si

Tobacco smoking in people is not associated with altered 18 kDa-translocator protein levels: A Positron Emission Tomography study

Rationale: The effects of tobacco smoking on the brain’s immune system are not well elucidated. While nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. Positron Emission Tomography (PET) imaging of the 18-kDa translocator protein (TSPO) provide a biomarker for microglia, the brain’s primary immunocompetent cells. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 hours) and 20 nonsmokers using a fully quantitative modeling approach for the first time. Methods: [11C]PBR28 PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. [11C]PBR28 volumes of distribution (VT) were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence for significant differences in regional [11C]PBR28 VT between smokers and non-smokers (whole-brain Cohen’s d=0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in brain (measured as standardized uptake value, SUV) of tobacco smokers compared to nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that compared to nonsmokers, smokers have comparable TSPO levels in brain. Additional work with other biomarkers is needed to fully characterize effects of tobacco smoking on the brain’s immune system.




si

Flare phenomenon in O-(2-[18F]-Fluoroethyl)-L-Tyrosine PET after resection of gliomas

Purpose: PET using O-(2-[18F]Fluoroethyl)-L-tyrosine (18F-FET) is useful to detect residual tumor tissue after glioma resection. Recent animal experiments detected reactive changes of 18F-FET uptake at the rim of the resection cavity within the first two weeks after resection of gliomas. In the present study, we evaluated pre- and postoperative 18F-FET PET scans of glioma patients with particular emphasis on the identification of reactive changes after surgery. Methods: Forty-three patients with cerebral gliomas (9 low-grade, 34 high-grade; 9 primary tumors, 34 recurrent tumors) who had preoperative (time before surgery, median 23 d, range 6-44 d) and postoperative 18F-FET-PET (time after surgery, median 14, range 5–28 d) were included. PET scans (20-40 min p.i.) were evaluated visually for complete or incomplete resection (CR, IR) and compared with MRI. Changes of 18F-FET-uptake in residual tumor were evaluated by tumor-to-brain ratios (TBRmax) and in the vicinity of the resection cavity by maximum lesion-to-brain ratios (LBRmax). Results: Visual analysis of 18F-FET PET scans revealed CR in 16/43 patients and IR in the remaining patients. PET results were concordant with MRI in 69% of the patients. LBRmax of 18F-FET uptake in the vicinity of the resection cavity was significantly higher compared with preoperative values (1.59 ± 0.36 versus 1.14 ± 0.17; n = 43, p<0.001). In 11 patients (26%) a "flare phenomenon" was observed with a considerable increase of 18F-FET uptake compared with preoperative values in either the residual tumor (n = 5) or in areas remote from tumor in the preoperative PET scan (n = 6) (2.92 ± 1.24 versus 1.62 ± 0.75; p<0.001). Further follow-up in five patients showed decreasing 18F-FET uptake in the flare areas in four and progress in one case. Conclusion: Our study confirms that 18F-FET PET provides valuable information for assessing the success of glioma resection. Postoperative reactive changes at the rim of the resection cavity appear to be mild. However, in 23 % of the patients, a postoperative "flare phenomenon" was observed that warrants further investigation.




si

PSMA PET/CT and standard plus PET/CT-Ultrasound fusion targeted prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsies

The purpose of this study was to investigate the feasibility and diagnostic efficacy of 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) combined with PET-ultrasound image-guided biopsy in the diagnosis of prostate cancer. Methods: A total of 31 patients with previously negative prostate biopsy, but persistent elevated serum prostate specific antigen (PSA), were imaged with a 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT ligand prior to undergoing repeat prostate biopsy. Based on the proposed PROMISE criteria, PSMA PET/CT results were interpreted as negative (miPSMA-ES 0-1) or positive (miPSMA-ES 2-3). All patients underwent standard template systematic biopsy with up to four additional PSMA PET-ultrasound fusion image-guided biopsy cores. The sensitivity, specificity, positive and negative predictive values, and accuracy of PSMA PET/CT were determined. In addition, the correlation between miPSMA-ES and detection rate of prostate cancer was also analyzed. Univariate logistic regression models were established using PSMA PET/CT semi-quantitative analysis parameters to predict the outcome of repeat prostate biopsy. Results: The median age of patients was 65 years (range 53-81), and the median PSA level was 18.0 ng/ml (range 5.48-49.77 ng/ml). Prostate cancer was detected in 15/31 patients (48.4%) and 12/31 patients (38.7%) had clinically significant disease. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 68Ga-PSMA PET/CT in the diagnosis of clinically significant prostate cancer were 100.0%, 68.4%, 66.7%, 100.0% and 80.6%, respectively. The detection rate of prostate cancer increased with the increase of miPSMA-ES score. The detection rate of clinically significant prostate cancer in miPSMA-ES 0-1, 2 and 3 groups were 0%, 54.5% and 85.7% respectively. Semi-quantitative analysis of 68Ga-PSMA PET/CT images showed that predictive models based on maximum standardized uptake value (SUVmax), tumor-to-background normal prostate SUV (SUVT/BGp) and tumor-to-background normal liver SUV (SUVratio) could effectively predict clinically significant prostate cancer; area under the curves were 0.930, 0.877, and 0.956, respectively. Conclusion: This study preliminarily confirmed that 68Ga-PSMA PET/CT imaging combined with PET-ultrasound fusion image-guided prostate biopsy can effectively detect clinically significant prostate cancer. Prebiopsy 68Ga-PSMA PET/CT has predictive value for clinically significant cancer in the studied patient population.




si

Imaging the Distribution of Gastrin Releasing Peptide Receptors in Cancer

Targeting tumor-expressed receptors using selective molecules for diagnostic, therapeutic or both diagnostic and therapeutic (theragnostic) purposes is a promising approach in oncological applications. Such approaches have increased significantly over the past decade. Peptides such as gastrin-releasing peptide receptors (GRPR) targeting radiopharmaceuticals are small molecules with fast blood clearance and urinary excretion. They demonstrate good tissue diffusion, low immunogenicity, and highly selective binding to their target cell-surface receptors. They are also easily produced. GRPR, part of the bombesin (BBN) family, are overexpressed in many tumors, including breast and prostate cancer, and therefore represent an attractive target for future development.




si

Clinical evaluation of a data-driven respiratory gating algorithm for whole-body positron emission tomography with continuous bed motion

Respiratory gating is the standard to overcome respiration effects degrading image quality in positron emission tomography (PET). Data-driven gating (DDG) using signals derived from PET raw data are promising alternatives to gating approaches requiring additional hardware. However, continuous bed motion (CBM) scans require dedicated DDG approaches for axially-extended PET, compared to DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort, comparing it to hardware-based gating using gated and fully motion-corrected reconstructions. Methods: 56 patients with suspected malignancies in thorax or abdomen underwent whole-body 18F-FDG CBM-PET/CT imaging using DDG and hardware-based respiratory gating (pressure-sensitive belt gating, BG). Correlation analyses were performed on both gating signals. Besides static reconstructions, BG and DDG were used for optimally-gated PET (BG-OG, DDG-OG) and fully motion-corrected PET (elastic motion correction; BG-EMOCO, DDG-EMOCO). Metabolic volumes, SUVmax and SUVmean of lesions were compared amongst the reconstructions. Additionally, the quality of lesion delineation in different PET reconstructions was independently evaluated by three experts. Results: Global correlation coefficients between BG and DDG signals amounted to 0.48±0.11, peaking at 0.89±0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO and DDG-EMOCO compared to static images (P<0.001; median SUVmax: static, 14.3±13.4; BG-EMOCO, 19.8±15.7; DDG-EMOCO, 20.5±15.6; BG-OG, 19.6±17.1; DDG-OG, 18.9±16.6). No significant differences between BG-OG and DDG-OG, and BG-EMOCO and DDG-EMOCO, respectively, were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P<0.001); no significant difference was found comparing BG and DDG (EMOCO, OG, respectively). Conclusion: DDG-based motion-compensation of CBM-PET acquisitions outperforms static reconstructions, delivering qualities comparable to hardware-based approaches. The new algorithm may be a valuable alternative for CBM-PET systems.




si

Multi-phasic 68Ga-PSMA PET/CT in detection of early recurrence in prostate cancer patients with PSA < 1 ng/ml: a prospective study of 135 cases.

Purpose: The main objective of this prospective study was to determine the impact of multi-phasic acquisition of 68Ga-PSMA PET/CT in the detection of recurrent prostate cancer (PCa) in the early stage of biochemical recurrence (BR) with prostate-serum-antigen (PSA) level <1ng/ml. Also, 68Ga-PSMA PET/CT positivity was correlated with clinical parameters for the assessment of predictive markers. Methods: A prospective monocentric study was conducted on 135 PCa patients with BR and PSA<1ng/ml. All patients have undergone initial prostatectomy with additional radiation therapy in 19.3% and androgen-deprivation therapy (ADT) in 7.4% of patients. Dynamic acquisition [1–8min. post-injection (p.i.)] from the prostate bed, standard whole-body (60min. p.i.) and limited bed positions of delayed studies (120-150min. p.i.), were performed. Studies were reviewed by two board-certified nuclear medicine specialists, independently. A combination of visual and semi-quantitative analyses and correlation with morphological (e.g. MRI) and/or clinical follow-up findings was used for the final interpretation of abnormal lesions as benign or malignant. 68Ga-PSMA PET/CT positivity was also correlated with primary clinical findings. Results: Incorporating the information of all phases, 116 lesions were detected in 49.6% of patients (22 local recurrences, 63 lymph nodes, and 31 distant metastases). The detection rates were 31.8%, 44.9%, and 71.4% for PSA<0.2ng/ml, 0.2≤PSA<0.5, and 0.5≤PSA<1, respectively. Additional dynamic and/or delayed phases resulted in better determination of equivocal lesions and a higher diagnostic performance in 25.9% of patients. Stand-alone dynamic and delayed images led to better interpretation of equivocal findings in the prostate bed (31.4%) and other (lymph node/bone) lesions (20%), respectively. Conclusion: 68Ga-PSMA PET/CT revealed promising results for the early detection of recurrent disease in patients with PSA level of 0.5-1.0ng/ml. However, it showed limited value in cases with PSA<0.5ng/ml. Multi-phasic 68Ga-PSMA PET/CT led to better determination of equivocal findings. Although, dynamic images may provide helpful information in assessment of the prostate bed; however, delayed acquisitions seem to have higher impact in clarifying of the equivocal findings.




