mortality from malignant tumors worldwide. In our previous study, we surveyed both IgG and IgM-bound serological biomarkers and validated a panel of IgG-bound autoantigens for early LC diagnosis with 50% sensitivity at 90% specificity. To further improve the performance of these serological biomarkers, we surveyed HuProt arrays, comprised of 20,240 human proteins, for IgA-bound autoantigens because IgAs are a major immunoglobulin isotype in the lung. Integrating with IgG-bound autoantigens, we discovered and validated a combined biomarker panel using ELISA-format tests. Specifically, in Phase I, we obtained IgA-based autoimmune profiles of 69 early stage LC patients, 30 healthy subjects and 25 patients with lung benign lesions (LBL) on HuProt arrays and identified 28 proteins as candidate autoantigens that were significantly associated with early stage LC. In Phase II, we re-purified the autoantigens and converted them into an ELISA-format testing to profile an additional large cohort, comprised of 136 early stage LC patients, 58 healthy individuals, and 29 LBL patients. Integration of IgG autoimmune profiles allowed us to identify and validate a biomarker panel of three IgA autoantigens (i.e. BCL7A, and TRIM33 and MTERF4) and three IgG autoantigens (i.e. CTAG1A, DDX4 and MAGEC2) for diagnosis of early stage LC with 73.5% sensitivity at >85% specificity. In Phase III, the performance of this biomarker panel was confirmed with an independent cohort, comprised of 88 early stage LC patients, 18 LBL patients, and 36 healthy subjects. Finally, a blind test on 178 serum samples was conducted to confirm the performance of the biomarker panel. In summary, this study demonstrates for the first time that an integrated panel of IgA/IgG autoantigens can serve as valuable biomarkers to further improve the performance of early diagnosis of LC. Full Article
si The Challenge of Classifying Metastatic Cell Properties by Molecular Profiling Exemplified with Cutaneous Melanoma Cells and Their Cerebral Metastasis from Patient Derived Mouse Xenografts [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches. Full Article
si Characterizing Patients with Recurrent Urinary Tract Infections in Vesicoureteral Reflux: A Pilot Study of the Urinary Proteome [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Recurrent urinary tract infections (UTIs) pose a significant burden on the health care system. Underlying mechanisms predisposing children to UTIs and associated changes in the urinary proteome are not well understood. We aimed to investigate the urinary proteome of a subset of children who have vesicoureteral reflux (VUR) and recurrent UTIs because of their risk of developing infection-related renal damage. Improving diagnostic modalities to identify UTI risk factors would significantly alter the clinical management of children with VUR. We profiled the urinary proteomes of 22 VUR patients with low grade VUR (1–3 out of 5), a history of recurrent UTIs, and renal scarring, comparing them to those obtained from 22 age-matched controls. Urinary proteins were analyzed by mass spectrometry followed by protein quantitation based on spectral counting. Of the 2,551 proteins identified across both cohorts, 964 were robustly quantified, as defined by meeting criteria with spectral count (SC) ≥2 in at least 7 patients in either VUR or control cohort. Eighty proteins had differential expression between the two cohorts, with 44 proteins significantly up-regulated and 36 downregulated (q <0.075, FC ≥1.2). Urinary proteins involved in inflammation, acute phase response (APR), modulation of extracellular matrix (ECM), and carbohydrate metabolism were altered among the study cohort. Full Article
si Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice. Full Article
si Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available. Full Article
si Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Anal squamous cell carcinoma is a rare tumor. Chemo-radiotherapy yields a 50% 3-year relapse-free survival rate in advanced anal cancer, so improved predictive markers and therapeutic options are needed. High-throughput proteomics and whole-exome sequencing were performed in 46 paraffin samples from anal squamous cell carcinoma patients. Hierarchical clustering was used to establish groups de novo. Then, probabilistic graphical models were used to study the differences between groups of patients at the biological process level. A molecular classification into two groups of patients was established, one group with increased expression of proteins related to adhesion, T lymphocytes and glycolysis; and the other group with increased expression of proteins related to translation and ribosomes. The functional analysis by the probabilistic graphical model showed that these two groups presented differences in metabolism, mitochondria, translation, splicing and adhesion processes. Additionally, these groups showed different frequencies of genetic variants in some genes, such as ATM, SLFN11 and DST. Finally, genetic and proteomic characteristics of these groups suggested the use of some possible targeted therapies, such as PARP inhibitors or immunotherapy. Full Article