si

Intraoperative 68Gallium-PSMA Cerenkov Luminescence Imaging for surgical margins in radical prostatectomy - a feasibility study

Objective: To assess the feasibility and accuracy of Cerenkov Luminescence Imaging (CLI) for assessment of surgical margins intraoperatively during radical prostatectomy (RPE). Methods: A single centre feasibility study included 10 patients with high-risk primary prostate cancer (PC). 68Ga-PSMA PET/CT scans were performed followed by RPE and intraoperative CLI of the excised prostate. In addition to imaging the intact prostate, in the first two patients the prostate gland was incised and imaged with CLI to visualise the primary tumour. We compared the tumour margin status on CLI to postoperative histopathology. Measured CLI intensities were determined as tumour to background ratio (TBR). Results: Tumour cells were successfully detected on the incised prostate CLI images as confirmed by histopathology. 3 of 10 men had histopathological positive surgical margins (PSMs), and 2 of 3 PSMs were accurately detected on CLI. Overall, 25 (72%) out of 35 regions of interest (ROIs) proved to visualize a tumour signal according to standard histopathology. The median tumour radiance in these areas was 11301 photons/s/cm2/sr (range 3328 - 25428 photons/s/cm2/sr) and median TBR was 4.2 (range 2.1 – 11.6). False positive signals were seen mainly at the prostate base with PC cells overlaid by benign tissue. PSMA-immunohistochemistry (PSMA-IHC) revealed strong PSMA staining of benign gland tissue, which impacts measured activities. Conclusion: This feasibility showed that 68Ga-PSMA CLI is a new intraoperative imaging technique capable of imaging the entire specimen’s surface to detect PC tissue at the resection margin. Further optimisation of the CLI protocol, or the use of lower-energetic imaging tracers such as 18F-PSMA, are required to reduce false positives. A larger study will be performed to assess diagnostic performance.




si

Quantification of PD-L1 expression with [18F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer

The aim of this work was to quantify the uptake of [18F]BMS-986192, a PD-L1 adnectin PET tracer, in patients with non-small-cell lung cancer (NSCLC). To this end, plasma input kinetic modeling of dynamic tumor uptake data with online arterial blood sampling was performed. In addition, the accuracy of simplified uptake metrics such as standardized uptake value (SUV) was investigated. Methods: Data from a study with [18F]BMS-986192 in patients with advanced stage NSCLC eligible for nivolumab treatment were used if a dynamic scan was available and lesions were present in the field of view of the dynamic scan. After injection of [18F]BMS-986192, a 60-minutes dynamic PET-CT scan was started, followed by a 30-min whole body PET-CT scan. Continuous arterial and discrete arterial and venous blood sampling were performed to determine a plasma input function. Tumor time activity curves were fitted by several plasma input kinetic models. Simplified uptake parameters included tumor to blood ratio as well as several SUV measures. Results: Twenty two tumors in nine patients were analyzed. The arterial plasma input single-tissue reversible compartment model with fitted blood volume fraction seems to be the most preferred model as it best fitted 11 out of 18 tumor time activity curves. The distribution volume VT ranged from 0.4 to 4.8 mL·cm-3. Similar values were obtained with an image derived input function. From the simplified measures, SUV normalized for body weight (SUVBW) at 50 and 67 minutes post injection correlated best with VT, with an R2 > 0.9. Conclusion: A single tissue reversible model can be used for the quantification of tumor uptake of the PD-L1 PET tracer [18F]BMS-986192. SUVBW at 60 minutes post injection, normalized for body weight, is an accurate simplified parameter for uptake assessment of baseline studies. In order to assess its predictive value for response evaluation during PD-(L)1 immune checkpoint inhibition further validation of SUV against VT based on an image derived input function is recommended.




si

Diagnosis of Hyper-progressive Disease in Patients Treated with Checkpoint Inhibitors using 18F-FDG PET/CT




si

64Cu-DOTATATE PET/CT and prediction of overall and progression-free survival in patients with neuroendocrine neoplasms

Overexpression of somatostatin receptors in patients with neuroendocrine neoplasms (NEN) is utilized for both diagnosis and treatment. Receptor density may reflect tumor differentiation and thus be associated with prognosis. Non-invasive visualization and quantification of somatostatin receptor density is possible by somatostatin receptor imaging (SRI) using positron emission tomography (PET). Recently, we introduced 64Cu-DOTATATE for SRI and we hypothesized that uptake of this tracer could be associated with overall (OS) and progression-free survival (PFS). Methods: We evaluated patients with NEN that had a 64Cu-DOTATATE PET/CT SRI performed in two prospective studies. Tracer uptake was determined as the maximal standardized uptake value (SUVmax) for each patient. Kaplan-Meier analysis with log-rank was used to determine the predictive value of 64Cu-DOTATATE SUVmax for OS and PFS. Specificity, sensitivity and accuracy was calculated for prediction of outcome at 24 months after 64Cu-DOTATATE PET/CT. Results: A total of 128 patients with NEN were included and followed for a median of 73 (1-112) months. During follow-up, 112 experienced disease progression and 69 patients died. The optimal cutoff for 64Cu-DOTATATE SUVmax was 43.3 for prediction of PFS with a hazard ratio of 0.56 (95% CI: 0.38-0.84) for patients with SUVmax > 43.3. However, no significant cutoff was found for prediction of OS. In multiple Cox regression adjusted for age, sex, primary tumor site and tumor grade, the SUVmax cutoff hazard ratio was 0.50 (0.32-0.77) for PFS. The accuracy was moderate for predicting PFS (57%) at 24 months after 64Cu-DOTATATE PET/CT. Conclusion: In this first study to report the association of 64Cu-DOTATATE PET/CT and outcome in patients with NEN, tumor somatostatin receptor density visualized with 64Cu-DOTATATE PET/CT was prognostic for PFS but not OS. However, the accuracy of prediction of PFS at 24 months after 64Cu-DOTATATE PET/CT SRI was moderate limiting the value on an individual patient basis.




si

Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer

Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA.




si

First-in-Human Trial of Dasatinib-Derivative Tracer for Tumor Kinase-Targeted Positron Emission Tomography

We developed a first-of-kind dasatinib-derivative imaging agent, 18F-SKI-249380 (18F-SKI), and validated its use for noninvasive in vivo tyrosine kinase-targeted tumor detection in preclinical models. In this study, we assess the feasibility of using 18F-SKI for PET imaging in patients with malignancies. Methods: Five patients with a prior diagnosis of breast cancer, renal cell cancer, or leukemia underwent whole-body PET/CT imaging 90 min post-injection of 18F-SKI (mean: 241.24 ± 116.36 MBq) as part of a prospective study. In addition, patients underwent either a 30-min dynamic scan of the upper abdomen including, at least partly, cardiac left ventricle, liver, spleen, and kidney (n = 2) or three 10-min whole-body PET/CT scans (n = 3) immediately post-injection and blood-based radioactivity measurements to determine the time course of tracer distribution and facilitate radiation dose estimates. A subset of three patients had a delayed whole-body PET/CT scan at 180 min. Biodistribution, dosimetry, and tumor uptake were quantified. Absorbed doses were calculated using OLINDA/EXM 1.0. Results: No adverse events occurred after injection of 18F-SKI. A total of 27 tumor lesions were analyzed with median SUVpeak 1.4 (range, 0.7–2.3) and tumor-to-blood ratios of 1.6 (range, 0.8–2.5) at 90 min post-injection. Intratumoral drug concentrations calculated for four reference lesions ranged from 0.03–0.07 nM. In all reference lesions, constant tracer accumulation was observed between 30–90 min post-injection. Blood radio-assay indicated that radiotracer clearance from blood and plasma was initially rapid (blood half-time 1.31 ± 0.81 min, plasma 1.07 ± 0.66 min; n = 4), followed variably by either a prolonged terminal phase (blood half-time 285 ± 148.49 min, plasma 240 ± 84.85 min; n = 2) or a small rise to plateau (n = 2). Like dasatinib, 18F-SKI underwent extensive metabolism post-administration, as evidenced by metabolite analysis. Radioactivity was predominantly cleared via the hepatobiliary route. The highest absorbed dose estimates (mGy/MBq) in normal tissues were to the right colon (0.167 ± 0.04) and small intestine (0.153 ± 0.03). The effective dose was 0.0258 (SD 0.0034) mSv/MBq. Conclusion: 18F-SKI demonstrated significant tumor uptake, distinct image contrast despite low injected doses, and rapid clearance from blood.




si

Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies.

We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups.




si

Design and development of 99mTc labeled FAPI-tracers for SPECT-imaging and 188Re therapy.

The majority of epithelial tumors recruits fibroblasts and other non-malignant cells and activates them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high contrast images with PET/CT scans. Since SPECT is a lower cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applicable in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product. This enabled a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) and/or on mouse FAP expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-man application was done in two patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion and no tumor uptake were observed in the planar scintigraphy of a HT-1080-FAP xenotranplanted mouse. To improve the pharmacokinetic properties hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (up to 45 % binding; above 95 % internalization), high affinity (IC50 = 6.4 nM to 12.7 nM), and significant tumor uptake (up to 5.4 %ID/g) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions also shown in PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially in cases where PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re which is planned for the near future.




si

OpenDose: open access resources for nuclear medicine dosimetry

Background: Radiopharmaceutical dosimetry depends on the localization in space and time of radioactive sources and requires the estimation of the amount of energy emitted by the sources deposited within targets. In particular, when computing resources are not accessible, this task can be carried out using precomputed tables of Specific Absorbed Fractions (SAFs) or S values based on dosimetric models. The OpenDose collaboration aims to generate and make freely available a range of dosimetric data and tools. Methods: OpenDose brings together resources and expertise from 18 international teams to produce and compare traceable dosimetric data using 6 of the most popular Monte Carlo codes in radiation transport (EGSnrc/EGS++, FLUKA, GATE, Geant4, MCNP/MCNPX and PENELOPE). SAFs are uploaded, together with their associated statistical uncertainties, in a relational database. S values are then calculated from mono-energetic SAFs, based on the radioisotope decay data presented in the International Commission on Radiological Protection (ICRP) publication 107. Results: The OpenDose collaboration produced SAFs for all source regions and targets combinations of the two ICRP 110 adult reference models. SAFs computed from the different Monte Carlo codes were in good agreement at all energies, with standard deviations below individual statistical uncertainties. Calculated S values were in good agreement with OLINDA 2 (commercial) and IDAC 2.1 (free) software. A dedicated website (www.opendose.org) has been developed to provide easy and open access to all data. Conclusion: The OpenDose website allows the display and download of SAFs and the corresponding S values for 1252 radionuclides. The OpenDose collaboration, open to new research teams, will extend data production to other dosimetric models and implement new free features, such as online dosimetric tools and patient-specific absorbed dose calculation software, together with educational resources.




si

68Ga-PSMA guided bone biopsies for molecular diagnostics in metastatic prostate cancer patients

For individual treatment decisions in patients with metastatic prostate cancer (mPC), molecular diagnostics are increasingly used. Bone metastases are frequently the only source for obtaining metastatic tumor tissue. However, the success rate of computed tomography (CT)-guided bone biopsies for molecular analyses in mPC patients is only ~40%. Positron emission tomography (PET) using Gallium-68 prostate specific membrane antigen (68Ga-PSMA) is a promising tool to improve the harvest rate of bone biopsies for molecular analyses. Aim of this study was to determine the success rate of 68Ga-PSMA guided bone biopsies for molecular diagnostics in mPC patients. Methods: Within a prospective multicenter whole-genome sequencing trial (NCT01855477), 69 mPC patients underwent 68Ga-PSMA PET/CT prior to bone biopsy. Primary endpoint was success rate (tumor percentage ≥30%) of 68Ga-PSMA guided bone biopsies. At biopsy sites, 68Ga-PSMA uptake was quantified using rigid body image registration of 68Ga-PSMA PET/CT and interventional CT. Actionable somatic alterations were identified. Results: Success rate of 68Ga-PSMA guided biopsies for molecular analyses was 70%. At biopsy sites categorized as positive, inconclusive, or negative for 68Ga-PSMA uptake, 70%, 64%, and 36% of biopsies were tumor positive (≥30%), respectively (P = 0.0610). In tumor positive biopsies, 68Ga-PSMA uptake was significantly higher (P = 0.008), whereas radiodensity was significantly lower (P = 0.006). With an area under the curve of 0.84 and 0.70, both 68Ga-PSMA uptake (maximum standardized uptake value) and radiodensity (mean Hounsfield Units) were strong predictors for a positive biopsy. Actionable somatic alterations were detected in 73% of the sequenced biopsies. Conclusion: In patients with mPC, 68Ga-PSMA PET/CT improves the success rate of CT-guided bone biopsies for molecular analyses, thereby identifying actionable somatic alterations in more patients. Therefore, 68Ga-PSMA PET/CT may be considered for guidance of bone biopsies in both clinical practice and clinical trials.




si

Neuroendocrine Differentiation and Response toPSMA-Targeted Radioligand Therapy in Advanced Metastatic Castration-Resistant Prostate Cancer: a Single-Center Retrospective Study

Introduction: Neuroendocrine differentiation is associated with treatment failure and poor outcome in metastatic castration-resistant prostate cancer (mCRPC). We investigated the effect of circulating neuroendocrine biomarkers on the efficacy of PSMA-targeted radioligand therapy (RLT). Methods: Neuroendocrine biomarker profiles (progastrin-releasing peptide, neuron-specific enolase, and chromogranin-A) were analyzed in 50 patients commencing 177Lu-PSMA-617 RLT. The primary endpoint was PSA response in relation to baseline neuroendocrine marker profiles. Additional endpoints included progression-free survival. Tumor uptake on post-therapeutic scans, a known predictive marker for response, was used as control-variable. Results: Neuroendocrine biomarker profiles were abnormal in the majority of patients. Neuroendocrine biomarker levels did not predict treatment failure or early progression (P ≥ 0.13). By contrast, intense PSMA-ligand uptake in metastases predicted both treatment response (P = 0.0030) and reduced risk of early progression (P = 0.0111). Conclusion: Neuroendocrine marker profiles do not predict adverse outcome of RLT. By contrast, high ligand uptake was confirmed to be crucial for achieving tumor-response.




si

Defining hyper-progressive disease using tumor growth rate: what are limitations and shortcuts?




si

The optimal imaging window for dysplastic colorectal polyp detection using c-Met targeted fluorescence molecular endoscopy

Rationale: Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met targeted fluorescent peptide, in a population at high-risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multi-diameter single-fiber reflectance, single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13mg/kg) at a one-, two- or three-hour dose-to-imaging interval (N = 3 patients per cohort). Two cohorts were expanded to six patients based on target-to-background ratios (TBR). Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly increased fluorescence in the colorectal lesions compared to surrounding tissue, with a TBR of 1.53, 1.66 and 1.74 respectively (mean intrinsic fluorescence (Q·μfa,x) = 0.035 vs. 0.023mm-1, P<0.0003; 0.034 vs. 0.021mm-1, P<0.0001; 0.033 vs. 0.019mm-1, P<0.0001). Fluorescence correlated to histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a one-to-three hour dose-to-imaging interval. No clinically significant differences were observed between the cohorts, although a one-hour dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies.




si

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




si

Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology

Latest digital whole-body PET scanners provide a combination of higher sensitivity and improved spatial and timing resolution. We performed a lesion detectability study on two generations of Siemens Biograph PET/CT scanners, the mCT and Vision, to study the impact of improved physical performance on clinical performance. Our hypothesis is that the improved performance of the Vision will result in improved lesion detectability, allowing shorter imaging times or equivalently, lower injected dose. Methods: Data were acquired with the Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network torso phantom combined with a 20-cm diameter cylindrical phantom. Spherical lesions were emulated by acquiring spheres-in-air data, and combining it with the phantom data to generate combined datasets with embedded lesions of known contrast. Two sphere sizes and uptakes were used: 9.89 mm diameter spheres with 6:1 (lung) and 3:1 (cylinder) and 4.95 mm diameter spheres with 9.6:1 (lung) and 4.5:1 (cylinder) local activity concentration uptakes. Standard image reconstruction was performed: ordinary Poisson ordered subsets expectation maximization algorithm with point spread function and time-of-flight modeling and post-reconstruction smoothing with a 5 mm Gaussian filter. The Vision images were also generated without any post-reconstruction smoothing. Generalized scan statistics methodology was used to estimate the area under the localization receiver operating characteristic curve (ALROC). Results: Higher sensitivity and improved TOF performance of Vision leads to reduced contrast in the background noise nodule distribution. Measured lesion contrast is also higher on the Vision due to its improved spatial resolution. Hence, the ALROC values are noticeably higher for the Vision relative to the mCT. Conclusion: Improved overall performance of the Vision provides a factor of 4-6 reduction in imaging time (or injected dose) over the mCT when using the ALROC metric for lesions >9.89 mm in diameter. Smaller lesions are barely detected in the mCT, leading to even higher ALROC gains with the Vision. Improved spatial resolution of the Vision also leads to a higher measured contrast that is closer to the real uptake, implying improved quantification. Post-reconstruction smoothing, however, reduces this improvement in measured contrast, thereby reducing the ALROC values for small, high uptake lesions.




si

A Prospective, Comparative Study of Planar and Single-photon Emission Computed Tomography Ventilation/Perfusion Imaging for Chronic Thromboembolic Pulmonary Hypertension

Objectives: The study compared the diagnostic performance of Planar Ventilation/perfusion (V/Q) and V/Q Single-photon computed tomography (SPECT), and determined whether combining perfusion scanning with low-dose computed tomography (Q-LDCT) may be equally effective in a prospective study of patients with chronic thromboembolic pulmonary hypertension (CTEPH) patients. Background: V/Q scanning is recommended for excluding CTEPH during the diagnosis of pulmonary hypertension (PH). However, Planar V/Q and V/Q SPECT techniques have yet to be compared in patients with CTEPH. Methods: Patients with suspected PH were eligible for the study. PH attributable to left heart disease or lung disease was excluded, and patients whose PH was confirmed by right heart catheterization and who completed Planar V/Q, V/Q-SPECT, Q-LDCT, and pulmonary angiography were included. V/Q images were interpreted and patients were diagnosed as instructed by the 2009 EANM guidelines, and pulmonary angiography analyses were used as a reference standard. Results: A total of 208 patients completed the study, including 69 with CTEPH confirmed by pulmonary angiography. Planar V/Q, V/Q-SPECT, and Q-LDCT were all highly effective for diagnosing CTEPH, with no significant differences in sensitivity or specificity observed among the three techniques (Planar V/Q [sensitivity/specificity]: 94.20%/92.81%; V/Q-SPECT: 97.10%/91.37%, Q-LCDT: 95.65%/90.65%). However, V/Q-SPECT was significantly more sensitive (V/Q-SPECT: 79.21%; Planar V/Q: 75.84%, P = 0.012; Q-LDCT: 74.91%, p<0.001), and Planar V/Q was significantly more specific (Planar V/Q: 54.14%; V/Q-SPECT 46.05%, p<0.001; Q-LDCT: 46.05%, P = 0.001) than the other two techniques for identifying perfusion defects in individual lung segments. Conclusion: Both Planar V/Q and V/Q-SPECT were highly effective for diagnosing CTEPH, and Q-LDCT may be a reliable alternative method for patients who are unsuitable for ventilation imaging.




si

177Lu-lilotomab satetraxetan has the potential to counteract resistance to rituximab in non-Hodgkins lymphoma