si Large-scale Identification of N-linked Intact Glycopeptides in Human Serum using HILIC Enrichment and Spectral Library Search [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Large-scale identification of N-linked intact glycopeptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in human serum is challenging because of the wide dynamic range of serum protein abundances, the lack of a complete serum N-glycan database and the existence of proteoforms. In this regard, a spectral library search method was presented for the identification of N-linked intact glycopeptides from N-linked glycoproteins in human serum with target-decoy and motif-specific false discovery rate (FDR) control. Serum proteins were firstly separated into low-abundance and high-abundance proteins by acetonitrile (ACN) precipitation. After digestion, the N-linked intact glycopeptides were enriched by hydrophilic interaction liquid chromatography (HILIC) and a portion of the enriched N-linked intact glycopeptides were processed by Peptide-N-Glycosidase F (PNGase F) to generate N-linked deglycopeptides. Both N-linked intact glycopeptides and deglycopeptides were analyzed by LC-MS/MS. From N-linked deglycopeptides data sets, 764 N-linked glycoproteins, 1699 N-linked glycosites and 3328 unique N-linked deglycopeptides were identified. Four types of N-linked glycosylation motifs (NXS/T/C/V, X=P) were used to recognize the N-linked deglycopeptides. The spectra of these N-linked deglycopeptides were utilized for N-linked deglycopeptides library construction and identification of N-linked intact glycopeptides. A database containing 739 N-glycan masses was constructed and utilized during spectral library search for the identification of N-linked intact glycopeptides. In total, 526 N-linked glycoproteins, 1036 N-linked glycosites, 22,677 N-linked intact glycopeptides and 738 N-glycan masses were identified under 1% FDR, representing the most in-depth serum N-glycoproteome identified by LC-MS/MS at N-linked intact glycopeptide level. Full Article
si Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 An experimental and computational approach for identification of protein-protein interactions by ex vivo chemical crosslinking and mass spectrometry (CLMS) has been developed that takes advantage of the specific characteristics of cyanurbiotindipropionylsuccinimide (CBDPS), an affinity-tagged isotopically coded mass spectrometry (MS)-cleavable crosslinking reagent. Utilizing this reagent in combination with a crosslinker-specific data-dependent acquisition strategy based on MS2 scans, and a software pipeline designed for integrating crosslinker-specific mass spectral information led to demonstrated improvements in the application of the CLMS technique, in terms of the detection, acquisition, and identification of crosslinker-modified peptides. This approach was evaluated on intact yeast mitochondria, and the results showed that hundreds of unique protein-protein interactions could be identified on an organelle proteome-wide scale. Both known and previously unknown protein-protein interactions were identified. These interactions were assessed based on their known sub-compartmental localizations. Additionally, the identified crosslinking distance constraints are in good agreement with existing structural models of protein complexes involved in the mitochondrial electron transport chain. Full Article
si Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition. Full Article
si Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis. Full Article
si Compliance Checklists No Longer Required at Initial Manuscript Submission [Editorials] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Full Article
si The Data Must Be Accessible to All [Editorials] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Full Article
si Correction: Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Full Article
si Proteomic Analysis of Salmonella-modified Membranes Reveals Adaptations to Macrophage Hosts [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Systemic infection and proliferation of intracellular pathogens require the biogenesis of a growth-stimulating compartment. The gastrointestinal pathogen Salmonella enterica commonly forms highly dynamic and extensive tubular membrane compartments built from Salmonella-modified membranes (SMMs) in diverse host cells. Although the general mechanism involved in the formation of replication-permissive compartments of S. enterica is well researched, much less is known regarding specific adaptations to different host cell types. Using an affinity-based proteome approach, we explored the composition of SMMs in murine macrophages. The systematic characterization provides a broader landscape of host players to the maturation of Salmonella-containing compartments and reveals core host elements targeted by Salmonella in macrophages as well as epithelial cells. However, we also identified subtle host specific adaptations. Some of these observations, such as the differential involvement of the COPII system, Rab GTPases 2A, 8B, 11 and ER transport proteins Sec61 and Sec22B may explain cell line-dependent variations in the pathophysiology of Salmonella infections. In summary, our system-wide approach demonstrates a hitherto underappreciated impact of the host cell type in the formation of intracellular compartments by Salmonella. Full Article
si Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Acute myeloid leukemia (AML) is a clonal disorder arising from hematopoietic myeloid progenitors. Aberrantly activated tyrosine kinases (TK) are involved in leukemogenesis and are associated with poor treatment outcome. Kinase inhibitor (KI) treatment has shown promise in improving patient outcome in AML. However, inhibitor selection for patients is suboptimal. In a preclinical effort to address KI selection, we analyzed a panel of 16 AML cell lines using phosphotyrosine (pY) enrichment-based, label-free phosphoproteomics. The Integrative Inferred Kinase Activity (INKA) algorithm was used to identify hyperphosphorylated, active kinases as candidates for KI treatment, and efficacy of selected KIs was tested. Heterogeneous signaling was observed with between 241 and 2764 phosphopeptides detected per cell line. Of 4853 identified phosphopeptides with 4229 phosphosites, 4459 phosphopeptides (4430 pY) were linked to 3605 class I sites (3525 pY). INKA analysis in single cell lines successfully pinpointed driver kinases (PDGFRA, JAK2, KIT and FLT3) corresponding with activating mutations present in these cell lines. Furthermore, potential receptor tyrosine kinase (RTK) drivers, undetected by standard molecular analyses, were identified in four cell lines (FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and FLT3 in MM6). These cell lines proved highly sensitive to specific KIs. Six AML cell lines without a clear RTK driver showed evidence of MAPK1/3 activation, indicative of the presence of activating upstream RAS mutations. Importantly, FLT3 phosphorylation was demonstrated in two clinical AML samples with a FLT3 internal tandem duplication (ITD) mutation. Our data show the potential of pY-phosphoproteomics and INKA analysis to provide insight in AML TK signaling and identify hyperactive kinases as potential targets for treatment in AML cell lines. These results warrant future investigation of clinical samples to further our understanding of TK phosphorylation in relation to clinical response in the individual patient. Full Article
si An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100x) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ~2500 proteins and precise quantification of ~1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells. Full Article
si Profiling Cell Signaling Networks at Single-cell Resolution [Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses. Full Article
si Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications. Full Article
si Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity. Full Article
si The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
si The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues. Full Article
si Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver. Full Article
si Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells [Metabolism] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis. Full Article
si Targeting the polyamine pathway—“a means” to overcome chemoresistance in triple-negative breast cancer [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance. Full Article
si Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
si Malcolm Turnbull visits Sunshine Coast to view proposal for new undersea communications cable By www.smh.com.au Published On :: Thu, 03 Sep 2015 11:59:04 GMT A plan to make the Sunshine Coast a vital internet gateway is luring Communications Minister Malcolm Turnbull to the area on Friday to view the proposal in person. Full Article
si Public servants warned off internet sex and cheating sites after Ashley Madison hack By www.smh.com.au Published On :: Thu, 03 Sep 2015 13:30:00 GMT Marriage vows are one thing, but the public service Code of Conduct, that's serious. Full Article
si Australians are avoiding cash-only businesses: survey By www.smh.com.au Published On :: Thu, 24 Sep 2015 03:39:45 GMT As internet banking and tap-and-go cards become ubiquitous, Australians are beginning to reject businesses that operate on a cash only basis. Full Article
si New website allows youth to report cyber bullying at ACT libraries By www.smh.com.au Published On :: Mon, 07 Dec 2015 02:36:03 GMT A new pilot website will also make it easier for material to be taken off the internet. Full Article
si Centrelink's IT meltdown hits the disability pension By www.smh.com.au Published On :: Mon, 21 Dec 2015 21:45:06 GMT Centrelink's tech woes disrupts Disability Pension medical crackdown. Full Article