Background: Patients with NHL who are treated with rituximab may develop resistant disease, often associated with changes in expression of CD20. The next generation β-particle emitting radioimmunoconjugate 177Lu-lilotomab-satetraxetan (Betalutin®) was shown to up-regulate CD20 expression in different rituximab-sensitive NHL cell lines and to act synergistically with rituximab in a rituximab-sensitive NHL animal model. We hypothesized that 177Lu-lilotomab-satetraxetan may be used to reverse rituximab-resistance in NHL. Methods: The rituximab-resistant Raji2R and the parental Raji cell lines were used. CD20 expression was measured by flow cytometry. ADCC was measured by a bioluminescence reporter assay. The efficacies of combined treatments with 177Lu-lilotomab-satetraxetan (150MBq/kg or 350MBq/kg) and rituximab (4x10mg/kg) were compared with those of single agents or saline in a Raji2R-xenograft model. Cox-regression and the Bliss independence model were used to assess synergism. Results: Rituximab-binding in Raji2R cells was 36±5% of that in the rituximab-sensitive Raji cells. 177Lu-lilotomab-satetraxetan treatment of Raji2R cells increased the binding to 53±3% of the parental cell line. Rituximab ADCC-induction in Raji2R cells was 20±2% of that induced in Raji cells, while treatment with 177Lu-lilotomab-satetraxetan increased the ADCC-induction to 30±3% of the Raji cells, representing a 50% increase (p<0.05). The combination of rituximab with 350MBq/kg 177Lu-lilotomab-satetraxetan synergistically suppressed Raji2R tumor growth in athymic Foxn1nu mice. Conclusion: 177Lu-lilotomab-satetraxetan has the potential to reverse rituximab-resistance; it increases binding and ADCC-activity in-vitro and can synergistically improve anti-tumor efficacy in-vivo.




si

Moving towards multicenter therapeutic trials in ALS: feasibility of data pooling using different TSPO positron emission tomography (PET) radioligands.

Rationale: Neuroinflammation has been implicated in Amyotrophic Lateral Sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, some challenges have to be overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudoreference analysis technique for 18F-DPA714. Methods: 7 ALS-Belgium (58.9±6.7 years,5M) and 8 HV-Belgium (52.1±15.2 years,3M); and 7 ALS-US (53.4±9.8 years,5M) and 7 HV-US (54.6±9.6 years,4M) from a previously published study (1) underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, US) PET-MR scans. For 18F-DPA714, volume of distribution (VT) maps were compared to standardized uptake value ratios (SUVR)40-60 calculated using the pseudoreference regions (1)cerebellum, (2)occipital cortex, and (3)whole brain without ventricles (WB-ventricles). Also for 11C-PBR28, SUVR60-90 using WB-ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0±5.6%) in primary motor cortices was observed in ALS, as measured by both VT and SUVR40-60 approaches. Highest sensitivity was found for SUVRWB-ventricles (average cluster 21.6±0.1%). 18F-DPA714 VT ratio and SUVR40-60 results were highly correlated (r>0.8, p<0.001). A similar pattern of increased uptake (average cluster 20.5±0.5%) in primary motor cortices was observed in ALS with 11C-PBR28 using the SUVRWB-ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together, resulted in a more extensive pattern of significant increased glial activation in the bilateral primary motor cortices. Conclusion: The same pseudoreference region analysis technique for 11C-PBR28 PET imaging can be extended towards 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these two tracers enables pooling of TSPO PET data across multiple centers and increase power of TSPO as biomarker for future therapeutic trials.




si

Lesion detection and administered activity




si

FDG-PET assessment of malignant pleural mesothelioma: Total Lesion volume and Total Lesion Glycolysis; the central role of volume.

Cancer Survival is related to tumor volume. FDG PET measurement of tumor volume holds promise but is not yet a clinical tool. Measurements come in two forms: the total lesion volume (TLV) based on the number of voxels in the tumor and secondly the total lesion glycolysis (TLG) which is the TLV multiplied by the average SUL per voxel of the tumor (SUL is the standardize uptake value normalized for lean mass). In this study we measured tumor volume in patients with malignant pleural mesothelioma (MPM). METHODS: A threshold-based program in IDL was developed to measure tumor volume in FDG PET images. 19 patients with malignant pleural mesothelioma (MPM) were studied before and after two cycles (6 weeks) of chemo-immunotherapy. Measurements included the total lesion volume (TLV), Total Lesion Glycolysis (TLG), the sum of the SULs in the tumor (SUL- total), a measure of total FDG uptake, and the average SUL per voxel. RESULTS: Baseline MPM volumes (TLV) ranged from 11 to 2610 cc. TLG values ranged from 32 to 8552 SUL-cc and were strongly correlated with TLV. While tumor volumes ranged over 3 orders of magnitude, the average SUL per voxel, SUL-average, stayed within a narrow range of 2.4 to 5.3 units. Thus, TLV was the major component of TLG while SUL-average was a minor component and was essentially constant. Further evaluation of SUL-average showed that in this cohort it’s two components SUL-total and tumor volume changed in parallel and were strongly correlated, r= 0.99, p<.01. Thus, whether the tumors were large or small, the FDG uptake as measured by SUL-total was proportional to the total tumor volume. Conclusion: TLG equals TLV multiplied by the average SUL per voxel, essentially TLV multiplied by a constant. Thus TLG, commonly considered a measure of "metabolic activity" in tumors, is also in this cohort a measure of tumor volume. The constancy of SUL per voxel is due to FDG uptake being proportional to tumor volume. Thus, in this study, the FDG uptake was also a measure of volume.




si

Assessing the Activity of Multidrug Resistance-Associated Protein 1 at the Lung Epithelial Barrier

Multidrug resistance-associated protein 1 (ABCC1) is abundantly expressed at the lung epithelial barrier, where it may influence the pulmonary disposition of inhaled drugs and contribute to variability in therapeutic response. Aim of this study was to assess the impact of ABCC1 on the pulmonary disposition of 6-bromo-7-11C-methylpurine (11C-BMP), a prodrug radiotracer which is intracellularly conjugated with glutathione to form the ABCC1 substrate S-(6-(7-11C-methylpurinyl))glutathione (11C-MPG). Methods: Groups of Abcc1(-/-) rats, wild-type rats pretreated with the ABCC1 inhibitor MK571 and wild-type control rats underwent dynamic PET scans after administration of 11C-BMP intravenously (i.v.) or by intratracheal aerosolization (i.t.). In vitro transport experiments were performed with unlabeled BMP in the human distal lung epithelial cell line NCI-H441. Results: Pulmonary kinetics of radioactivity were significantly different between wild-type and Abcc1(-/-) rats, but differences were more pronounced after i.t. than after i.v. administration. After i.v. administration lung exposure (AUClung) was 77% higher and the elimination slope of radioactivity washout from the lungs (kE,lung) was 70% lower, whereas after i.t. administration AUClung was 352% higher and kE,lung was 86% lower in Abcc1(-/-) rats. Pretreatment with MK571 decreased kE,lung by 20% after i.t. radiotracer administration. Intracellular accumulation of MPG in NCI-H441 cells was significantly higher and extracellular efflux was lower in presence than in absence of MK571. Conclusion: PET with pulmonary administered 11C-BMP can measure ABCC1 activity at the lung epithelial barrier and may be applicable in humans to assess the effects of disease, genetic polymorphisms or concomitant drug intake on pulmonary ABCC1 activity.




si

Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery

Gone are the days when medical imaging was used primarily to visualize anatomical structures. The emergence of molecular imaging, championed by radiolabeled fluorodeoxyglucose positron emission tomography (18FDG PET) has expanded the information content derived from imaging to include pathophysiological and molecular processes. Cancer imaging, in particular, has leveraged advances in molecular imaging agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy. Surgeons are actively latching on to the incredible opportunities provided by medical imaging for preoperative planning, intraoperative guidance, and postoperative monitoring. From label-free techniques to enabling cancer-selective imaging agents, image-guided surgery provides surgical oncologists and interventional radiologists both macroscopic and microscopic views of cancer in the operating room. This review highlights the current state of molecular imaging and sensing approaches available for surgical guidance. Salient features of nuclear, optical, and multimodal approaches will be discussed, including their strengths, limitations and clinical applications. To address the increasing complexity and diversity of methods available today, this review provides a framework to identify a contrast mechanism, suitable modality, and device. Emerging low cost, portable, and user-friendly imaging systems make the case for adopting some of these technologies as the global standard of care in surgical practice.




si

Factors predicting metastatic disease in 68Ga-PSMA-11 PET positive osseous lesions in prostate cancer

Bone is the most common site of distant metastatic spread in prostate adenocarcinoma. Prostate-specific membrane antigen uptake has been described in both benign and malignant bone lesions, which can lead to false-positive findings on 68Ga-prostate-specific membrane antigen-11 positron emission tomography (68Ga-PSMA-11 PET). The purpose of this study was to evaluate the diagnostic accuracy of 68Ga-PSMA-11 PET for osseous prostate cancer metastases and improve bone uptake interpretation using semi-quantitative metrics. METHODS: 56 prostate cancer patients (18 pre-prostatectomy, 38 biochemical recurrence) who underwent 68Ga-PSMA-11 PET/MRI or PET/CT examinations with osseous PSMA-ligand uptake were included in the study. Medical records were reviewed retrospectively by board-certified nuclear radiologists to determine true or false positivity based on a composite endpoint. For each avid osseous lesion, biological volume, size, PSMA-RADS rating, maximum standardized uptake value (SUVmax), and ratio of lesion SUVmax to liver, blood pool, and background bone SUVmax were measured. Differences between benign and malignant lesions were evaluated for statistical significance, and cut-off values for these parameters were determined to maximize diagnostic accuracy. RESULTS: Among 56 participants, 13 patients (22.8%) had false-positive osseous 68Ga-PSMA-11 findings and 43 patients (76.8%) had true-positive osseous 68Ga-PSMA-11 findings. Twenty-two patients (39%) had 1 osseous lesion, 18 (32%) had 2-4 lesions, and 16 (29%) had 5 or more lesions. Cut-off values resulting in statistically significant (p<0.005) differences between benign and malignant lesions were: PSMA-RADS ≥4, SUVmax ≥4.1, SUVmax ratio of lesion to blood pool ≥2.11, to liver ≥0.55, and to bone ≥4.4. These measurements corresponded to lesion-based 68Ga-PSMA-11 PET lesion detection rate for malignancy of 80%, 93%, 89%, 21%, 89%, and a specificity of 73%, 73%, 73%, 93%, 60%, respectively. CONCLUSION: PSMA-RADS rating, SUVmax, and SUVmax ratio of lesion to blood pool can help differentiate benign from malignant lesions on 68Ga-PSMA-11 PET. SUVmax ratio to blood pool above 2.2 is a reasonable parameter to support image interpretation and presented superior lesion detection rate and specificity when compared to visual interpretation by PSMA RADS. These parameters hold clinical value by improving diagnostic accuracy for metastatic prostate cancer on 68Ga-PSMA-11 PET/MRI and PET/CT.




si

MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics and Preliminary Imaging of 68Ga-NeoBOMB1, a Gastrin-releasing Peptide Receptor Antagonist, in GIST Patients

Introduction: Gastrin Releasing peptide receptors (GRPRs) are potential molecular imaging targets in a variety of tumors. Recently, a 68Ga-labelled antagonist to GRPRs, NeoBOMB1, was developed for PET. We report on the outcome of a Phase I/IIa clinical trial (EudraCT 2016-002053-38) within the EU-FP7 project Closed-loop Molecular Environment for Minimally Invasive Treatment of Patients with Metastatic Gastrointestinal Stromal Tumours (‘MITIGATE’) (grant agreement number 602306) in patients with oligometastatic gastrointestinal stromal tumors (GIST). Materials and Methods: The main objectives were evaluation of safety, biodistribution, dosimetry and preliminary tumor targeting of 68Ga-NeoBOMB1 in patients with advanced TKI-treated GIST using PET/CT. Six patients with histologically confirmed GIST and unresectable primary or metastases undergoing an extended protocol for detailed pharmacokinetic analysis were included. 68Ga-NeoBOMB1 was prepared using a kit procedure with a licensed 68Ge/68Ga generator. 3 MBq/kg body-weight were injected intravenously and safety parameters were assessed. PET/CT included dynamic imaging at 5 min, 11 min and 19 min as well as static imaging at 1, 2 and 3-4 h p.i. for dosimetry calculations. Venous blood samples and urine were collected for pharmacokinetics. Tumor targeting was assessed on a per-lesion and per-patient basis. Results: 68Ga-NeoBOMB1 (50 µg) was prepared with high radiochemical purity (yield >97%). Patients received 174 ± 28 MBq of the radiotracer, which was well tolerated in all patients over a follow-up period of 4 weeks. Dosimetry calculations revealed a mean adsorbed effective dose of 0.029 ± 0.06 mSv/MBq with highest organ dose to the pancreas (0.274 ± 0.099 mSv/MBq). Mean plasma half-life was 27.3 min with primarily renal clearance (mean 25.7 ± 5.4% of injected dose 4h p.i.). Plasma metabolite analyses revealed high stability, metabolites were only detected in the urine. In three patients a significant uptake with increasing maximum standard uptake values (SUVmax at 2h p.i.: 4.3 to 25.9) over time was found in tumor lesions. Conclusion: This Phase I/IIa study provides safety data for 68Ga-NeoBOMB1, a promising radiopharmaceutical for targeting GRPR-expressing tumors. Safety profiles and pharmacokinetics are suitable for PET imaging and absorbed dose estimates are comparable to other 68Ga-labelled radiopharmaceuticals used in clinical routine.




si

CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma

C-X-C chemokine receptor 4 is a transmembrane chemokine receptor involved in growth, survival, and dissemination of cancer, including aggressive B-cell lymphoma. Magnetic resonance imaging (MRI) is the standard imaging technology for central nervous system involvement of B-cell lymphoma and provides high sensitivity but moderate specificity. Therefore, novel molecular and functional imaging strategies are urgently required. Methods: In this proof-of-concept study, 11 patients with lymphoma of the CNS (CNSL, n = 8 primary and n = 3 secondary involvement) were imaged with the CXCR4-directed positron emission tomography (PET) tracer 68Ga-Pentixafor. To evaluate the predictive value of this imaging modality, treatment response, as determined by MRI, was correlated with quantification of CXCR4 expression by 68Ga-Pentixafor PET in vivo before initiation of treatment in 7 of 11 patients. Results: 68Ga-Pentixafor-PET showed excellent contrast characteristics to the surrounding brain parenchyma in all patients with active disease. Furthermore, initial CXCR4 uptake determined by PET correlated with subsequent treatment response as assessed by MRI. Conclusion: 68Ga-Pentixafor-PET represents a novel diagnostic tool for central nervous system lymphoma with potential implications for theranostic approaches as well as response and risk assessment.




si

Targeting Fibroblast Activation Protein:Radiosynthesis and Preclinical Evaluation of an 18F-labeled FAP Inhibitor

Fibroblast activation protein (FAP) has emerged as an interesting molecular target used in the imaging and therapy of various types of cancers. Gallium-68–labeled chelator-linked FAP inhibitors (FAPIs) have been successfully applied to positron emission tomography (PET) imaging of various tumor types. To broaden the spectrum of applicable PET tracers for extended imaging studies of FAP-dependent diseases, we herein report the radiosynthesis and preclinical evaluation of an 18F–labeled glycosylated FAP inhibitor ([18F]FGlc-FAPI). Methods: An alkyne-bearing precursor was synthesized and subjected to click chemistry–based radiosynthesis of [18F]FGlc-FAPI by two-step 18F-fluoroglycosylation. FAP-expressing HT1080hFAP cells were used to study competitive binding to FAP, cellular uptake, internalization, and efflux of [18F]FGlc-FAPI in vitro. Biodistribution studies and in vivo small animal PET studies of [18F]FGlc-FAPI compared to [68Ga]Ga-FAPI-04 were conducted in nude mice bearing HT1080hFAP tumors or U87MG xenografts. Results: [18F]FGlc-FAPI was synthesized with a 15% radioactivity yield and a high radiochemical purity of >99%. In HT1080hFAP cells, [18F]FGlc-FAPI showed specific uptake, a high internalized fraction, and low cellular efflux. Compared to FAPI-04 (IC50 = 32 nM), the glycoconjugate, FGlc-FAPI (IC50 = 167 nM), showed slightly lower affinity for FAP in vitro, while plasma protein binding was higher for [18F]FGlc-FAPI. Biodistribution studies revealed significant hepatobiliary excretion of [18F]FGlc-FAPI; however, small animal PET studies in HT1080hFAP xenografts showed higher specific tumor uptake of [18F]FGlc-FAPI (4.5 % injected dose per gram of tissue [ID/g]) compared to [68Ga]Ga-FAPI-04 (2 %ID/g). In U87MG tumor–bearing mice, both tracers showed similar tumor uptake, but [18F]FGlc-FAPI showed a higher tumor retention. Interestingly, [18F]FGlc-FAPI demonstrated high specific uptake in bone structures and joints. Conclusion: [18F]FGlc-FAPI is an interesting candidate for translation to the clinic, taking advantage of the longer half-life and physical imaging properties of F-18. The availability of [18F]FGlc-FAPI may allow extended PET studies of FAP-related diseases, such as cancer, but also arthritis, heart diseases, or pulmonary fibrosis.




si

Semi-automatically quantified tumor volume using Ga-68-PSMA-11-PET as biomarker for survival in patients with advanced prostate cancer

Prostate specific membrane antigen (PSMA) targeting Positron Emission Tomography (PET) imaging is becoming the reference standard for prostate cancer (PC) staging, especially in advanced disease. Yet, the implications of PSMA-PET derived whole-body tumor volume for overall survival are poorly elucidated to date. This might be due to the fact that (semi-) automated quantification of whole-body tumor volume as PSMA-PET biomarker is an unmet clinical challenge. Therefore, a novel semi-automated software is proposed and evaluated by the present study, which enables the semi-automated quantification of PSMA-PET biomarkers such as whole-body tumor volume. Methods: The proposed quantification is implemented as a research prototype (MI Whole Body Analysis Suite, v1.0, Siemens Medical Solutions USA, Inc., Knoxville, TN). PSMA accumulating foci were automatically segmented by a percental threshold (50% of local SUVmax). Neural networks were trained to segment organs in PET-CT acquisitions (training CTs: 8,632, validation CTs: 53). Thereby, PSMA foci within organs of physiologic PSMA uptake were semi-automatically excluded from the analysis. Pretherapeutic PSMA-PET-CTs of 40 consecutive patients treated with 177Lu-PSMA-617 therapy were evaluated in this analysis. The volumetric whole-body tumor volume (PSMATV50), SUVmax, SUVmean and other whole-body imaging biomarkers were calculated for each patient. Semi-automatically derived results were compared with manual readings in a sub-cohort (by one nuclear medicine physician using syngo.MM Oncology software, Siemens Healthineers, Knoxville, TN). Additionally, an inter-observer evaluation of the semi-automated approach was performed in a sub-cohort (by two nuclear medicine physicians). Results: Manually and semi automatically derived PSMA metrics were highly correlated (PSMATV50: R2=1.000; p<0.001; SUVmax: R2=0.988; p<0.001). The inter-observer agreement of the semi-automated workflow was also high (PSMATV50: R2=1.000; p<0.001; ICC=1.000; SUVmax: R2=0.988; p<0.001; ICC=0.997). PSMATV50 [ml] was a significant predictor of overall survival (HR: 1.004; 95%CI: 1.001-1.006, P = 0.002) and remained so in a multivariate regression including other biomarkers (HR: 1.004; 95%CI: 1.001-1.006 P = 0.004). Conclusion: PSMATV50 is a promising PSMA-PET biomarker that is reproducible and easily quantified by the proposed semi-automated software. Moreover, PSMATV50 is a significant predictor of overall survival in patients with advanced prostate cancer that receive 177Lu-PSMA-617 therapy.




si

Radioiodine Ablation of Remaining Thyroid Lobe in Patients with Differentiated Thyroid Cancer Treated by Lobectomy. A systematic review and meta-analysis.

Purpose: We aimed to conduct a systematic review and meta-analysis of studies reporting the performance of radioactive iodine therapy (131-I therapy) in differentiating thyroid cancer (DTC) patients requiring a completion treatment following lobectomy. We also evaluated the response to 131-I therapy according to 2015ATA guidelines and the adverse events. Methods: A specific search strategy was designed to find articles evaluating the use of I-131 in patients with evidence of DTC after lobectomy. PubMed, CENTRAL, Scopus and Web of Science were searched. The search was updated until January 2020, without language restriction. Data were cross-checked and any discrepancy discussed. A proportion meta-analysis (with 95%CI) was performed using the random-effects model. Meta-regressions on I-131 success were attempted. Results: The pooled success ablation rate was 69% with better results in patients receiving a single administration of about 3.7 GBq; high heterogeneity was found (I2 85%), and publication bias was absent (Egger test: P = 0.57). Incomplete structural responses were recorded in only 14 of 695 (2%) patients enrolled in our analysis. Incomplete biochemical responses were observed in 8 to 24% of patients, with higher rates (24%) in patients receiving low radioiodine activities (~1.1 GBq) and lower rates (from 8 to 18%) in patients receiving higher activities of radioiodine (~3.7 Gbq). Neck pain due to thyroiditis was reported in up to 18% of patients but, in most cases, symptoms resolved after oral paracetamol or a short course of prednisone. Conclusion: Lobar ablation with 131-I is effective especially when high 131I activities are used. However, the rate of incomplete biochemical response to initial treatment appears to be slightly higher than the classical scheme of initial treatment of DTC. "Radioisotopic lobectomy" should be considered for patients with low-to-intermediate risk DTC requiring completion treatment after lobectomy due to specific individual risk factors and/or patient’s preferences.




si

The Impact of Radiobiologically-Informed Dose Prescription on the Clinical Benefit of Yttrium-90 SIRT in Colorectal Cancer Patients

The purpose of this study was to establish the dose-response relationship of selective internal radiation therapy (SIRT) in patients with metastatic colorectal cancer (mCRC), when informed by radiobiological sensitivity parameters derived from mCRC cell lines exposed to yttrium-90 (90Y). Methods: 23 mCRC patients with liver metastases refractory to chemotherapy were included. 90Y bremsstrahlung SPECT images were transformed into dose maps assuming the local dose deposition method. Baseline and follow-up CT scans were segmented to derive liver and tumor volumes. Mean, median, and D70 (minimum dose to 70% of tumor volume) values determined from dose maps were correlated with change in tumor volume and vRECIST response using linear and logistic regression, respectively. Radiosensitivity parameters determined by clonogenic assays of mCRC cell lines HT-29 and DLD-1 after exposure to 90Y or external beam radiotherapy (EBRT; 6MV photons) were used in biological effective dose (BED) calculations. Results: Mean administered radioactivity was 1469±428 MBq (847-2185 MBq), achieving a mean radiation absorbed tumor dose of 35.5±9.4 Gy and mean normal liver dose of 26.4±6.8 Gy. A 1.0 Gy increase in mean, median, and D70 absorbed dose was associated with reduction in tumor volume of 1.8%, 1.8%, and 1.5%, respectively, and increased probability of vRECIST response (odds ratio: 1.09, 1.09, and 1.10 respectively). Threshold mean, median and D70 doses for response were 48.3, 48.8, and 41.8 Gy respectively. EBRT-equivalent BEDs for 90Y are up to 50% smaller than those calculated by applying protraction-corrected radiobiological parameters derived from EBRT alone. Conclusion: Dosimetric studies have assumed equivalence between 90Y SIRT and EBRT, leading to inflation of BED for SIRT and possible under-treatment. Radiobiological parameters for 90Y were applied to a BED model, providing a calculation method that has the potential to improve assessment of tumor control.




si

Integrity of neurocognitive networks in dementing disorders as measured with simultaneous PET/fMRI

Background: Functional magnetic resonance imaging (fMRI) studies have reported altered integrity of large-scale neurocognitive networks (NCNs) in dementing disorders. However, findings on specificity of these alterations in patients with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are still very limited. Recently, NCNs have been successfully captured using positron emission tomography (PET) with F18-fluordesoxyglucose (FDG). Methods: Network integrity was measured in 72 individuals (38 male) with mild AD, bvFTD, and healthy controls using a simultaneous resting state fMRI and FDG-PET. Indices of network integrity were calculated for each subject, network, and imaging modality. Results: In either modality, independent component analysis revealed four major NCNs: anterior default mode network (DMN), posterior DMN, salience network, and right central executive network (CEN). In fMRI data, integrity of posterior DMN was found to be significantly reduced in both patient groups relative to controls. In the AD group anterior DMN and CEN appeared to be additionally affected. In PET data, only integrity of posterior DMN in patients with AD was reduced, while three remaining networks appeared to be affected only in patients with bvFTD. In a logistic regression analysis, integrity of anterior DMN as measured with PET alone accurately differentiated between the patient groups. A correlation between indices of two imaging modalities was overall low. Conclusion: FMRI and FDG-PET capture partly different aspects of network integrity. A higher disease specificity of NCNs as derived from PET data supports metabolic connectivity imaging as a promising diagnostic tool.




si

Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192

18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to non-invasively determine whole-body PD-L1 expression by positron emission tomography (PET). We evaluated usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes of PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed in human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was executed in immunodeficient mice xenografted with these cell lines. Mice were treated with interferon gamma (IFN) intraperitoneally for 3 days or with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor selumetinib by oral gavage for 24 hours. Thereafter 18F-BMS-986192 was administered intravenously, followed by a 60-minute dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram tissue (%ID/g). Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFN treatment increased PD-L1 expression in the tumor cell lines and caused up to 12-fold increase in tracer binding. In vivo, IFN did neither affect PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 of tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane PD-L1 levels of tumors and consequently no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1, as soon as 60 minutes after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels.




si

177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer

Purpose: This study is designed to assess the safety and therapeutic response to 177Lu-EB-PSMA treatment with escalating doses in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: With institutional review board approval and informed consent, patients were randomly divided into three groups: Group A (n = 10) were treated with 1.18 ± 0.09 GBq/dose of 177Lu-EB-PSMA. Group B (n = 10) were treated with 2.12 ± 0.19 GBq/dose of 177Lu-EB-PSMA. Group C (n = 8) were treated with 3.52 ± 0.58 GBq/dose of 177Lu-EB-PSMA. Eligible patients received up to three cycles of 177Lu-EB-PSMA therapy, at eight-week intervals. Results: Due to disease progression or bone marrow suppression, 4 out of 10, 5 out of 10, and 5 out of 10 patients completed three cycles therapy as planned in Groups A, B, and C, respectively. The prostate-specific antigen (PSA) response was correlated with treatment dose, with PSA disease control rates in Group B (70%) and C (75%) being higher than that in Group A (10%) (P = 0.007), but no correlation between Group B and Group C was found. 68Ga-PSMA PET/CT showed response in all the treatment groups, however, there was no significant difference between the three groups. Hematologic toxicity study found that platelets in Group B and Group C decreased more than those in Group A, and that Grade 4 thrombocytopenia occurred in 2 (25.0%) patients in Group C. No serious nephritic or hepatic side effects were observed. Conclusion: This study demonstrates that 2.12 GBq/dose of 177Lu-EB-PSMA seems to be safe and adequate in tumor treatment. Further investigations with increased number of patients are warranted.




si

NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma

In randomized clinical trials (RCTs), no survival benefit has been observed for selective internal radiotherapy (SIRT) over sorafenib in patients with advanced hepatocellular carcinoma (aHCC). This study aimed to assess by means of a meta-analysis whether overall survival (OS) with SIRT, as monotherapy or followed by sorafenib, is non-inferior to sorafenib, and compare safety profiles for patients with aHCC. Methods: We searched MEDLINE, EMBASE, and the Cochrane Library up to February 2019 to identify RCTs comparing SIRT as monotherapy, or followed by sorafenib, to sorafenib monotherapy among patients with aHCC. The main outcomes were OS and frequency of treatment-related severe adverse events (AEs grade ≥3). The per-protocol population was the primary analysis population. A non-inferiority margin of 1.08 in terms of hazard ratio (HR) was pre-specified for the upper boundary of 95% confidence interval (CI) for OS. Pre-specified subgroup analyses were performed. Results: Three RCTs, involving 1,243 patients, comparing sorafenib with SIRT (SIRveNIB and SARAH) or SIRT followed by sorafenib (SORAMIC), were included. After randomization, 411/635 (64.7%) patients allocated to SIRT and 522/608 (85.8%) allocated to sorafenib completed the studies without major protocol deviations. Median OS with SIRT, whether or not followed by sorafenib, was non-inferior to sorafenib (10.2 and 9.2 months, [HR 0.91, 95% CI 0.78–1.05]). Treatment-related severe adverse events were reported in 149/515 patients (28.9%) who received SIRT and 249/575 (43.3%) who received sorafenib only (p<0.01). Conclusion: SIRT as initial therapy for aHCC is non-inferior to sorafenib in terms of OS, and offers a better safety profile.




si

Impact of 68Ga-PSMA-11 PET on the Management of recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial

Introduction: Prostate-specific membrane antigen ligand positron emission tomography (PSMA PET) induces management changes in patients with prostate cancer. We aim to better characterize the impact of PSMA PET on management of recurrent prostate cancer in a large prospective cohort. Methods: We report management changes following PSMA PET, a secondary endpoint of a prospective multicenter trial in men with prostate cancer biochemical recurrence. Pre-PET (Q1), Post-PET (Q2) and Post-Treatment (Q3) questionnaires were sent to referring physicians recording site of recurrence, intended (Q1 to Q2 change) and implemented (Q3) therapeutic and diagnostic management. Results: Q1/Q2 response was collected for 382/635 (60%, intended cohort), Q1/Q2/Q3 for 206 patients (32%, implemented cohort). Intended management change (Q1/2) occurred in 260/382 (68%) patients. Intended change (Q1/2) was considered major in 176/382 (46%) patients. Major changes occurred most often for patients with PSA of 0.5 to <2.0 ng/mL (81/147, 55%). By analysis of stage-groups, management change was consistent with PET disease location, i.e. majority of major changes towards active surveillance (47%) for unknown disease site (103/382, 27%), towards local/focal therapy (56%) for locoregional disease (126/382, 33%), and towards systemic therapy (69% M1a; 43% M1b/c) for metastatic disease (153/382, 40%). According to Q3 responses, intended management was implemented in 160/206 (78%) patients. A total of 150 intended diagnostic tests, mostly CT (n = 43, 29%) and bone Scans/NaF-PET (n = 52, 35%), were prevented by PSMA PET; 73 tests, mostly biopsies (n = 44, 60%) as requested by the study protocol, were triggered (Q1/2). Conclusion: According to referring physicians, sites of recurrence were clarified by PSMA PET and disease localization translated into management changes in more than half of patients with biochemical recurrence of prostate cancer.




si

Receptor-targeted photodynamic therapy of glucagon-like peptide 1 receptor positive lesions

Treatment of hyperinsulinemic hypoglycemia is challenging. Surgical treatment of insulinomas and focal lesions in congenital hyperinsulinism (CHI) is invasive and carries major risks of morbidity. Medication to treat nesidioblastosis and diffuse CHI has varying efficacy and causes significant side effects. Here, we describe a novel method for therapy of hyperinsulinemic hyperglycemia, highly selectively killing beta cells by targeted photodynamic therapy (tPDT) with exendin-4-IRDye700DX, targeting the glucagon-like peptide 1 receptor (GLP-1R). A competitive binding assay was performed using Chinese hamster lung (CHL) cells transfected with the GLP-1R. The efficacy and specificity of tPDT with exendin-4-IRDye700DX was examined in vitro in cells with different levels of GLP-1R expression. Tracer biodistribution was determined in BALB/c nude mice bearing subcutaneous CHL-GLP-1R xenografts. Induction of cellular damage and the effect on tumor growth were analyzed to determine treatment efficacy. Exendin-4-IRDye700DX has a high affinity for the GLP-1R with an IC50 value of 6.3 nM. TPDT caused significant specific phototoxicity in GLP-1R positive cells (2.3 ± 0.8 % and 2.7 ± 0.3 % remaining cell viability in CHL-GLP-1R and INS-1 cells resp.). The tracer accumulates dose-dependently in GLP-1R positive tumors. In vivo tPDT induces cellular damage in tumors, shown by strong expression of cleaved-caspase-3 and leads to a prolonged median survival of the mice (36.5 vs. 22.5 days resp. p<0.05). These data show in vitro as well as in vivo evidence for the potency of tPDT using exendin-4-IRDye700DX. This could in the future provide a new, minimally invasive and highly specific treatment method for hyperinsulinemic hypoglycemia.




si

Discussions with Leaders: A Conversation Between Johnese Spisso and Johannes Czernin




si

Inclusive Growth and Job Creation in Africa: The Outlook for 2019 and Beyond

Invitation Only Research Event

30 September 2019 - 1:30pm to 2:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Abebe Aemro Selassie, Director, African Department, International Monetary Fund
Chair: Elizabeth Donnelly, Deputy Head and Research Fellow, Africa Programme, Chatham House

The IMF projects real GDP growth of 3.3 per cent in 2019 for sub-Saharan Africa but there is a mixed picture across the continent with growth in Mauritania, Senegal, Ethiopia and Rwanda outstripping projected growth rates for South Africa and Nigeria, for example, while a handful of economies seek to emerge from crisis. Yet, as is increasingly well documented, even strong growth has not delivered lasting socio-economic transformation in many contexts. And that most pressing of needs – job creation including to accommodate, in the next 15 years, an increase in the working age population greater than that in the rest of the world combined – remains a pressing concern for governments and societies. With populations continuing to grow at faster rates than economic growth, and a significant proportion of jobs outside agriculture being in the informal sector, investment in formal labour markets is crucial to creating inclusive economic growth.
 
At this event, the International Monetary Fund’s Africa Director, Abebe Aemro Selassie will discuss the outlook for sub-Saharan African economies in 2019 and progress towards achieving inclusive economic growth to accommodate future demographic change.
 
Attendance at this event is by invitation only. 

Yusuf Hassan

Parliamentary and Media Outreach Assistant, Africa Programme
+44 (0) 20 7314 3645




si

Sudan Stakeholder Dialogues: Options for Economic Stabilization, Recovery and Inclusive Growth

3 October 2019

The Chatham House Africa Programme designed the Sudan Stakeholder Dialogues series to help identify the factors that have led to the current economic crisis, the immediate steps that need to be taken to avert collapse and stabilize the economy, and the longer-term structural reforms required to set Sudan on the path to recovery. The project is funded by Humanity United.

Ahmed Soliman

Research Fellow, Horn of Africa, Africa Programme

2019-10-03-Sudan.jpg

An employee removes bread from the oven at a bakery in the Sudanese capital, Khartoum, on 24 May 2019. Photo: Getty Images.

Three private roundtable meetings were convened in the first quarter of 2019, with the aim of generating informed and constructive new thinking on policy options and reforms that could help Sudan build a more economically prosperous, stable and inclusive nation. The roundtables were held under the Chatham House Rule.

The project sought to offer a neutral space for discussion to policymakers and influencers from a broad range of backgrounds: Sudanese government officials, opposition figures, economists, experts on Sudan’s political economy and governance, civil society figures, representatives of international financial institutions, and other international policymakers.

This paper draws together the key themes and findings from each of the three roundtables, ranging from broad structural economic issues to sector-specific priority interventions. It presents options and recommendations for Sudanese leaders, including the transitional government, in support of building a more economically prosperous, peaceful and inclusive nation.




si

Forging Inclusive Economic Growth in Zimbabwe: Insights from the Zimbabwe Futures 2030 Roundtable Series

10 October 2019

This briefing note is the result of a collaborative research process with the Zimbabwean private sector, government representatives, industry organizations and experts, drawing on best practice and senior-level insights to identify policy options for long-term economic revival and expansion in Zimbabwe, and pathways for inclusive development.

Dr Knox Chitiyo

Associate Fellow, Africa Programme

Christopher Vandome

Research Fellow, Africa Programme

Caleb Dengu

Development Banking and Finance Specialist

David Mbae

Konrad-Adenauer-Stiftung Resident Representative for Zimbabwe

Central to the research process was the Zimbabwe Futures 2030 roundtable series, complemented by additional interviews and research. Participants at the three roundtables, held in Harare and Bulawayo in the first half of 2019, discussed the necessary policies and business strategies to enable and support the effective implementation of the Mnangagwa administration’s Transitional Stabilisation Programme, Vision 2030, and other longer-term national development plans.

This process was conducted by the Chatham House Africa Programme, the Zimbabwe Business Club and the Konrad-Adenauer-Stiftung (KAS); and in partnership with the Confederation of Zimbabwe Industries for a roundtable in Bulawayo. The project was supported by KAS and the Dulverton Trust.




si

POSTPONED: Connecting Infrastructure Development and Inclusive Economic Growth in Côte d'Ivoire

Research Event

13 March 2020 - 4:00pm to 5:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Hon Bruno Nabagné Kone, Minister of Construction, Housing and Urban Planning, Republic of Côte d'Ivoire

Strong economic growth in Côte d'Ivoire – with annual GDP growth averaging eight per cent since 2012 – is interlinked with an increase in spending on national infrastructure. In 2018, the government announced a $7 billion injection for the sector over five years, for projects including a new 7.5km bridge spanning two districts of Abidjan and a highway extending to Burkina Faso. A public-private partnership to build a new $1.5 billion metropolitan railway system in the capital received formal approval in October 2019.

But the government of Côte d'Ivoire has struggled to make the country’s impressive growth inclusive: Côte d’Ivoire ranked 165th out of 189 on the 2019 United Nations Human Development Index, and the poverty rate is around 46%. Translating significant infrastructural investment into benefit for ordinary and vulnerable Ivorian citizens, including through how project development is managed with communities, will be a critical issue in the lead up to elections scheduled for October 2020 and beyond.

PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE.

 

Sahar Eljack

Programme Administrator, Africa Programme
+ 44 (0) 20 7314 3660




si

Diversity and Unity: African Agency in International Affairs

22 November 2019

Professor Carlos Lopes

Associate Fellow, Africa Programme
More and more, African countries are able to act in concert to stand up for the interests of the continent.

2019-11-22-AU.jpg

Delegates leave the plenary hall of the Africa Union headquarters in Addis Ababa in January 2018. Photo: Getty Images.

The conventional wisdom is that Africa is at the periphery of international affairs, and the perpetual subject – or victim – of decisions by powerful political or economic actors from outside the continent. The argument then goes on that the diversity of African countries, their atomization and fragmentation, further weakens the ability of the continent to act as a unified whole. As with much cliché about Africa, it does not tell the whole story. 

Soft vs hard power

There is no denying that the structure of international affairs, built on foundations which preceded the independence of the vast majority of African states, places limits on the continent’s ability to independently shape the course of its development and its international engagements. African countries lack the hard power that would typically allow them to be bolder in the global scene.

But Africa has long found softer approaches to exercise its agency, through international institutions and diplomatic arrangements. The collective mobilization at the level of the UN, leading up to the successful 1969 declaration by the General Assembly of apartheid as a crime against humanity, is a good example of early post-independence collective influence.

The last two decades have further empowered African countries, as economic development has been translated into increased diplomatic capacity, and socioeconomic potential has given weight to a more assertive leadership.

There are many examples, including: the successful integration of African priorities in the Sustainable Development Goals, notably financing for development; the push to include a substantial climate financing component for developing countries in the Paris Agreement; enhanced coordination between African non-permanent members of the UN Security Council; the condemnation of the International Criminal Court; or the solid resistance to reversals of the Doha Round at the World Trade Organization.

A fragmented unity?

It is also correct to note that individual African countries are quite diverse. Today, there are 55 member states of the African Union (AU); 30 are middle income economies with the rest towards the bottom of various indexes measuring progress and wellbeing. Socioeconomic and political divergences undeniably exist within the continent. But these factors have not prevented the continent from demonstrating some impressive feats of collective agency.

The internal processes put in place by the AU have created a level of continental diplomacy which is more coordinated than any other continental block bar the EU. African countries have also proved adept at using other diplomatic alliances to exercise collective agency, for instance as the most powerful voice within the G77, a coalition of developing nations.

Africa’s Future in a Changing Global Order: Agency in International Relations

HE Jakaya Kikwete, former president of the Republic of Tanzania, addresses a Chatham House conference on the role that African states and citizens play in international relations.

This has allowed Africa to build tactical alliances with countries and blocs from across the globe, resisting being drawn into any one sphere of influence. It has thus retained ultimate control of decision-making, even on issues of traditional ‘hard’ politics, notably the establishment of the African Peace and Security Architecture and the subsequent building of African capacity to collectively manage its peace and security efforts.

Among other things, this collective political will has powered African opposition to a formal permanent presence of US Africa Command (AFRICOM) and helped resolve conflicts from West Africa to Zimbabwe and Lesotho.

Another extraordinary example of collective political resistance can be observed in the trade discussions taking place between Africa and Europe. The EU is Africa's number-one trading partner. It designed and aggressively promoted new bilateral economic partnership agreements (EPAs) at a time when Africans were busy putting together a continental free-trade area. The apparent imbalance between the collective weight of the EU and the weakness of African states seemed likely to end African aspirations to continental integration.

But, to the surprise of many, the majority of African countries were able to resist pressure to sign the EPAs. Almost 20 years into the negotiations, only 15 countries have signed them, with 5 of these being interim agreements. Comparatively, 54 African countries signed the African Continental Free Trade Area agreement in 2018, and 28 have so far ratified.

The ongoing debate between Europe and Africa on migration is an equally useful illustration of how the continent has become more protective of its interests. Despite pressure, the continent has collectively resisted attempts to externalize the EU’s internal migration management challenges to Africa. Rather, it has emphasized finding solutions that would also benefit its nationals through a mobility framework that privileges the management of intra-Africa migration.   

Diversity and unity

There are of course different levels of agency at work. The power of African countries is uneven both vis-à-vis the international community and within the continent itself, where development pathways are increasingly divergent. Achieving collective positions and joint action demands the careful balancing of regional and bilateral objectives and assuaging multiple – and sometimes contradictory – concerns. It is not easy in Africa, like for any other region.

However, there is no denying that Africans have realized the need for bolder action in the international arena, and the importance of unity in achieving their goals. The call by Africa’s leaders for the reform of their continental organization, the AU, demonstrates their recognition of its current limitations. This must now go beyond good intentions.

This article is the first of a series on African agency in international affairs.




si

Economic Recovery and Anticorruption in South Africa: Assessing Progress on the Reform Agenda

Invitation Only Research Event

4 December 2019 - 3:00pm to 4:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Professor Nick Binedell, Founding Director and Sasol Chair of Strategic Management, Gordon Institute of Business Science (GIBS), University of Pretoria

South Africa has significant economic potential based on its resource endowment, quality human capital and well-developed infrastructure compared to the region. However, the country’s economic growth rate has not topped 2 per cent since 2013, and in 2018, was below 1 per cent. This has put a strain on citizens and communities in a country that still suffers from structural inequality, poverty and high unemployment. Economic recovery and anti-corruption were the central pillars of President Cyril Ramaphosa’s 2019 electoral campaign and he has set an investment target of $100 billion. However, voters and investors alike are demanding faster and more visible progress from the country’s enigmatic leader who has a reputation for caution and calculation.

At this event, Professor Nick Binedell will discuss the progress of and opposition to the president’s economic reform agenda and the opportunities for international investment to support long term inclusive and sustainable growth in South Africa.

Attendance at this event is by invitation only. 

Event attributes

Chatham House Rule

Sahar Eljack

Programme Administrator, Africa Programme
+ 44 (0) 20 7314 3660




si

Can the New European Commission Deliver on Its Promises to Africa?

4 December 2019

Fergus Kell

Projects Assistant, Africa Programme

Damir Kurtagic

Former Academy Robert Bosch Fellow, Africa Programme
Familiar promises of equal partnership must be backed by bolder action, including an expanded budget, internal reform and a rethink of its approach to trade negotiations.

2019-12-03-Urpilainen.jpg

Jutta Urpilainen, new EU commissioner for international partnerships, at the European Parliament in Brussels in October. Photo: Getty Images.

The new European Commission, headed by Ursula von der Leyen, assumed office on 1 December, and there are early signs that Africa will begin near the top of their foreign policy priorities. Policy towards Africa under the new EU administration is yet to be fully defined, but its contours are already visible in the selection of commissioners and assignment of portfolios.  

Although rumours of a dedicated commissioner for Africa were unfounded, the appointment of Jutta Urpilainen to the new role of commissioner for international partnerships – replacing the former post of development commissioner – is a strong signal of ongoing change in EU development thinking, away from bilateral aid towards trade and investment, including by the private sector. 

This may have significant consequences for the EU’s relationship with Africa. In her mission letter to Urpilainen in September, von der Leyen listed the first objective as a new ‘comprehensive strategy for Africa’. Urpilainen, Finland’s finance minister before being posted to Ethiopia as special representative on mediation, has also described her appointment as an opportunity to move on from traditional measures of aid delivery. 

Ambition or incoherence? 

However, this ambition may be at odds with other EU priorities and practices, notably managing migration and institutions and instruments for governing EU–Africa relations that remain rooted in a ‘traditional’ model of North–South development cooperation rather than equitable partnership.

Another newly created post will see Margaritis Schinas assume the role of vice-president for promoting the European way of life – formerly ‘protecting our European way of life’ before a backlash saw it changed – a reminder that migration will remain high on the EU’s foreign policy agenda. The new high representative for foreign and security policy and chief EU diplomat, Josep Borrell, has highlighted the need for bilateral partnership with countries of origin and transit, mainly in Africa. 

Negotiations also continue to stall on a replacement to the Cotonou Agreement, the 20-year partnership framework between the EU and the African, Caribbean and Pacific (ACP) group of states, which now looks certain to be extended for at least 12 months beyond its expiry in February 2020.

Ambiguities in the EU’s negotiating approach have certainly contributed to the delay: having pushed initially for a separate regional pillar for Africa that would be opened to the North African countries (who are not ACP members) and include a loosely defined role for the African Union, this would later be abandoned in favour of a dual-track process on separate new agreements with the AU and ACP respectively.

The EU also continues to pursue controversial economic partnership agreements under the aegis of Cotonou, despite their increasing appearance of incompatibility with the pathbreaking African Continental Free Trade Area (AfCFTA) – one of the clearest expressions to date of African agency.

The EU has so far attempted to gloss over this incoherence, claiming that EPAs can somehow act as the ‘building blocks’ for Africa-wide economic integration. But tensions are appearing between EU departments and within the commission, with the European External Action Service inclined to prioritize a more strategic continental relationship with the AU, while the Directorate-General for International Cooperation and Development remains committed to the ACP as the conduit for financial support and aid delivery.

And it is unlikely to get away with such incoherence for much longer. Change is now urgent, as numerous countries in sub-Saharan Africa continue to attract the strategic and commercial interests of the EU’s competitors: from established players such as China and potentially in future the UK, which is intent on remodelling its Africa ties post-Brexit, to emerging actors such as Turkey or Russia, which held its first Africa summit in October. 

The need for delivery

If the EU is serious about its rhetoric on equal partnership, it must therefore move beyond convoluted hybrid proposals. Delivering on the Juncker administration’s proposal to increase funding for external action by 30 per cent for 2021–27 would mark an important first step, particularly as this involves streamlining that would see the European Development Fund – the financial instrument for EU-ACP relations – incorporated into the main EU budget.

The new commission should therefore continue to exert pressure on the European Council and European Parliament to adopt this proposal, as negotiations on this financial framework have been repeatedly subject to delay and may not be resolved before the end of the year. 

Beyond this, proactive support for the AfCFTA and for structural transformation more broadly must be prioritized ahead of vague promises for a continent-to-continent free trade agreement, as held out by Juncker in his final State of the Union address in 2018. 

The significance of internal EU reforms for Africa should also not be discounted. The EU’s Common Agricultural Policy, for instance, has placed the African sector at a particular disadvantage and has made it harder to compete even in domestic markets, let alone in the distant EU export markets. EU efforts to stimulate inflows of private investments into the African agricultural sector, abolish import tariffs and offer technical support for African producers to satisfy EU health and safety regulations will be of little use if they are undermined by heavy subsidies across Europe.

Ultimately, changes to job titles alone will be insufficient. The new commission’s rhetoric, while ambitious, differs little from that of the previous decade – Africa has heard the promise of a ‘partnership of equals’ and of ‘shared ownership’ since before the advent of the Joint Africa–EU Strategy in 2007. Now is the time for truly bold steps to implement this vision.




si

Côte d'Ivoire’s 2020 Elections and Beyond: Ensuring Stability and Inclusion

Research Event

21 January 2020 - 11:30am to 12:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

HE Alassane Ouattara, President, Republic of Côte d'Ivoire
Chair: Bob Dewar CMG, Associate Fellow, Africa Programme, Chatham House

Please note, the second video on this page is from an interview with the president outside the event.

HE Alassane Ouattara, president of Côte d'Ivoire, discusses governance and domestic priorities ahead of and beyond elections, as well as efforts to sustain stability and support an inclusive electoral process.

Presidential elections in Côte d'Ivoire, the world’s top cocoa producer and the largest economy in the West African Economic and Monetary Union (WAEMU), will be held ‪on 31st October 2020 against a backdrop of marked political dynamism in the country and wider region.

Possible constitutional amendments and a newly announced major reform of the currency regime are among significant issues drawing focus.

A credible and inclusive electoral process is critical for the improvement of socio-development outcomes and for the maintenance of a positive investment environment.

But instability remains a serious risk and the stakes are high for Côte d'Ivoire and the wider region.